.. _module_hartree_fock: .. program:: hartree_fock .. default-role:: option ============ hartree_fock ============ The Hartree-Fock module performs *Restricted* Hartree-Fock calculations (the spatial part of the |MOs| is common for alpha and beta spinorbitals). The Hartree-Fock in an SCF and therefore is based on the ``scf_utils`` structure. It performs the following actions: #. Compute/Read all the one- and two-electron integrals, and store them in memory #. Check in the |EZFIO| database if there is a set of |MOs|. If there is, it will read them as initial guess. Otherwise, it will create a guess. #. Perform the |SCF| iterations The definition of the Fock matrix is in :file:`hartree_fock fock_matrix_hf.irp.f` For the keywords related to the |SCF| procedure, see the ``scf_utils`` directory where you will find all options. The main are: # :option:`scf_utils thresh_scf` # :option:`scf_utils level_shift` At each iteration, the |MOs| are saved in the |EZFIO| database. Hence, if the calculation crashes for any unexpected reason, the calculation can be restarted by running again the |SCF| with the same |EZFIO| database. The `DIIS`_ algorithm is implemented, as well as the `level-shifting`_ method. If the |SCF| does not converge, try again with a higher value of :option:`level_shift`. To start a calculation from scratch, the simplest way is to remove the ``mo_basis`` directory from the |EZFIO| database, and run the |SCF| again. .. _DIIS: https://en.wikipedia.org/w/index.php?title=DIIS .. _level-shifting: https://doi.org/10.1002/qua.560070407 EZFIO parameters ---------------- .. option:: energy Energy HF Programs -------- * :ref:`scf` Providers --------- .. c:var:: ao_two_e_integral_alpha File : :file:`hartree_fock/fock_matrix_hf.irp.f` .. code:: fortran double precision, allocatable :: ao_two_e_integral_alpha (ao_num,ao_num) double precision, allocatable :: ao_two_e_integral_beta (ao_num,ao_num) Alpha Fock matrix in AO basis set Needs: .. hlist:: :columns: 3 * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_integrals_map` * :c:data:`ao_integrals_threshold` * :c:data:`ao_nucl` * :c:data:`ao_num` * :c:data:`ao_overlap_abs` * :c:data:`ao_power` * :c:data:`ao_prim_num` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_two_e_integrals_in_map` * :c:data:`do_direct_integrals` * :c:data:`n_pt_max_integrals` * :c:data:`nucl_coord` * :c:data:`scf_density_matrix_ao_alpha` * :c:data:`scf_density_matrix_ao_beta` Needed by: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao_alpha` * :c:data:`hf_energy` .. c:var:: ao_two_e_integral_beta File : :file:`hartree_fock/fock_matrix_hf.irp.f` .. code:: fortran double precision, allocatable :: ao_two_e_integral_alpha (ao_num,ao_num) double precision, allocatable :: ao_two_e_integral_beta (ao_num,ao_num) Alpha Fock matrix in AO basis set Needs: .. hlist:: :columns: 3 * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_integrals_map` * :c:data:`ao_integrals_threshold` * :c:data:`ao_nucl` * :c:data:`ao_num` * :c:data:`ao_overlap_abs` * :c:data:`ao_power` * :c:data:`ao_prim_num` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_two_e_integrals_in_map` * :c:data:`do_direct_integrals` * :c:data:`n_pt_max_integrals` * :c:data:`nucl_coord` * :c:data:`scf_density_matrix_ao_alpha` * :c:data:`scf_density_matrix_ao_beta` Needed by: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao_alpha` * :c:data:`hf_energy` .. c:var:: extra_e_contrib_density File : :file:`hartree_fock/hf_energy.irp.f` .. code:: fortran double precision :: extra_e_contrib_density Extra contribution to the SCF energy coming from the density. For a Hartree-Fock calculation: extra_e_contrib_density = 0 For a Kohn-Sham or Range-separated Kohn-Sham: the exchange/correlation - trace of the V_xc potential Needed by: .. hlist:: :columns: 3 * :c:data:`scf_energy` .. c:var:: fock_matrix_ao_alpha File : :file:`hartree_fock/fock_matrix_hf.irp.f` .. code:: fortran double precision, allocatable :: fock_matrix_ao_alpha (ao_num,ao_num) double precision, allocatable :: fock_matrix_ao_beta (ao_num,ao_num) Alpha Fock matrix in AO basis set Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` * :c:data:`ao_one_e_integrals` * :c:data:`ao_two_e_integral_alpha` Needed by: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao` * :c:data:`fock_matrix_mo_alpha` * :c:data:`fock_matrix_mo_beta` * :c:data:`scf_energy` .. c:var:: fock_matrix_ao_beta File : :file:`hartree_fock/fock_matrix_hf.irp.f` .. code:: fortran double precision, allocatable :: fock_matrix_ao_alpha (ao_num,ao_num) double precision, allocatable :: fock_matrix_ao_beta (ao_num,ao_num) Alpha Fock matrix in AO basis set Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` * :c:data:`ao_one_e_integrals` * :c:data:`ao_two_e_integral_alpha` Needed by: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao` * :c:data:`fock_matrix_mo_alpha` * :c:data:`fock_matrix_mo_beta` * :c:data:`scf_energy` .. c:var:: hf_energy File : :file:`hartree_fock/hf_energy.irp.f` .. code:: fortran double precision :: hf_energy double precision :: hf_two_electron_energy double precision :: hf_one_electron_energy Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components. Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` * :c:data:`ao_one_e_integrals` * :c:data:`ao_two_e_integral_alpha` * :c:data:`nuclear_repulsion` * :c:data:`scf_density_matrix_ao_alpha` * :c:data:`scf_density_matrix_ao_beta` .. c:var:: hf_one_electron_energy File : :file:`hartree_fock/hf_energy.irp.f` .. code:: fortran double precision :: hf_energy double precision :: hf_two_electron_energy double precision :: hf_one_electron_energy Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components. Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` * :c:data:`ao_one_e_integrals` * :c:data:`ao_two_e_integral_alpha` * :c:data:`nuclear_repulsion` * :c:data:`scf_density_matrix_ao_alpha` * :c:data:`scf_density_matrix_ao_beta` .. c:var:: hf_two_electron_energy File : :file:`hartree_fock/hf_energy.irp.f` .. code:: fortran double precision :: hf_energy double precision :: hf_two_electron_energy double precision :: hf_one_electron_energy Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components. Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` * :c:data:`ao_one_e_integrals` * :c:data:`ao_two_e_integral_alpha` * :c:data:`nuclear_repulsion` * :c:data:`scf_density_matrix_ao_alpha` * :c:data:`scf_density_matrix_ao_beta` Subroutines / functions ----------------------- .. c:function:: create_guess: File : :file:`hartree_fock/scf.irp.f` Create a MO guess if no MOs are present in the EZFIO directory Needs: .. hlist:: :columns: 3 * :c:data:`ezfio_filename` * :c:data:`mo_coef` * :c:data:`mo_guess_type` * :c:data:`mo_one_e_integrals` * :c:data:`ao_ortho_lowdin_coef` * :c:data:`mo_label` Called by: .. hlist:: :columns: 3 * :c:func:`scf` Calls: .. hlist:: :columns: 3 * :c:func:`ezfio_has_mo_basis_mo_coef` * :c:func:`huckel_guess` * :c:func:`mo_as_eigvectors_of_mo_matrix` Touches: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao_alpha` * :c:data:`fock_matrix_ao_alpha` * :c:data:`mo_coef` * :c:data:`mo_label` .. c:function:: run: File : :file:`hartree_fock/scf.irp.f` Run SCF calculation Needs: .. hlist:: :columns: 3 * :c:data:`scf_energy` * :c:data:`mo_label` Called by: .. hlist:: :columns: 3 * :c:func:`pt2` * :c:func:`scf` Calls: .. hlist:: :columns: 3 * :c:func:`ezfio_set_hartree_fock_energy` * :c:func:`roothaan_hall_scf` Touches: .. hlist:: :columns: 3 * :c:data:`fock_matrix_ao_alpha` * :c:data:`fock_matrix_ao_alpha` * :c:data:`mo_coef` * :c:data:`level_shift` * :c:data:`mo_coef`