use bitmasks subroutine get_mask_phase(det1, pm, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det1(Nint,2) integer(bit_kind), intent(out) :: pm(Nint,2) integer(bit_kind) :: tmp1, tmp2 integer :: i tmp1 = 0_8 tmp2 = 0_8 select case (Nint) BEGIN_TEMPLATE case ($Nint) do i=1,$Nint pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1)) pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32)) pm(i,1) = ieor(pm(i,1), tmp1) pm(i,2) = ieor(pm(i,2), tmp2) if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1) if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2) end do SUBST [ Nint ] 1;; 2;; 3;; 4;; END_TEMPLATE case default do i=1,Nint pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1)) pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16)) pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32)) pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32)) pm(i,1) = ieor(pm(i,1), tmp1) pm(i,2) = ieor(pm(i,2), tmp2) if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1) if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2) end do end select end subroutine subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, subset, csubset type(selection_buffer), intent(inout) :: b type(pt2_type), intent(inout) :: pt2_data integer :: k,l double precision, intent(in) :: E0(N_states) integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, allocatable :: fock_diag_tmp(:,:) if (csubset == 0) return allocate(fock_diag_tmp(2,mo_num+1)) call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int) do k=1,N_int hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator)) hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator)) particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) ) particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) ) enddo ! if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then ! ! No beta electron to excite ! call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b) ! endif call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset) deallocate(fock_diag_tmp) end subroutine double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: phasemask(Nint,2) integer, intent(in) :: s1, s2, h1, h2, p1, p2 logical :: change integer :: np double precision, save :: res(0:1) = (/1d0, -1d0/) integer :: h1_int, h2_int integer :: p1_int, p2_int integer :: h1_bit, h2_bit integer :: p1_bit, p2_bit h1_int = shiftr(h1-1,bit_kind_shift)+1 h1_bit = h1 - shiftl(h1_int-1,bit_kind_shift)-1 h2_int = shiftr(h2-1,bit_kind_shift)+1 h2_bit = h2 - shiftl(h2_int-1,bit_kind_shift)-1 p1_int = shiftr(p1-1,bit_kind_shift)+1 p1_bit = p1 - shiftl(p1_int-1,bit_kind_shift)-1 p2_int = shiftr(p2-1,bit_kind_shift)+1 p2_bit = p2 - shiftl(p2_int-1,bit_kind_shift)-1 ! Put the phasemask bits at position 0, and add them all h1_bit = int(shiftr(phasemask(h1_int,s1),h1_bit)) p1_bit = int(shiftr(phasemask(p1_int,s1),p1_bit)) h2_bit = int(shiftr(phasemask(h2_int,s2),h2_bit)) p2_bit = int(shiftr(phasemask(p2_int,s2),p2_bit)) np = h1_bit + p1_bit + h2_bit + p2_bit if(p1 < h1) np = np + 1 if(p2 < h2) np = np + 1 if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1 get_phase_bi = res(iand(np,1)) end subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset) use bitmasks use selection_types implicit none BEGIN_DOC ! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted_tc END_DOC integer, intent(in) :: i_generator, subset, csubset integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, intent(in) :: fock_diag_tmp(mo_num) double precision, intent(in) :: E0(N_states) type(pt2_type), intent(inout) :: pt2_data type(selection_buffer), intent(inout) :: buf integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze integer :: maskInd integer :: N_holes(2), N_particles(2) integer :: hole_list(N_int*bit_kind_size,2) integer :: particle_list(N_int*bit_kind_size,2) integer :: l_a, nmax, idx integer :: nb_count, maskInd_save integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2) integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2) logical :: fullMatch, ok logical :: monoAdo, monoBdo logical :: monoBdo_save logical :: found integer, allocatable :: preinteresting(:), prefullinteresting(:) integer, allocatable :: interesting(:), fullinteresting(:) integer, allocatable :: tmp_array(:) integer, allocatable :: indices(:), exc_degree(:), iorder(:) integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) logical, allocatable :: banned(:,:,:), bannedOrb(:,:) double precision, allocatable :: coef_fullminilist_rev(:,:) double precision, allocatable :: mat(:,:,:), mat_l(:,:,:), mat_r(:,:,:) PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc_order PROVIDE banned_excitation monoAdo = .true. monoBdo = .true. if (csubset == 0) return do k=1,N_int hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1)) hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2)) particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1)) particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2)) enddo call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) ! Removed to avoid introducing determinants already presents in the wf !double precision, parameter :: norm_thr = 1.d-16 allocate (indices(N_det), & exc_degree(max(N_det_alpha_unique,N_det_beta_unique))) ! Pre-compute excitation degrees wrt alpha determinants k=1 do i=1,N_det_alpha_unique call get_excitation_degree_spin(psi_det_alpha_unique(1,i), & psi_det_generators(1,1,i_generator), exc_degree(i), N_int) enddo ! Iterate on 0SD beta, and find alphas 0SDTQ such that exc_degree <= 4 do j=1,N_det_beta_unique call get_excitation_degree_spin(psi_det_beta_unique(1,j), & psi_det_generators(1,2,i_generator), nt, N_int) if (nt > 2) cycle do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1 i = psi_bilinear_matrix_rows(l_a) if (nt + exc_degree(i) <= 4) then idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a)) ! Removed to avoid introducing determinants already presents in the wf !if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then indices(k) = idx k=k+1 !endif endif enddo enddo ! Pre-compute excitation degrees wrt beta determinants do i=1,N_det_beta_unique call get_excitation_degree_spin(psi_det_beta_unique(1,i), & psi_det_generators(1,2,i_generator), exc_degree(i), N_int) enddo ! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4 do j=1,N_det_alpha_unique call get_excitation_degree_spin(psi_det_alpha_unique(1,j), & psi_det_generators(1,1,i_generator), nt, N_int) if (nt > 1) cycle do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1 i = psi_bilinear_matrix_transp_columns(l_a) if (exc_degree(i) < 3) cycle if (nt + exc_degree(i) <= 4) then idx = psi_det_sorted_tc_order( & psi_bilinear_matrix_order( & psi_bilinear_matrix_transp_order(l_a))) ! Removed to avoid introducing determinants already presents in the wf !if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then indices(k) = idx k=k+1 !endif endif enddo enddo deallocate(exc_degree) nmax=k-1 call isort_noidx(indices,nmax) ! Start with 32 elements. Size will double along with the filtering. allocate(preinteresting(0:32), prefullinteresting(0:32), & interesting(0:32), fullinteresting(0:32)) preinteresting(:) = 0 prefullinteresting(:) = 0 do i=1,N_int negMask(i,1) = not(psi_det_generators(i,1,i_generator)) negMask(i,2) = not(psi_det_generators(i,2,i_generator)) end do do k=1,nmax i = indices(k) mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) do j=2,N_int mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i)) nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt <= 4) then if(i <= N_det_selectors) then sze = preinteresting(0) if (sze+1 == size(preinteresting)) then allocate (tmp_array(0:sze)) tmp_array(0:sze) = preinteresting(0:sze) deallocate(preinteresting) allocate(preinteresting(0:2*sze)) preinteresting(0:sze) = tmp_array(0:sze) deallocate(tmp_array) endif preinteresting(0) = sze+1 preinteresting(sze+1) = i else if(nt <= 2) then sze = prefullinteresting(0) if (sze+1 == size(prefullinteresting)) then allocate (tmp_array(0:sze)) tmp_array(0:sze) = prefullinteresting(0:sze) deallocate(prefullinteresting) allocate(prefullinteresting(0:2*sze)) prefullinteresting(0:sze) = tmp_array(0:sze) deallocate(tmp_array) endif prefullinteresting(0) = sze+1 prefullinteresting(sze+1) = i end if end if end do deallocate(indices) allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2)) allocate(mat(N_states, mo_num, mo_num)) allocate(mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num)) maskInd = -1 do s1 = 1, 2 do i1 = N_holes(s1), 1, -1 ! Generate low excitations first found = .False. monoBdo_save = monoBdo maskInd_save = maskInd do s2 = s1, 2 ib = 1 if(s1 == s2) ib = i1+1 do i2 = N_holes(s2), ib, -1 maskInd = maskInd + 1 if(mod(maskInd, csubset) == (subset-1)) then found = .True. end if enddo if(s1 /= s2) monoBdo = .false. enddo if (.not.found) cycle monoBdo = monoBdo_save maskInd = maskInd_save h1 = hole_list(i1,s1) call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, pmask, ok, N_int) negMask = not(pmask) interesting(0) = 0 fullinteresting(0) = 0 do ii = 1, preinteresting(0) i = preinteresting(ii) select case (N_int) case (1) mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) case (2) mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted_tc(1:2,1,i)) mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted_tc(1:2,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + & popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2)) case (3) mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted_tc(1:3,1,i)) mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted_tc(1:3,2,i)) nt = 0 do j = 3, 1, -1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do case (4) mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted_tc(1:4,1,i)) mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted_tc(1:4,2,i)) nt = 0 do j = 4, 1, -1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do case default mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted_tc(1:N_int,1,i)) mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted_tc(1:N_int,2,i)) nt = 0 do j = N_int, 1, -1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do end select if(nt <= 4) then sze = interesting(0) if (sze+1 == size(interesting)) then allocate (tmp_array(0:sze)) tmp_array(0:sze) = interesting(0:sze) deallocate(interesting) allocate(interesting(0:2*sze)) interesting(0:sze) = tmp_array(0:sze) deallocate(tmp_array) endif interesting(0) = sze+1 interesting(sze+1) = i if(nt <= 2) then sze = fullinteresting(0) if(sze+1 == size(fullinteresting)) then allocate (tmp_array(0:sze)) tmp_array(0:sze) = fullinteresting(0:sze) deallocate(fullinteresting) allocate(fullinteresting(0:2*sze)) fullinteresting(0:sze) = tmp_array(0:sze) deallocate(tmp_array) endif fullinteresting(0) = sze+1 fullinteresting(sze+1) = i end if end if enddo do ii = 1, prefullinteresting(0) i = prefullinteresting(ii) nt = 0 mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) if (nt > 2) cycle do j=N_int,2,-1 mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i)) nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) if (nt > 2) exit end do if(nt <= 2) then sze = fullinteresting(0) if (sze+1 == size(fullinteresting)) then allocate (tmp_array(0:sze)) tmp_array(0:sze) = fullinteresting(0:sze) deallocate(fullinteresting) allocate(fullinteresting(0:2*sze)) fullinteresting(0:sze) = tmp_array(0:sze) deallocate(tmp_array) endif fullinteresting(0) = sze+1 fullinteresting(sze+1) = i end if end do allocate (fullminilist (N_int, 2, fullinteresting(0)), & minilist (N_int, 2, interesting(0)) ) do i = 1, fullinteresting(0) do k = 1, N_int fullminilist(k,1,i) = psi_selectors(k,1,fullinteresting(i)) fullminilist(k,2,i) = psi_selectors(k,2,fullinteresting(i)) enddo enddo do i = 1, interesting(0) do k = 1, N_int minilist(k,1,i) = psi_selectors(k,1,interesting(i)) minilist(k,2,i) = psi_selectors(k,2,interesting(i)) enddo enddo do s2 = s1, 2 sp = s1 if(s1 /= s2) sp = 3 ib = 1 if(s1 == s2) ib = i1+1 monoAdo = .true. do i2 = N_holes(s2), ib, -1 ! Generate low excitations first h2 = hole_list(i2,s2) call apply_hole(pmask, s2,h2, mask, ok, N_int) banned(:,:,1) = banned_excitation(:,:) banned(:,:,2) = banned_excitation(:,:) do j = 1, mo_num bannedOrb(j, 1) = .true. bannedOrb(j, 2) = .true. enddo do s3 = 1, 2 do i = 1, N_particles(s3) bannedOrb(particle_list(i,s3), s3) = .false. enddo enddo if(s1 /= s2) then if(monoBdo) then bannedOrb(h1,s1) = .false. endif if(monoAdo) then bannedOrb(h2,s2) = .false. monoAdo = .false. endif endif maskInd = maskInd + 1 if(mod(maskInd, csubset) == (subset-1)) then call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting) if(fullMatch) cycle call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting, mat_l, mat_r) call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r) end if enddo if(s1 /= s2) monoBdo = .false. enddo deallocate(fullminilist, minilist) enddo enddo deallocate(preinteresting, prefullinteresting, interesting, fullinteresting) deallocate(banned, bannedOrb,mat) deallocate(mat_l, mat_r) end subroutine ! --- subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting) use bitmasks implicit none BEGIN_DOC ! Identify the determinants in det which are in the internal space. These are ! the determinants that can be produced by creating two particles on the mask. END_DOC integer, intent(in) :: i_gen, N integer, intent(in) :: interesting(0:N) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N) logical, intent(inout) :: banned(mo_num, mo_num) logical, intent(out) :: fullMatch integer :: i, j, na, nb, list(3) integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2) fullMatch = .false. do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do genl : do i=1, N ! If det(i) can't be generated by the mask, cycle do j=1, N_int if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl end do ! If det(i) < det(i_gen), it hs already been considered if(interesting(i) < i_gen) then fullMatch = .true. return end if ! Identify the particles do j=1, N_int myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1)) myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2)) end do call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int) call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int) banned(list(1), list(2)) = .true. end do genl end subroutine spot_isinwf ! --- subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting, mat_l, mat_r) BEGIN_DOC ! Computes the contributions A(r,s) by ! comparing the external determinant to all the internal determinants det(i). ! an applying two particles (r,s) to the mask. END_DOC use bitmasks implicit none integer, intent(in) :: sp, i_gen, N_sel integer, intent(in) :: interesting(0:N_sel) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel) logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2) double precision, intent(inout) :: mat(N_states, mo_num, mo_num) double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num) integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2) integer(bit_kind) :: phasemask(N_int,2) PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc mat = 0d0 mat_l = 0d0 mat_r = 0d0 do i = 1, N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do ! print*,'in selection ' do i = 1, N_sel ! call debug_det(det(1,1,i),N_int) ! print*,i,dabs(psi_selectors_coef_transp_tc(1,2,i) * psi_selectors_coef_transp_tc(1,1,i)) if(interesting(i) < 0) then stop 'prefetch interesting(i) and det(i)' endif mobMask(1,1) = iand(negMask(1,1), det(1,1,i)) mobMask(1,2) = iand(negMask(1,2), det(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) if(nt > 4) cycle do j = 2, N_int mobMask(j,1) = iand(negMask(j,1), det(j,1,i)) mobMask(j,2) = iand(negMask(j,2), det(j,2,i)) nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) enddo if(nt > 4) cycle if (interesting(i) == i_gen) then if(sp == 3) then do k = 1, mo_num do j = 1, mo_num banned(j,k,2) = banned(k,j,1) enddo enddo else do k = 1, mo_num do l = k+1, mo_num banned(l,k,1) = banned(k,l,1) enddo enddo endif endif if (interesting(i) >= i_gen) then call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) perMask(1,1) = iand(mask(1,1), not(det(1,1,i))) perMask(1,2) = iand(mask(1,2), not(det(1,2,i))) do j=2,N_int perMask(j,1) = iand(mask(j,1), not(det(j,1,i))) perMask(j,2) = iand(mask(j,2), not(det(j,2,i))) end do call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int) call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int) call get_mask_phase(psi_det_sorted_tc(1,1,interesting(i)), phasemask,N_int) if(nt == 4) then call get_d2_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i))) elseif(nt == 3) then call get_d1_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i))) else call get_d0_new (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i))) endif elseif(nt == 4) then call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) call past_d2(banned, p, sp) elseif(nt == 3) then call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) call past_d1(bannedOrb, p) endif enddo end subroutine splash_pq ! --- subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, sp, h1, h2 double precision, intent(in) :: mat(N_states, mo_num, mo_num) double precision, intent(in) :: mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num) logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num) double precision, intent(in) :: fock_diag_tmp(mo_num) double precision, intent(in) :: E0(N_states) type(pt2_type), intent(inout) :: pt2_data type(selection_buffer), intent(inout) :: buf integer :: iii, s, degree integer :: s1, s2, p1, p2, ib, j, istate, jstate integer :: info, k , iwork(N_states+1) integer(bit_kind) :: occ(N_int,2), n integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) logical :: do_cycle, ok, do_diag double precision :: delta_E, val, Hii, w, tmp, alpha_h_psi double precision :: E_shift double precision :: i_h_alpha, alpha_h_i, psi_h_alpha double precision :: e_pert(N_states), coef(N_states) double precision :: s_weight(N_states,N_states) double precision :: eigvalues(N_states+1) double precision :: work(1+6*(N_states+1)+2*(N_states+1)**2) integer, external :: number_of_holes, number_of_particles logical, external :: is_a_two_holes_two_particles logical, external :: is_a_1h1p double precision, external :: diag_H_mat_elem_fock PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs do jstate = 1, N_states do istate = 1, N_states s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate)) enddo enddo if(sp == 3) then s1 = 1 s2 = 2 else s1 = sp s2 = sp end if call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int) E_shift = 0.d0 if (h0_type == 'CFG') then j = det_to_configuration(i_generator) E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j) endif do p1 = 1, mo_num if(bannedOrb(p1, s1)) cycle ib = 1 if(sp /= 3) ib = p1+1 do p2 = ib, mo_num if(bannedOrb(p2, s2)) cycle if(banned(p1,p2)) cycle ! TODO ?? !if(pseudo_sym)then ! if(dabs(mat(1, p1, p2)).lt.thresh_sym)then ! w = 0.d0 ! endif !endif ! MANU: ERREUR dans les calculs puisque < I | H | J > = 0 ! n'implique pas < I | H_TC | J > = 0 ?? !val = maxval(abs(mat(1:N_states, p1, p2))) !if( val == 0d0) cycle call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) if(do_only_cas) then if( number_of_particles(det) > 0 ) cycle if( number_of_holes(det) > 0 ) cycle endif if(do_ddci) then if(is_a_two_holes_two_particles(det)) cycle endif if(do_only_1h1p) then if(.not.is_a_1h1p(det)) cycle endif if(seniority_max >= 0) then s = 0 do k = 1, N_int s = s + popcnt(ieor(det(k,1),det(k,2))) enddo if (s > seniority_max) cycle endif if(excitation_max >= 0) then do_cycle = .True. if(excitation_ref == 1) then call get_excitation_degree(HF_bitmask, det(1,1), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_max) elseif(excitation_ref == 2) then do k = 1, N_dominant_dets_of_cfgs call get_excitation_degree(dominant_dets_of_cfgs(1,1,k), det(1,1), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_max) enddo endif if(do_cycle) cycle endif if(excitation_alpha_max >= 0) then do_cycle = .True. if(excitation_ref == 1) then call get_excitation_degree_spin(HF_bitmask, det(1,1), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_max) elseif (excitation_ref == 2) then do k = 1, N_dominant_dets_of_cfgs call get_excitation_degree_spin(dominant_dets_of_cfgs(1,1,k), det(1,1), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_alpha_max) enddo endif if(do_cycle) cycle endif if(excitation_beta_max >= 0) then do_cycle = .True. if(excitation_ref == 1) then call get_excitation_degree_spin(HF_bitmask, det(1,2), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_max) elseif(excitation_ref == 2) then do k = 1, N_dominant_dets_of_cfgs call get_excitation_degree(dominant_dets_of_cfgs(1,2,k), det(1,2), degree, N_int) do_cycle = do_cycle .and. (degree > excitation_beta_max) enddo endif if(do_cycle) cycle endif w = 0.d0 e_pert = 0.d0 coef = 0.d0 do_diag = .False. ! psi_det_generators --> |i> of psi_0 ! psi_coef_generators --> c_i of psi_0 ! ! = \sum_i c_i ! ------------------------------------------- ! Non hermitian ! c_alpha = /delta_E(alpha) ! e_alpha = c_alpha * ! and ! and transpose ! ------------------------------------------- double precision :: hmono, htwoe, hthree call diag_htilde_mu_mat_fock_bi_ortho(N_int, det, hmono, htwoe, hthree, hii) do istate = 1,N_states delta_E = E0(istate) - Hii + E_shift double precision :: alpha_h_psi_tmp, psi_h_alpha_tmp, error if(debug_tc_pt2 == 1)then !! Using the old version psi_h_alpha = 0.d0 alpha_h_psi = 0.d0 do iii = 1, N_det_selectors call htilde_mu_mat_bi_ortho_tot_slow(psi_selectors(1,1,iii), det, N_int, i_h_alpha) call htilde_mu_mat_bi_ortho_tot_slow(det, psi_selectors(1,1,iii), N_int, alpha_h_i) call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int) if(degree == 0)then print*,'problem !!!' print*,'a determinant is already in the wave function !!' print*,'it corresponds to the selector number ',iii call debug_det(det,N_int) stop endif ! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha) ! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i) psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function enddo else if(debug_tc_pt2 == 2)then !! debugging the new version ! psi_h_alpha_tmp = 0.d0 ! alpha_h_psi_tmp = 0.d0 ! do iii = 1, N_det_selectors ! old version ! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha) ! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i) ! psi_h_alpha_tmp += i_h_alpha * psi_selectors_coef_tc(iii,1,1) ! left function ! alpha_h_psi_tmp += alpha_h_i * psi_selectors_coef_tc(iii,2,1) ! right function ! enddo psi_h_alpha_tmp = mat_l(istate, p1, p2) ! new version alpha_h_psi_tmp = mat_r(istate, p1, p2) ! new version psi_h_alpha = 0.d0 alpha_h_psi = 0.d0 do iii = 1, N_det ! old version call htilde_mu_mat_opt_bi_ortho_no_3e(psi_det(1,1,iii), det, N_int, i_h_alpha) call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_det(1,1,iii), N_int, alpha_h_i) psi_h_alpha += i_h_alpha * psi_l_coef_bi_ortho(iii,1) ! left function alpha_h_psi += alpha_h_i * psi_r_coef_bi_ortho(iii,1) ! right function enddo if(dabs(psi_h_alpha*alpha_h_psi/delta_E).gt.1.d-10)then error = dabs(psi_h_alpha * alpha_h_psi - psi_h_alpha_tmp * alpha_h_psi_tmp)/dabs(psi_h_alpha * alpha_h_psi) if(error.gt.1.d-2)then call debug_det(det, N_int) print*,'error =',error,psi_h_alpha * alpha_h_psi/delta_E,psi_h_alpha_tmp * alpha_h_psi_tmp/delta_E print*,psi_h_alpha , alpha_h_psi print*,psi_h_alpha_tmp , alpha_h_psi_tmp print*,'selectors ' do iii = 1, N_det_selectors ! old version print*,'iii',iii,psi_selectors_coef_tc(iii,1,1),psi_selectors_coef_tc(iii,2,1) call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha) call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i) print*,i_h_alpha,alpha_h_i call debug_det(psi_selectors(1,1,iii),N_int) enddo ! print*,'psi_det ' ! do iii = 1, N_det! old version ! print*,'iii',iii,psi_l_coef_bi_ortho(iii,1),psi_r_coef_bi_ortho(iii,1) ! call debug_det(psi_det(1,1,iii),N_int) ! enddo stop endif endif else psi_h_alpha = mat_l(istate, p1, p2) alpha_h_psi = mat_r(istate, p1, p2) endif val = 4.d0 * psi_h_alpha * alpha_h_psi tmp = dsqrt(delta_E * delta_E + val) ! if (delta_E < 0.d0) then ! tmp = -tmp ! endif e_pert(istate) = 0.25 * val / delta_E ! e_pert(istate) = 0.5d0 * (tmp - delta_E) if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then coef(istate) = e_pert(istate) / psi_h_alpha else coef(istate) = alpha_h_psi / delta_E endif if(selection_tc == 1)then if(e_pert(istate).lt.0.d0)then e_pert(istate)=0.d0 else e_pert(istate)=-e_pert(istate) endif else if(selection_tc == -1)then if(e_pert(istate).gt.0.d0)e_pert(istate)=0.d0 endif ! if(selection_tc == 1 )then ! if(e_pert(istate).lt.0.d0)then ! e_pert(istate) = 0.d0 ! endif ! else if(selection_tc == -1)then ! if(e_pert(istate).gt.0.d0)then ! e_pert(istate) = 0.d0 ! endif ! endif enddo do istate = 1, N_states alpha_h_psi = mat_r(istate, p1, p2) psi_h_alpha = mat_l(istate, p1, p2) pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate) if(e_pert(istate).gt.0.d0)then! accumulate the positive part of the pt2 pt2_data % variance(istate) = pt2_data % variance(istate) + e_pert(istate) else ! accumulate the negative part of the pt2 pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate) endif select case (weight_selection) case(5) ! Variance selection if (h0_type == 'CFG') then w = min(w, - psi_h_alpha * alpha_h_psi * s_weight(istate,istate)) & / c0_weight(istate) else w = min(w, - psi_h_alpha * alpha_h_psi * s_weight(istate,istate)) endif case(6) if (h0_type == 'CFG') then w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate)) & / c0_weight(istate) else w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate)) endif case default ! Energy selection if (h0_type == 'CFG') then !w = min(w, e_pert(istate) * s_weight(istate,istate)) / c0_weight(istate) w = min(w, -dabs(e_pert(istate)) * s_weight(istate,istate)) / c0_weight(istate) else !w = min(w, e_pert(istate) * s_weight(istate,istate)) w = min(w, -dabs( e_pert(istate) ) * s_weight(istate,istate)) endif endselect enddo if(h0_type == 'CFG') then do k = 1, N_int occ(k,1) = ieor(det(k,1), det(k,2)) occ(k,2) = iand(det(k,1), det(k,2)) enddo call configuration_to_dets_size(occ, n, elec_alpha_num, N_int) n = max(n,1) w *= dsqrt(dble(n)) endif if(w <= buf%mini) then call add_to_selection_buffer(buf, det, w) endif enddo ! end do p2 enddo ! end do p1 end subroutine fill_buffer_double ! --- subroutine past_d1(bannedOrb, p) use bitmasks implicit none logical, intent(inout) :: bannedOrb(mo_num, 2) integer, intent(in) :: p(0:4, 2) integer :: i,s do s = 1, 2 do i = 1, p(0, s) bannedOrb(p(i, s), s) = .true. end do end do end subroutine past_d1 ! --- subroutine past_d2(banned, p, sp) use bitmasks implicit none logical, intent(inout) :: banned(mo_num, mo_num) integer, intent(in) :: p(0:4, 2), sp integer :: i,j if(sp == 3) then do j=1,p(0,2) do i=1,p(0,1) banned(p(i,1), p(j,2)) = .true. end do end do else do i=1,p(0, sp) do j=1,i-1 banned(p(j,sp), p(i,sp)) = .true. banned(p(i,sp), p(j,sp)) = .true. end do end do end if end subroutine past_d2 ! --- subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint) BEGIN_DOC ! Gives the inidices(+1) of the bits set to 1 in the bit string END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: string(Nint) integer, intent(out) :: list(Nint*bit_kind_size) integer, intent(out) :: n_elements integer :: i, ishift integer(bit_kind) :: l n_elements = 0 ishift = 2 do i=1,Nint l = string(i) do while (l /= 0_bit_kind) n_elements = n_elements+1 list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l) l = iand(l,l-1_bit_kind) enddo ishift = ishift + bit_kind_size enddo end subroutine bitstring_to_list_in_selection ! ---