subroutine dm_dft_alpha_beta_at_r(r,dm_a,dm_b) implicit none BEGIN_DOC ! input: r(1) ==> r(1) = x, r(2) = y, r(3) = z ! output : dm_a = alpha density evaluated at r(3) ! output : dm_b = beta density evaluated at r(3) END_DOC double precision, intent(in) :: r(3) double precision, intent(out) :: dm_a(N_states),dm_b(N_states) integer :: istate double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v call give_all_aos_at_r(r,aos_array) do istate = 1, N_states aos_array_bis = aos_array ! alpha density call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1) dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! beta density aos_array_bis = aos_array call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_beta_ao_for_dft(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1) dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) enddo end subroutine dm_dft_alpha_beta_and_all_aos_at_r(r,dm_a,dm_b,aos_array) BEGIN_DOC ! input: r(1) ==> r(1) = x, r(2) = y, r(3) = z ! output : dm_a = alpha density evaluated at r ! output : dm_b = beta density evaluated at r ! output : aos_array(i) = ao(i) evaluated at r END_DOC implicit none double precision, intent(in) :: r(3) double precision, intent(out) :: dm_a(N_states),dm_b(N_states) double precision, intent(out) :: aos_array(ao_num) integer :: istate double precision :: aos_array_bis(ao_num),u_dot_v call give_all_aos_at_r(r,aos_array) do istate = 1, N_states aos_array_bis = aos_array ! alpha density call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1) dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! beta density aos_array_bis = aos_array call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft(1,1,istate),size(one_e_dm_beta_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1) dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) enddo end subroutine density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, aos_array, grad_aos_array) implicit none BEGIN_DOC ! input: ! ! * r(1) ==> r(1) = x, r(2) = y, r(3) = z ! ! output: ! ! * dm_a = alpha density evaluated at r ! * dm_b = beta density evaluated at r ! * aos_array(i) = ao(i) evaluated at r ! * grad_dm_a(1) = X gradient of the alpha density evaluated in r ! * grad_dm_a(1) = X gradient of the beta density evaluated in r ! * grad_aos_array(1) = X gradient of the aos(i) evaluated at r ! END_DOC double precision, intent(in) :: r(3) double precision, intent(out) :: dm_a(N_states),dm_b(N_states) double precision, intent(out) :: grad_dm_a(3,N_states),grad_dm_b(3,N_states) double precision, intent(out) :: grad_aos_array(3,ao_num) integer :: i,j,istate double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v double precision :: aos_grad_array(ao_num,3), aos_grad_array_bis(ao_num,3) call give_all_aos_and_grad_at_r(r,aos_array,grad_aos_array) do i = 1, ao_num do j = 1, 3 aos_grad_array(i,j) = grad_aos_array(j,i) enddo enddo do istate = 1, N_states ! alpha density ! aos_array_bis = \rho_ao * aos_array call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1) dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i) grad_dm_a(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num) grad_dm_a(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num) grad_dm_a(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num) ! aos_grad_array_bis = \rho_ao * aos_grad_array ! beta density call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft(1,1,istate),size(one_e_dm_beta_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1) dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i) grad_dm_b(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num) grad_dm_b(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num) grad_dm_b(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num) ! aos_grad_array_bis = \rho_ao * aos_grad_array enddo grad_dm_a *= 2.d0 grad_dm_b *= 2.d0 end subroutine dm_dft_alpha_beta_no_core_at_r(r,dm_a,dm_b) implicit none BEGIN_DOC ! input: r(1) ==> r(1) = x, r(2) = y, r(3) = z ! output : dm_a = alpha density evaluated at r(3) without the core orbitals ! output : dm_b = beta density evaluated at r(3) without the core orbitals END_DOC double precision, intent(in) :: r(3) double precision, intent(out) :: dm_a(N_states),dm_b(N_states) integer :: istate double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v call give_all_aos_at_r(r,aos_array) do istate = 1, N_states aos_array_bis = aos_array ! alpha density call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_alpha_ao_for_dft_no_core(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1) dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! beta density aos_array_bis = aos_array call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_beta_ao_for_dft_no_core(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1) dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) enddo end subroutine dens_grad_a_b_no_core_and_aos_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, aos_array, grad_aos_array) implicit none BEGIN_DOC ! input: ! ! * r(1) ==> r(1) = x, r(2) = y, r(3) = z ! ! output: ! ! * dm_a = alpha density evaluated at r without the core orbitals ! * dm_b = beta density evaluated at r without the core orbitals ! * aos_array(i) = ao(i) evaluated at r without the core orbitals ! * grad_dm_a(1) = X gradient of the alpha density evaluated in r without the core orbitals ! * grad_dm_a(1) = X gradient of the beta density evaluated in r without the core orbitals ! * grad_aos_array(1) = X gradient of the aos(i) evaluated at r ! END_DOC double precision, intent(in) :: r(3) double precision, intent(out) :: dm_a(N_states),dm_b(N_states) double precision, intent(out) :: grad_dm_a(3,N_states),grad_dm_b(3,N_states) double precision, intent(out) :: grad_aos_array(3,ao_num) integer :: i,j,istate double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v double precision :: aos_grad_array(ao_num,3), aos_grad_array_bis(ao_num,3) call give_all_aos_and_grad_at_r(r,aos_array,grad_aos_array) do i = 1, ao_num do j = 1, 3 aos_grad_array(i,j) = grad_aos_array(j,i) enddo enddo do istate = 1, N_states ! alpha density ! aos_array_bis = \rho_ao * aos_array call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft_no_core(1,1,istate),size(one_e_dm_alpha_ao_for_dft_no_core,1),aos_array,1,0.d0,aos_array_bis,1) dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i) grad_dm_a(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num) grad_dm_a(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num) grad_dm_a(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num) ! aos_grad_array_bis = \rho_ao * aos_grad_array ! beta density call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft_no_core(1,1,istate),size(one_e_dm_beta_ao_for_dft_no_core,1),aos_array,1,0.d0,aos_array_bis,1) dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num) ! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i) grad_dm_b(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num) grad_dm_b(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num) grad_dm_b(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num) ! aos_grad_array_bis = \rho_ao * aos_grad_array enddo grad_dm_a *= 2.d0 grad_dm_b *= 2.d0 end BEGIN_PROVIDER [double precision, one_e_dm_alpha_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_beta_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] implicit none integer :: i,j,k,l,m,istate double precision :: contrib double precision :: r(3) double precision :: aos_array(ao_num),mos_array(mo_num) do j = 1, nucl_num do k = 1, n_points_radial_grid -1 do l = 1, n_points_integration_angular do istate = 1, N_States one_e_dm_alpha_in_r(l,k,j,istate) = 0.d0 one_e_dm_beta_in_r(l,k,j,istate) = 0.d0 enddo r(1) = grid_points_per_atom(1,l,k,j) r(2) = grid_points_per_atom(2,l,k,j) r(3) = grid_points_per_atom(3,l,k,j) double precision :: dm_a(N_states),dm_b(N_states) call dm_dft_alpha_beta_at_r(r,dm_a,dm_b) do istate=1,N_states one_e_dm_alpha_in_r(l,k,j,istate) = dm_a(istate) one_e_dm_beta_in_r(l,k,j,istate) = dm_b(istate) enddo enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_alpha_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_beta_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ] &BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ] implicit none BEGIN_DOC ! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate) ! one_e_dm_beta_at_r(i,istate) = n_beta(r_i,istate) ! where r_i is the ith point of the grid and istate is the state number END_DOC integer :: i,istate double precision :: r(3) double precision, allocatable :: dm_a(:),dm_b(:) allocate(dm_a(N_states),dm_b(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) call dm_dft_alpha_beta_at_r(r,dm_a,dm_b) one_e_dm_alpha_at_r(i,istate) = dm_a(istate) one_e_dm_beta_at_r(i,istate) = dm_b(istate) enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_2_dm_alpha_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_2_dm_beta_at_r, (n_points_final_grid,N_states) ] BEGIN_DOC ! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) ! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) ! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) ! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) ! one_e_grad_2_dm_alpha_at_r(i,istate) = d\dx n_alpha(r_i,istate)^2 + d\dy n_alpha(r_i,istate)^2 + d\dz n_alpha(r_i,istate)^2 ! where r_i is the ith point of the grid and istate is the state number END_DOC implicit none integer :: i,j,k,l,m,istate double precision :: contrib double precision :: r(3) double precision, allocatable :: aos_array(:),grad_aos_array(:,:) double precision, allocatable :: dm_a(:),dm_b(:), dm_a_grad(:,:), dm_b_grad(:,:) allocate(dm_a(N_states),dm_b(N_states), dm_a_grad(3,N_states), dm_b_grad(3,N_states)) allocate(aos_array(ao_num),grad_aos_array(3,ao_num)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) !!!! Works also with the ao basis call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array) one_e_dm_and_grad_alpha_in_r(1,i,istate) = dm_a_grad(1,istate) one_e_dm_and_grad_alpha_in_r(2,i,istate) = dm_a_grad(2,istate) one_e_dm_and_grad_alpha_in_r(3,i,istate) = dm_a_grad(3,istate) one_e_dm_and_grad_alpha_in_r(4,i,istate) = dm_a(istate) one_e_grad_2_dm_alpha_at_r(i,istate) = dm_a_grad(1,istate) * dm_a_grad(1,istate) + dm_a_grad(2,istate) * dm_a_grad(2,istate) + dm_a_grad(3,istate) * dm_a_grad(3,istate) one_e_dm_and_grad_beta_in_r(1,i,istate) = dm_b_grad(1,istate) one_e_dm_and_grad_beta_in_r(2,i,istate) = dm_b_grad(2,istate) one_e_dm_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate) one_e_dm_and_grad_beta_in_r(4,i,istate) = dm_b(istate) one_e_grad_2_dm_beta_at_r(i,istate) = dm_b_grad(1,istate) * dm_b_grad(1,istate) + dm_b_grad(2,istate) * dm_b_grad(2,istate) + dm_b_grad(3,istate) * dm_b_grad(3,istate) enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_no_core_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_no_core_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ] BEGIN_DOC ! one_e_dm_no_core_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) without core orbitals ! one_e_dm_no_core_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) without core orbitals ! one_e_dm_no_core_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) without core orbitals ! one_e_dm_no_core_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) without core orbitals ! where r_i is the ith point of the grid and istate is the state number END_DOC implicit none integer :: i,j,k,l,m,istate double precision :: contrib double precision :: r(3) double precision, allocatable :: aos_array(:),grad_aos_array(:,:) double precision, allocatable :: dm_a(:),dm_b(:), dm_a_grad(:,:), dm_b_grad(:,:) allocate(dm_a(N_states),dm_b(N_states), dm_a_grad(3,N_states), dm_b_grad(3,N_states)) allocate(aos_array(ao_num),grad_aos_array(3,ao_num)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) !!!! Works also with the ao basis call dens_grad_a_b_no_core_and_aos_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array) one_e_dm_no_core_and_grad_alpha_in_r(1,i,istate) = dm_a_grad(1,istate) one_e_dm_no_core_and_grad_alpha_in_r(2,i,istate) = dm_a_grad(2,istate) one_e_dm_no_core_and_grad_alpha_in_r(3,i,istate) = dm_a_grad(3,istate) one_e_dm_no_core_and_grad_alpha_in_r(4,i,istate) = dm_a(istate) one_e_dm_no_core_and_grad_beta_in_r(1,i,istate) = dm_b_grad(1,istate) one_e_dm_no_core_and_grad_beta_in_r(2,i,istate) = dm_b_grad(2,istate) one_e_dm_no_core_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate) one_e_dm_no_core_and_grad_beta_in_r(4,i,istate) = dm_b(istate) enddo enddo END_PROVIDER