* Hessian The hessian of the CI energy with respects to the orbital rotation is : (C-c C-x C-l) \begin{align*} H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\ &= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u) + \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_r^u)] -(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\ &+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} + v_{uv}^{st} \Gamma_{pt}^{uv}) + \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\ &+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{pr}^{uv}) - \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts}) \end{align*} With pq a permutation operator : \begin{align*} \mathcal{P}_{pq}= 1 - (p \leftrightarrow q) \end{align*} \begin{align*} \mathcal{P}_{pq} \mathcal{P}_{rs} &= (1 - (p \leftrightarrow q))(1 - (r \leftrightarrow s)) \\ &= 1 - (p \leftrightarrow q) - (r \leftrightarrow s) + (p \leftrightarrow q, r \leftrightarrow s) \end{align*} Where p,q,r,s,t,u,v are general spatial orbitals mo_num : the number of molecular orbitals $$h$$ : One electron integrals $$\gamma$$ : One body density matrix (state average in our case) $$v$$ : Two electron integrals $$\Gamma$$ : Two body density matrice (state average in our case) The hessian is a 4D matrix of size mo_num, p,q,r,s,t,u,v take all the values between 1 and mo_num (1 and mo_num include). To do that we compute all the pairs (pq,rs) Source : Seniority-based coupled cluster theory J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384 Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo E. Scuseria *Compute the hessian of energy with respects to orbital rotations* Provided: | mo_num | integer | number of MOs | | mo_one_e_integrals(mo_num,mo_num) | double precision | mono-electronic integrals | | one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix (state average) | | two_e_dm_mo(mo_num,mo_num,mo_num) | double precision | two e- density matrix (state average) | Input: | n | integer | mo_num*(mo_num-1)/2 | Output: | H(n,n) | double precision | Hessian matrix | | h_tmpr(mo_num,mo_num,mo_num,mo_num) | double precision | Complete hessian matrix before the tranformation | | | | in n by n matrix | Internal: | hessian(mo_num,mo_num,mo_num,mo_num) | double precision | temporary array containing the hessian before | | | | the permutations | | p, q, r, s | integer | indexes of the hessian elements | | t, u, v | integer | indexes for the sums | | pq, rs | integer | indexes for the transformation of the hessian | | | | (4D -> 2D) | | t1,t2,t3 | double precision | t3 = t2 - t1, time to compute the hessian | | t4,t5,t6 | double precision | t6 = t5 - t4, time to compute each element | | tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bielectronic integrals | | tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the 2 body density matrix | | ind_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for matrix multiplication | | tmp_accu(mo_num,mo_num) | double precision | temporary array | | tmp_accu_sym(mo_num,mo_num) | double precision | temporary array | Function: | get_two_e_integral | double precision | bielectronic integrals | #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f subroutine hessian_opt(n,H,h_tmpr) use omp_lib include 'constants.h' implicit none ! Variables ! in integer, intent(in) :: n ! out double precision, intent(out) :: H(n,n),h_tmpr(mo_num,mo_num,mo_num,mo_num) ! internal double precision, allocatable :: hessian(:,:,:,:)!, h_tmpr(:,:,:,:) double precision, allocatable :: H_test(:,:) integer :: p,q integer :: r,s,t,u,v,k integer :: pq,rs double precision :: t1,t2,t3,t4,t5,t6 ! H_test : monum**2 by mo_num**2 double precision matrix to debug the H matrix double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:), ind_3(:,:,:) double precision, allocatable :: tmp_accu(:,:), tmp_accu_sym(:,:), tmp_accu_shared(:,:),tmp_accu_sym_shared(:,:) ! Function double precision :: get_two_e_integral print*,'' print*,'---hessian---' print*,'Use the full hessian' ! Allocation of shared arrays allocate(hessian(mo_num,mo_num,mo_num,mo_num))!,h_tmpr(mo_num,mo_num,mo_num,mo_num)) allocate(tmp_accu_shared(mo_num,mo_num),tmp_accu_sym_shared(mo_num,mo_num)) ! Calculations ! OMP call omp_set_max_active_levels(1) !$OMP PARALLEL & !$OMP PRIVATE( & !$OMP p,q,r,s, tmp_accu, tmp_accu_sym, & !$OMP u,v,t, tmp_bi_int_3, tmp_2rdm_3, ind_3) & !$OMP SHARED(hessian,h_tmpr,H, mo_num,n, & !$OMP mo_one_e_integrals, one_e_dm_mo, & !$OMP two_e_dm_mo,mo_integrals_map,tmp_accu_sym_shared, tmp_accu_shared, & !$OMP t1,t2,t3,t4,t5,t6)& !$OMP DEFAULT(NONE) ! Allocation of private arrays allocate(tmp_bi_int_3(mo_num,mo_num,mo_num)) allocate(tmp_2rdm_3(mo_num,mo_num,mo_num), ind_3(mo_num,mo_num,mo_num)) allocate(tmp_accu(mo_num,mo_num), tmp_accu_sym(mo_num,mo_num)) #+END_SRC ** Initialization of the arrays #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER do q = 1, mo_num do p = 1, mo_num tmp_accu_shared(p,q) = 0d0 enddo enddo !$OMP END MASTER !$OMP MASTER do q = 1, mo_num do p = 1, mo_num tmp_accu_sym(p,q) = 0d0 enddo enddo !$OMP END MASTER !$OMP DO do s=1,mo_num do r=1,mo_num do q=1,mo_num do p=1,mo_num hessian(p,q,r,s) = 0d0 enddo enddo enddo enddo !$OMP ENDDO !$OMP MASTER CALL wall_TIME(t1) !$OMP END MASTER #+END_SRC ** Line 1, term 1 Without optimization the term 1 of the line 1 is : do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num if (q==r) then do u = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) & + mo_one_e_integrals(s,u) * one_e_dm_mo(p,u)) enddo endif enddo enddo enddo enddo We can write the formula as matrix multiplication. $$c_{p,s} = \sum_u a_{p,u} b_{u,s}$$ #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER call dgemm('T','N', mo_num, mo_num, mo_num, 1d0, mo_one_e_integrals,& size(mo_one_e_integrals,1), one_e_dm_mo, size(one_e_dm_mo,1),& 0d0, tmp_accu_shared, size(tmp_accu_shared,1)) !$OMP DO do s = 1, mo_num do p = 1, mo_num tmp_accu_sym_shared(p,s) = 0.5d0 * (tmp_accu_shared(p,s) + tmp_accu_shared(s,p)) enddo enddo !$OMP END DO !$OMP DO do s = 1, mo_num do p = 1, mo_num do r = 1, mo_num hessian(p,r,r,s) = hessian(p,r,r,s) + tmp_accu_sym_shared(p,s) enddo enddo enddo !$OMP END DO !$OMP MASTER CALL wall_TIME(t5) t6=t5-t4 print*,'l1 1',t6 !$OMP END MASTER #+END_SRC ** Line 1, term 2 do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num if (p==s) then do u = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,r) * (one_e_dm_mo(u,q) & + mo_one_e_integrals(q,u) * (one_e_dm_mo(r,u)) enddo endif enddo enddo enddo enddo We can write the formula as matrix multiplication. $$c_{r,q} = \sum_u a_{r,u} b_{u,q}$$ #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER call dgemm('T','N', mo_num, mo_num, mo_num, 1d0, mo_one_e_integrals,& size(mo_one_e_integrals,1), one_e_dm_mo, size(one_e_dm_mo,1),& 0d0, tmp_accu_shared, size(tmp_accu_shared,1)) !$OMP DO do r = 1, mo_num do q = 1, mo_num tmp_accu_sym_shared(q,r) = 0.5d0 * (tmp_accu_shared(q,r) + tmp_accu_shared(r,q)) enddo enddo !OMP END DO !$OMP DO do r = 1, mo_num do q = 1, mo_num do s = 1, mo_num hessian(s,q,r,s) = hessian(s,q,r,s) + tmp_accu_sym_shared(q,r) enddo enddo enddo !OMP END DO !$OMP MASTER CALL wall_TIME(t5) t6=t5-t4 print*,'l1 2',t6 !$OMP END MASTER #+END_SRC ** Line 1, term 3 Without optimization the third term is : do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) & - mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) & - mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)) enddo enddo enddo enddo We can just re-order the indexes #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER !$OMP DO do s = 1, mo_num do r = 1, mo_num do q = 1, mo_num do p = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) & - mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)& - mo_one_e_integrals(q,r) * one_e_dm_mo(p,s) enddo enddo enddo enddo !$OMP END DO !$OMP MASTER CALL wall_TIME(t5) t6=t5-t4 print*,'l1 3',t6 !$OMP END MASTER #+END_SRC ** Line 2, term 1 Without optimization the fourth term is : do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num if (q==r) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) & + get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v)) enddo enddo enddo endif enddo enddo enddo enddo Using bielectronic integral properties : get_two_e_integral(s,t,u,v,mo_integrals_map) = get_two_e_integral(u,v,s,t,mo_integrals_map) Using the two electron density matrix properties : two_e_dm_mo(p,t,u,v) = two_e_dm_mo(u,v,p,t) With t on the external loop, using temporary arrays for each t and by taking u,v as one variable a matrix multplication appears. $$c_{p,s} = \sum_{uv} a_{p,uv} b_{uv,s}$$ There is a kroenecker delta $$\delta_{qr}$$, so we juste compute the terms like : hessian(p,r,r,s) #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER call wall_TIME(t4) !$OMP END MASTER !$OMP DO do t = 1, mo_num do p = 1, mo_num do v = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,v,p) = get_two_e_integral(u,v,p,t,mo_integrals_map) enddo enddo enddo do p = 1, mo_num ! error, the p might be replace by a s ! it's a temporary array, the result by replacing p and s will be the same do v = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,t) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1.d0, & tmp_bi_int_3, mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, & 0.d0, tmp_accu, size(tmp_accu,1)) do p = 1, mo_num do s = 1, mo_num tmp_accu_sym(s,p) = 0.5d0 * (tmp_accu(p,s)+tmp_accu(s,p)) enddo enddo !$OMP CRITICAL do s = 1, mo_num do r = 1, mo_num do p = 1, mo_num hessian(p,r,r,s) = hessian(p,r,r,s) + tmp_accu_sym(p,s) enddo enddo enddo !$OMP END CRITICAL enddo !$OMP END DO !$OMP MASTER call wall_TIME(t5) t6=t5-t4 print*,'l2 1', t6 !$OMP END MASTER #+END_SRC ** Line 2, term 2 do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num if (p==s) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) & + get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t)) enddo enddo enddo endif enddo enddo enddo enddo Using the two electron density matrix properties : get_two_e_integral(q,t,u,v,mo_integrals_map) = get_two_e_integral(u,v,q,t,mo_integrals_map) Using the two electron density matrix properties : two_e_dm_mo(r,t,u,v) = two_e_dm_mo(u,v,r,t) With t on the external loop, using temporary arrays for each t and by taking u,v as one variable a matrix multplication appears. $$c_{q,r} = \sum_uv a_{q,uv} b_{uv,r}$$ There is a kroenecker delta $$\delta_{ps}$$, so we juste compute the terms like : hessian(s,q,r,s) #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !****************************** ! Opt Second line, second term !****************************** !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER !$OMP DO do t = 1, mo_num do q = 1, mo_num do v = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,v,q) = get_two_e_integral(u,v,q,t,mo_integrals_map) enddo enddo enddo do r = 1, mo_num do v = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,v,r) = two_e_dm_mo(u,v,r,t) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1.d0, & tmp_bi_int_3 , mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, & 0.d0, tmp_accu, size(tmp_accu,1)) do r = 1, mo_num do q = 1, mo_num tmp_accu_sym(q,r) = 0.5d0 * (tmp_accu(q,r) + tmp_accu(r,q)) enddo enddo !$OMP CRITICAL do r = 1, mo_num do q = 1, mo_num do s = 1, mo_num hessian(s,q,r,s) = hessian(s,q,r,s) + tmp_accu_sym(q,r) enddo enddo enddo !$OMP END CRITICAL enddo !$OMP END DO !$OMP MASTER CALL wall_TIME(t5) t6=t5-t4 print*,'l2 2',t6 !$OMP END MASTER #+END_SRC ** Line 3, term 1 do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num do u = 1, mo_num do v = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) & + get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) & + get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v) enddo enddo enddo enddo enddo enddo Using the two electron density matrix properties : get_two_e_integral(u,v,p,r,mo_integrals_map) = get_two_e_integral(p,r,u,v,mo_integrals_map) Using the two electron density matrix properties : two_e_dm_mo(u,v,q,s) = two_e_dm_mo(q,s,u,v) With v on the external loop, using temporary arrays for each v and by taking p,r and q,s as one dimension a matrix multplication appears. $$c_{pr,qs} = \sum_u a_{pr,u} b_{u,qs}$$ Part 1 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER call wall_TIME(t4) !$OMP END MASTER !-------- ! part 1 ! get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) !-------- !$OMP DO do v = 1, mo_num do u = 1, mo_num do r = 1, mo_num do p = 1, mo_num tmp_bi_int_3(p,r,u) = get_two_e_integral(p,r,u,v,mo_integrals_map) enddo enddo enddo do s = 1, mo_num do q = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,q,s) = two_e_dm_mo(q,s,u,v) enddo enddo enddo do s = 1, mo_num call dgemm('N','N',mo_num*mo_num, mo_num, mo_num, 1d0, tmp_bi_int_3,& size(tmp_bi_int_3,1)*size(tmp_bi_int_3,2), tmp_2rdm_3(1,1,s),& size(tmp_2rdm_3,1), 0d0, ind_3, size(ind_3,1) * size(ind_3,2)) !$OMP CRITICAL do r = 1, mo_num do q = 1, mo_num do p = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + ind_3(p,r,q) enddo enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO #+END_SRC With v on the external loop, using temporary arrays for each v and by taking q,s and p,r as one dimension a matrix multplication appears. $$c_{qs,pr} = \sum_u a_{qs,u}*b_{u,pr}$$ Part 2 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !-------- ! part 2 ! get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v) !-------- !$OMP DO do v = 1, mo_num do u = 1, mo_num do s = 1, mo_num do q = 1, mo_num tmp_bi_int_3(q,s,u) = get_two_e_integral(q,s,u,v,mo_integrals_map) enddo enddo enddo do r = 1, mo_num do p = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,p,r) = two_e_dm_mo(p,r,u,v) enddo enddo enddo do r = 1, mo_num call dgemm('N','N', mo_num*mo_num, mo_num, mo_num, 1d0, tmp_bi_int_3,& size(tmp_bi_int_3,1)*size(tmp_bi_int_3,2), tmp_2rdm_3(1,1,r),& size(tmp_2rdm_3,1), 0d0, ind_3, size(ind_3,1) * size(ind_3,2)) !$OMP CRITICAL do s = 1, mo_num do q = 1, mo_num do p = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + ind_3(q,s,p) enddo enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO !$OMP MASTER call wall_TIME(t5) t6 = t5 - t4 print*,'l3 1', t6 !$OMP END MASTER #+END_SRC ** Line 3, term 2 do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num do t = 1, mo_num do u = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) & - get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) & - get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) & - get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) & - get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s) enddo enddo enddo enddo enddo enddo With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$ Part 1 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !-------- ! Part 1 ! - get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) !-------- !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER !$OMP DO do q = 1, mo_num do r = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,t,r) = two_e_dm_mo(q,u,r,t) enddo enddo enddo do p = 1, mo_num do s = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,t,s) = - get_two_e_integral(u,s,t,p,mo_integrals_map) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3,& mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, 0d0, tmp_accu, mo_num) !$OMP CRITICAL do s = 1, mo_num do r = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r) enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO #+END_SRC With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$ Part 2 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !-------- ! Part 2 !- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) !-------- !$OMP DO do q = 1, mo_num do r = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,t,r) = two_e_dm_mo(q,u,t,r) enddo enddo enddo do p = 1, mo_num do s = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,t,s) = - get_two_e_integral(u,t,s,p,mo_integrals_map) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3,& mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, 0d0, tmp_accu, mo_num) !$OMP CRITICAL do s = 1, mo_num do r = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r) enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO #+END_SRC With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$ Part 3 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !-------- ! Part 3 !- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) !-------- !$OMP DO do q = 1, mo_num do r = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,t,r) = - get_two_e_integral(u,q,t,r,mo_integrals_map) enddo enddo enddo do p = 1, mo_num do s = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,t,s) = two_e_dm_mo(p,u,s,t) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_2rdm_3,& mo_num*mo_num, tmp_bi_int_3, mo_num*mo_num, 0d0, tmp_accu, mo_num) !$OMP CRITICAL do s = 1, mo_num do r = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r) enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO #+END_SRC With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$ Part 4 #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !-------- ! Part 4 ! - get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s) !-------- !$OMP DO do q = 1, mo_num do r = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_bi_int_3(u,t,r) = - get_two_e_integral(u,t,r,q,mo_integrals_map) enddo enddo enddo do p = 1, mo_num do s = 1, mo_num do t = 1, mo_num do u = 1, mo_num tmp_2rdm_3(u,t,s) = two_e_dm_mo(p,u,t,s) enddo enddo enddo call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_2rdm_3,& mo_num*mo_num, tmp_bi_int_3, mo_num*mo_num, 0d0, tmp_accu, mo_num) !$OMP CRITICAL do s = 1, mo_num do r = 1, mo_num hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r) enddo enddo !$OMP END CRITICAL enddo enddo !$OMP END DO !$OMP MASTER call wall_TIME(t5) t6 = t5-t4 print*,'l3 2',t6 !$OMP END MASTER !$OMP MASTER CALL wall_TIME(t2) t3 = t2 -t1 print*,'Time to compute the hessian : ', t3 !$OMP END MASTER #+END_SRC ** Deallocation of private arrays In the omp section ! #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f deallocate(tmp_bi_int_3, tmp_2rdm_3, tmp_accu, tmp_accu_sym, ind_3) #+END_SRC ** Permutations As we mentioned before there are two permutation operator in the formula : Hessian(p,q,r,s) = P_pq P_rs [...] => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r) #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f !$OMP MASTER CALL wall_TIME(t4) !$OMP END MASTER !$OMP DO do s = 1, mo_num do r = 1, mo_num do q = 1, mo_num do p = 1, mo_num h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r)) enddo enddo enddo enddo !$OMP END DO !$OMP MASTER call wall_TIME(t5) t6 = t5-t4 print*,'Time for permutations :',t6 !$OMP END MASTER #+END_SRC ** 4D -> 2D matrix We need a 2D matrix for the Newton method's. Since the Hessian is "antisymmetric" : $$H_{pq,rs} = -H_{rs,pq}$$ We can write it as a 2D matrix, N by N, with N = mo_num(mo_num-1)/2 with p 2D :',t6 !$OMP END MASTER !$OMP END PARALLEL call omp_set_max_active_levels(4) ! Display if (debug) then print*,'2D Hessian matrix' do pq = 1, n write(*,'(100(F10.5))') H(pq,:) enddo endif #+END_SRC ** Deallocation of shared arrays, end #+BEGIN_SRC f90 :comments org :tangle hessian_opt.irp.f deallocate(hessian)!,h_tmpr) ! h_tmpr is intent out in order to debug the subroutine ! It's why we don't deallocate it print*,'---End hessian---' end subroutine #+END_SRC