BEGIN_PROVIDER [real*8, gradvec_detail_right_old, (0:3,nMonoEx)] &BEGIN_PROVIDER [real*8, gradvec_detail_left_old, (0:3,nMonoEx)] BEGIN_DOC ! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for ! each determinant I we determine the string E_pq |I> (alpha and beta ! separately) and generate <Psi|H E_pq |I> ! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital ! gradient ! E_pq = a^+_pa_q + a^+_Pa_Q END_DOC implicit none integer :: ii,tt,aa,indx,ihole,ipart,istate,ll real*8 :: res_l(0:3), res_r(0:3) do ii = 1, n_core_inact_orb ihole = list_core_inact(ii) do aa = 1, n_virt_orb ipart = list_virt(aa) indx = mat_idx_c_v(ii,aa) call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r) do ll = 0, 3 gradvec_detail_left_old (ll,indx)=res_l(ll) gradvec_detail_right_old(ll,indx)=res_r(ll) enddo enddo enddo do ii = 1, n_core_inact_orb ihole = list_core_inact(ii) do tt = 1, n_act_orb ipart = list_act(tt) indx = mat_idx_c_a(ii,tt) call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r) do ll = 0, 3 gradvec_detail_left_old (ll,indx)=res_l(ll) gradvec_detail_right_old(ll,indx)=res_r(ll) enddo enddo enddo ! print*,'old grad' do tt = 1, n_act_orb ihole = list_act(tt) do aa = 1, n_virt_orb ipart = list_virt(aa) indx = mat_idx_a_v(tt,aa) ! print*,indx,tt,aa call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r) do ll = 0, 3 gradvec_detail_left_old (ll,indx)=res_l(ll) gradvec_detail_right_old(ll,indx)=res_r(ll) enddo enddo enddo real*8 :: norm_grad_left, norm_grad_right norm_grad_left=0.d0 norm_grad_right=0.d0 do indx=1,nMonoEx norm_grad_left+=gradvec_detail_left_old(0,indx)*gradvec_detail_left_old(0,indx) norm_grad_right+=gradvec_detail_right_old(0,indx)*gradvec_detail_right_old(0,indx) end do norm_grad_left=sqrt(norm_grad_left) norm_grad_right=sqrt(norm_grad_right) ! if (bavard) then write(6,*) write(6,*) ' Norm of the LEFT orbital gradient (via <0|EH|0>) : ', norm_grad_left write(6,*) ' Norm of the RIGHT orbital gradient (via <0|HE|0>) : ', norm_grad_right write(6,*) ! endif END_PROVIDER subroutine calc_grad_elem_h_tc(ihole,ipart,res_l, res_r) BEGIN_DOC ! Computes the gradient with respect to orbital rotation BRUT FORCE ! ! res_l = <Chi| E_qp H^tc | Phi> ! ! res_r = <Chi| H^tc E_pq | Phi> ! ! q=hole, p=particle. NOTE that on res_l it is E_qp and on res_r it is E_pq ! ! res_l(0) = total matrix element, res_l(1) = one-electron part, ! ! res_l(2) = two-electron part, res_l(3) = three-electron part ! END_DOC implicit none integer, intent(in) :: ihole,ipart double precision, intent(out) :: res_l(0:3), res_r(0:3) integer :: mu,iii,ispin,ierr,nu,istate,ll integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:) real*8 :: chi_H_mu_ex_array(0:3,N_states),mu_ex_H_phi_array(0:3,N_states),phase allocate(det_mu(N_int,2)) allocate(det_mu_ex(N_int,2)) res_l=0.D0 res_r=0.D0 do mu=1,n_det ! get the string of the determinant |mu> call det_extract(det_mu,mu,N_int) do ispin=1,2 ! do the monoexcitation on it: |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu> call det_copy(det_mu,det_mu_ex,N_int) call do_signed_mono_excitation(det_mu,det_mu_ex,nu & ,ihole,ipart,ispin,phase,ierr) ! |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu> if (ierr.eq.1) then call i_H_tc_psi_phi(det_mu_ex,psi_det,psi_l_coef_bi_ortho,psi_r_coef_bi_ortho,N_int & ,N_det,psi_det_size,N_states,chi_H_mu_ex_array,mu_ex_H_phi_array) ! chi_H_mu_ex_array = <Chi|H E_qp |mu > ! mu_ex_H_phi_array = <mu |E_qp H |Phi> do istate=1,N_states do ll = 0,3 ! loop over the body components (1e,2e,3e) !res_l = \sum_mu c_mu^l <mu|E_qp H |Phi> = <Chi|E_qp H |Phi> res_l(ll)+= mu_ex_H_phi_array(ll,istate)*psi_l_coef_bi_ortho(mu,istate)*phase !res_r = \sum_mu c_mu^r <Chi|H E_qp |mu> = <Chi|H E_qp |Phi> res_r(ll)+= chi_H_mu_ex_array(ll,istate)*psi_r_coef_bi_ortho(mu,istate)*phase enddo end do end if end do end do ! state-averaged gradient res_l*=1.d0/dble(N_states) res_r*=1.d0/dble(N_states) end