BEGIN_PROVIDER [double precision, one_e_dm_alpha_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_beta_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ] implicit none integer :: i,j,k,l,m,istate double precision :: contrib double precision :: r(3) double precision :: aos_array(ao_num),mos_array(mo_num) do j = 1, nucl_num do k = 1, n_points_radial_grid -1 do l = 1, n_points_integration_angular do istate = 1, N_States one_e_dm_alpha_in_r(l,k,j,istate) = 0.d0 one_e_dm_beta_in_r(l,k,j,istate) = 0.d0 enddo r(1) = grid_points_per_atom(1,l,k,j) r(2) = grid_points_per_atom(2,l,k,j) r(3) = grid_points_per_atom(3,l,k,j) double precision :: dm_a(N_states),dm_b(N_states) call dm_dft_alpha_beta_at_r(r,dm_a,dm_b) do istate=1,N_states one_e_dm_alpha_in_r(l,k,j,istate) = dm_a(istate) one_e_dm_beta_in_r(l,k,j,istate) = dm_b(istate) enddo enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ] &BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ] implicit none BEGIN_DOC ! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate) ! one_e_dm_beta_at_r(i,istate) = n_beta(r_i,istate) ! where r_i is the ith point of the grid and istate is the state number END_DOC integer :: i,istate double precision :: r(3),weight allocate(dm_a(N_states),dm_b(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) call dm_dft_alpha_beta_at_r(r,dm_a,dm_b) weight = final_weight_at_r_vector(i) elec_beta_num_grid_becke(istate) += * weight elec_alpha_num_grid_becke(istate) += * weight enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_2_dm_alpha_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_2_dm_beta_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_grad_dm_squared_at_r, (3,n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, scal_prod_grad_one_e_dm_ab, (3,n_points_final_grid,N_states) ] BEGIN_DOC ! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) ! ! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) ! ! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) ! ! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) ! ! one_e_grad_2_dm_alpha_at_r(i,istate) = (d\dx n_alpha(r_i,istate))^2 + (d\dy n_alpha(r_i,istate))^2 + (d\dz n_alpha(r_i,istate))^2 ! ! scal_prod_grad_one_e_dm_ab(i,istate) = grad n_alpha(r_i) . grad n_beta(r_i) ! ! where r_i is the ith point of the grid and istate is the state number END_DOC implicit none integer :: i,j,k,l,m,istate double precision :: contrib double precision :: r(3) double precision, allocatable :: aos_array(:),grad_aos_array(:,:) double precision, allocatable :: dm_a(:),dm_b(:), dm_a_grad(:,:), dm_b_grad(:,:) allocate(dm_a(N_states),dm_b(N_states), dm_a_grad(3,N_states), dm_b_grad(3,N_states)) allocate(aos_array(ao_num),grad_aos_array(3,ao_num)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array) one_e_dm_and_grad_alpha_in_r(1,i,istate) = dm_a_grad(1,istate) one_e_dm_and_grad_alpha_in_r(2,i,istate) = dm_a_grad(2,istate) one_e_dm_and_grad_alpha_in_r(3,i,istate) = dm_a_grad(3,istate) one_e_dm_and_grad_alpha_in_r(4,i,istate) = dm_a(istate) one_e_grad_2_dm_alpha_at_r(i,istate) = dm_a_grad(1,istate) * dm_a_grad(1,istate) + dm_a_grad(2,istate) * dm_a_grad(2,istate) + dm_a_grad(3,istate) * dm_a_grad(3,istate) one_e_dm_and_grad_beta_in_r(1,i,istate) = dm_b_grad(1,istate) one_e_dm_and_grad_beta_in_r(2,i,istate) = dm_b_grad(2,istate) one_e_dm_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate) one_e_dm_and_grad_beta_in_r(4,i,istate) = dm_b(istate) one_e_grad_2_dm_beta_at_r(i,istate) = dm_b_grad(1,istate) * dm_b_grad(1,istate) + dm_b_grad(2,istate) * dm_b_grad(2,istate) + dm_b_grad(3,istate) * dm_b_grad(3,istate) one_e_grad_dm_squared_at_r(1,i,istate) = 2.D0 * (dm_a_grad(1,istate) + dm_b_grad(1,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate)) one_e_grad_dm_squared_at_r(2,i,istate) = 2.D0 * (dm_a_grad(2,istate) + dm_b_grad(2,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate)) one_e_grad_dm_squared_at_r(3,i,istate) = 2.D0 * (dm_a_grad(3,istate) + dm_b_grad(3,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate)) scal_prod_grad_one_e_dm_ab(i,istate) = dm_a_grad(1,istate) * dm_b_grad(1,istate) + dm_a_grad(2,istate) * dm_b_grad(2,istate) + dm_a_grad(3,istate) * dm_b_grad(3,istate) enddo enddo END_PROVIDER