! --- BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_alpha, (ao_num, ao_num)] &BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_beta , (ao_num, ao_num)] BEGIN_DOC ! ! two_e_tc_non_hermit_integral_seq_alpha(k,i) = ON THE AO BASIS ! ! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions ! ! works in SEQUENTIAL END_DOC implicit none integer :: i, j, k, l double precision :: density, density_a, density_b double precision :: t0, t1 PROVIDE ao_two_e_tc_tot !print*, ' providing two_e_tc_non_hermit_integral_seq ...' !call wall_time(t0) two_e_tc_non_hermit_integral_seq_alpha = 0.d0 two_e_tc_non_hermit_integral_seq_beta = 0.d0 do i = 1, ao_num do k = 1, ao_num do j = 1, ao_num do l = 1, ao_num density_a = TCSCF_density_matrix_ao_alpha(l,j) density_b = TCSCF_density_matrix_ao_beta (l,j) density = density_a + density_b !! rho(l,j) * < k l| T | i j> !two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i) !! rho(l,j) * < k l| T | i j> !two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i) !! rho_a(l,j) * < l k| T | i j> !two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i) !! rho_b(l,j) * < l k| T | i j> !two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i) ! rho(l,j) * < k l| T | i j> two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j) ! rho(l,j) * < k l| T | i j> two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(k,i,l,j) ! rho_a(l,j) * < k l| T | j i> two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i) ! rho_b(l,j) * < k l| T | j i> two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i) enddo enddo enddo enddo !call wall_time(t1) !print*, ' wall time for two_e_tc_non_hermit_integral_seq after = ', t1 - t0 END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_alpha, (ao_num, ao_num)] &BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_beta , (ao_num, ao_num)] BEGIN_DOC ! ! two_e_tc_non_hermit_integral_alpha(k,i) = ON THE AO BASIS ! ! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions ! END_DOC implicit none integer :: i, j, k, l double precision :: density, density_a, density_b, I_coul, I_kjli double precision :: t0, t1 double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) PROVIDE ao_two_e_tc_tot PROVIDE mo_l_coef mo_r_coef PROVIDE TCSCF_density_matrix_ao_alpha TCSCF_density_matrix_ao_beta !print*, ' Providing two_e_tc_non_hermit_integral ...' !call wall_time(t0) two_e_tc_non_hermit_integral_alpha = 0.d0 two_e_tc_non_hermit_integral_beta = 0.d0 !$OMP PARALLEL DEFAULT (NONE) & !$OMP PRIVATE (i, j, k, l, density_a, density_b, density, tmp_a, tmp_b, I_coul, I_kjli) & !$OMP SHARED (ao_num, TCSCF_density_matrix_ao_alpha, TCSCF_density_matrix_ao_beta, ao_two_e_tc_tot, & !$OMP two_e_tc_non_hermit_integral_alpha, two_e_tc_non_hermit_integral_beta) allocate(tmp_a(ao_num,ao_num), tmp_b(ao_num,ao_num)) tmp_a = 0.d0 tmp_b = 0.d0 !$OMP DO do j = 1, ao_num do l = 1, ao_num density_a = TCSCF_density_matrix_ao_alpha(l,j) density_b = TCSCF_density_matrix_ao_beta (l,j) density = density_a + density_b do i = 1, ao_num do k = 1, ao_num I_coul = density * ao_two_e_tc_tot(k,i,l,j) I_kjli = ao_two_e_tc_tot(k,j,l,i) tmp_a(k,i) += I_coul - density_a * I_kjli tmp_b(k,i) += I_coul - density_b * I_kjli enddo enddo enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL do i = 1, ao_num do j = 1, ao_num two_e_tc_non_hermit_integral_alpha(j,i) += tmp_a(j,i) two_e_tc_non_hermit_integral_beta (j,i) += tmp_b(j,i) enddo enddo !$OMP END CRITICAL deallocate(tmp_a, tmp_b) !$OMP END PARALLEL !call wall_time(t1) !print*, ' Wall time for two_e_tc_non_hermit_integral = ', t1 - t0 END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_alpha, (ao_num, ao_num)] BEGIN_DOC ! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the AO basis END_DOC implicit none double precision :: t0, t1 !print*, ' Providing Fock_matrix_tc_ao_alpha ...' !call wall_time(t0) Fock_matrix_tc_ao_alpha = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_alpha !call wall_time(t1) !print*, ' Wall time for Fock_matrix_tc_ao_alpha =', t1-t0 END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_beta, (ao_num, ao_num)] BEGIN_DOC ! Total beta TC Fock matrix : h_c + Two-e^TC terms on the AO basis END_DOC implicit none Fock_matrix_tc_ao_beta = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_beta END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_alpha, (mo_num, mo_num) ] BEGIN_DOC ! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the MO basis END_DOC implicit none double precision :: t0, t1, tt0, tt1 double precision, allocatable :: tmp(:,:) !print*, ' Providing Fock_matrix_tc_mo_alpha ...' !call wall_time(t0) if(bi_ortho) then !allocate(tmp(ao_num,ao_num)) !tmp = Fock_matrix_tc_ao_alpha !if(three_body_h_tc) then ! tmp += fock_3e_uhf_ao_a !endif !call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1)) !deallocate(tmp) PROVIDE mo_l_coef mo_r_coef !call wall_time(tt0) call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) & , Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) ) !call wall_time(tt1) !print*, ' 2-e term:', tt1-tt0 if(three_body_h_tc) then !call wall_time(tt0) !PROVIDE fock_a_tot_3e_bi_orth !Fock_matrix_tc_mo_alpha += fock_a_tot_3e_bi_orth PROVIDE fock_3e_uhf_mo_a Fock_matrix_tc_mo_alpha += fock_3e_uhf_mo_a !call wall_time(tt1) !print*, ' 3-e term:', tt1-tt0 endif else call ao_to_mo( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) & , Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) ) endif !call wall_time(t1) !print*, ' Wall time for Fock_matrix_tc_mo_alpha =', t1-t0 END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ] BEGIN_DOC ! Total beta TC Fock matrix : h_c + Two-e^TC terms on the MO basis END_DOC implicit none double precision, allocatable :: tmp(:,:) if(bi_ortho) then !allocate(tmp(ao_num,ao_num)) !tmp = Fock_matrix_tc_ao_beta !if(three_body_h_tc) then ! tmp += fock_3e_uhf_ao_b !endif !call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1)) !deallocate(tmp) call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) & , Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) ) if(three_body_h_tc) then !PROVIDE fock_b_tot_3e_bi_orth !Fock_matrix_tc_mo_beta += fock_b_tot_3e_bi_orth PROVIDE fock_3e_uhf_mo_b Fock_matrix_tc_mo_beta += fock_3e_uhf_mo_b endif else call ao_to_mo( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) & , Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) ) endif END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, grad_non_hermit_left] &BEGIN_PROVIDER [ double precision, grad_non_hermit_right] &BEGIN_PROVIDER [ double precision, grad_non_hermit] implicit none integer :: i, k grad_non_hermit_left = 0.d0 grad_non_hermit_right = 0.d0 do i = 1, elec_beta_num ! doc --> SOMO do k = elec_beta_num+1, elec_alpha_num grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i))) grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k))) enddo enddo do i = 1, elec_beta_num ! doc --> virt do k = elec_alpha_num+1, mo_num grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i))) grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k))) enddo enddo do i = elec_beta_num+1, elec_alpha_num ! SOMO --> virt do k = elec_alpha_num+1, mo_num grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i))) grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k))) enddo enddo grad_non_hermit = max(grad_non_hermit_left, grad_non_hermit_right) END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_tot, (ao_num, ao_num) ] implicit none double precision :: t0, t1 !print*, ' Providing Fock_matrix_tc_ao_tot ...' !call wall_time(t0) PROVIDE mo_l_coef mo_r_coef PROVIDE Fock_matrix_tc_mo_tot call mo_to_ao_bi_ortho( Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) & , Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) ) !call wall_time(t1) !print*, ' Wall time for Fock_matrix_tc_ao_tot =', t1-t0 END_PROVIDER ! ---