subroutine non_hrmt_diag_split_degen(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:) integer :: i, j, n_degen,k , iteration integer :: n_good double precision :: shift,shift_current double precision :: r,thr integer, allocatable :: list_good(:), iorder_origin(:),iorder(:) double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:) double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:) double precision, allocatable :: im_part(:),re_part(:) print*,'Computing the left/right eigenvectors ...' print*,'Using the degeneracy splitting algorithm' ! pre-processing the matrix :: sorting by diagonal elements allocate(reigvec_tmp(n,n), leigvec_tmp(n,n)) allocate(diag_elem(n),iorder_origin(n),A_save(n,n)) do i = 1, n iorder_origin(i) = i diag_elem(i) = A(i,i) enddo call dsort(diag_elem, iorder_origin, n) do i = 1, n do j = 1, n A_save(j,i) = A(iorder_origin(j),iorder_origin(i)) enddo enddo shift = 1.d-15 shift_current = shift iteration = 1 logical :: good_ortho good_ortho = .False. do while(n_real_eigv.ne.n.or. .not.good_ortho) if(shift.gt.1.d-3)then print*,'shift > 1.d-3 !!' print*,'Your matrix intrinsically contains complex eigenvalues' stop endif print*,'***** iteration = ',iteration print*,'shift = ',shift allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n)) Aw = A_save do i = 1, n do j = 1, n if(dabs(Aw(j,i)).lt.shift)then Aw(j,i) = 0.d0 endif enddo enddo call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR) allocate(im_part(n),iorder(n)) do i = 1, n im_part(i) = -dabs(WI(i)) iorder(i) = i enddo call dsort(im_part, iorder, n) shift_current = max(10.d0 * dabs(im_part(1)),shift) print*,'Largest imaginary part found in eigenvalues = ',im_part(1) print*,'Splitting the degeneracies by ',shift_current Aw = A_save call split_matrix_degen(Aw,n,shift_current) deallocate( im_part, iorder ) call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR) ! You track the real eigenvalues n_good = 0 do i = 1, n if(dabs(WI(i)).lt.1.d-20)then n_good += 1 else print*,'Found an imaginary component to eigenvalue' print*,'Re(i) + Im(i)',WR(i),WI(i) endif enddo allocate( list_good(n_good), iorder(n_good) ) n_good = 0 do i = 1, n if(dabs(WI(i)).lt.1.d-20)then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo deallocate( WR, WI ) n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo ! You sort the real eigenvalues call dsort(eigval, iorder, n_good) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n_real_eigv do j = 1, n reigvec_tmp(j,i) = VR(j,list_good(iorder(i))) leigvec_tmp(j,i) = Vl(j,list_good(iorder(i))) enddo enddo if(n_real_eigv == n)then allocate(S(n,n)) call check_bi_ortho(reigvec_tmp,leigvec_tmp,n,S,accu_nd) print*,'accu_nd = ',accu_nd double precision :: accu_nd good_ortho = accu_nd .lt. 1.d-10 deallocate(S) endif deallocate( list_good, iorder ) deallocate( VL, VR, Aw) shift *= 10.d0 iteration += 1 enddo do i = 1, n do j = 1, n reigvec(iorder_origin(j),i) = reigvec_tmp(j,i) leigvec(iorder_origin(j),i) = leigvec_tmp(j,i) enddo enddo end ! --- subroutine non_hrmt_real_diag_new(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_good double precision :: shift,shift_current double precision :: r,thr integer, allocatable :: list_good(:), iorder(:) double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:) double precision, allocatable :: Aw(:,:) double precision, allocatable :: im_part(:) print*,'Computing the left/right eigenvectors ...' ! Eigvalue(n) = WR(n) + i * WI(n) shift = 1.d-10 do while(n_real_eigv.ne.n.or.shift.gt.1.d-3) allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n)) Aw = A call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR) allocate(im_part(n), iorder(n)) do i = 1, n im_part(i) = -dabs(WI(i)) iorder(i) = i enddo shift_current = max(10.d0 * dabs(im_part(1)),shift) print*,'adding random number of magnitude ',shift_current Aw = A do i = 1, n call RANDOM_NUMBER(r) Aw(i,i) += shift_current * r enddo deallocate( im_part, iorder ) call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR) ! You track the real eigenvalues thr = 1.d-10 n_good = 0 do i = 1, n if(dabs(WI(i)).lt.thr)then n_good += 1 else print*,'Found an imaginary component to eigenvalue' print*,'Re(i) + Im(i)',WR(i),WI(i) endif enddo allocate( list_good(n_good), iorder(n_good) ) n_good = 0 do i = 1, n if(dabs(WI(i)).lt.thr)then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo deallocate( WR, WI ) n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo ! You sort the real eigenvalues call dsort(eigval, iorder, n_good) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n_real_eigv do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = Vl(j,list_good(iorder(i))) enddo enddo deallocate( list_good, iorder ) deallocate( VL, VR, Aw) shift *= 10.d0 enddo if(shift.gt.1.d-3)then print*,'shift > 1.d-3 !!' print*,'Your matrix intrinsically contains complex eigenvalues' endif end ! --- subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) double precision, intent(in) :: thr_d, thr_nd integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j,k integer :: n_good double precision :: thr, thr_cut, thr_diag, thr_norm double precision :: accu_d, accu_nd integer, allocatable :: list_good(:), iorder(:), deg_num(:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:) double precision, allocatable :: S(:,:) double precision, allocatable :: phi_1_tilde(:),phi_2_tilde(:),chi_1_tilde(:),chi_2_tilde(:) allocate(phi_1_tilde(n),phi_2_tilde(n),chi_1_tilde(n),chi_2_tilde(n)) ! ------------------------------------------------------------------------------------- ! !print *, ' ' !print *, ' Computing the left/right eigenvectors ...' !print *, ' ' allocate(WR(n), WI(n), VL(n,n), VR(n,n)) !print *, ' fock matrix' !do i = 1, n ! write(*, '(1000(F16.10,X))') A(i,:) !enddo !thr_cut = 1.d-15 !call cancel_small_elmts(A, n, thr_cut) !call lapack_diag_non_sym_right(n, A, WR, WI, VR) call lapack_diag_non_sym(n, A, WR, WI, VL, VR) !call lapack_diag_non_sym_new(n, A, WR, WI, VL, VR) !print *, ' ' !print *, ' eigenvalues' i = 1 do while(i .le. n) !write(*, '(I3,X,1000(F16.10,X))')i, WR(i), WI(i) if(.false.)then if(WI(i).ne.0.d0)then print*,'*****************' print*,'WARNING ! IMAGINARY EIGENVALUES !!!' write(*, '(1000(F16.10,X))') WR(i), WI(i+1) ! phi = VR(:,i), psi = VR(:,i+1), |Phi_i> = phi + j psi , |Phi_i+1> = phi - j psi ! chi = VL(:,i), xhi = VL(:,i+1), |Chi_i> = chi + j xhi , |Chi_i+1> = chi - j xhi ! accu_chi_phi = 0.d0 accu_xhi_psi = 0.d0 accu_chi_psi = 0.d0 accu_xhi_phi = 0.d0 double precision :: accu_chi_phi, accu_xhi_psi, accu_chi_psi, accu_xhi_phi double precision :: mat_ovlp(2,2),eigval_tmp(2),eigvec(2,2),mat_ovlp_orig(2,2) do j = 1, n accu_chi_phi += VL(j,i) * VR(j,i) accu_xhi_psi += VL(j,i+1) * VR(j,i+1) accu_chi_psi += VL(j,i) * VR(j,i+1) accu_xhi_phi += VL(j,i+1) * VR(j,i) enddo mat_ovlp_orig(1,1) = accu_chi_phi mat_ovlp_orig(2,1) = accu_xhi_phi mat_ovlp_orig(1,2) = accu_chi_psi mat_ovlp_orig(2,2) = accu_xhi_psi print*,'old overlap matrix ' write(*,'(100(F16.10,X))')mat_ovlp_orig(1:2,1) write(*,'(100(F16.10,X))')mat_ovlp_orig(1:2,2) mat_ovlp(1,1) = accu_xhi_phi mat_ovlp(2,1) = accu_chi_phi mat_ovlp(1,2) = accu_xhi_psi mat_ovlp(2,2) = accu_chi_psi !print*,'accu_chi_phi = ',accu_chi_phi !print*,'accu_xhi_psi = ',accu_xhi_psi !print*,'accu_chi_psi = ',accu_chi_psi !print*,'accu_xhi_phi = ',accu_xhi_phi print*,'new overlap matrix ' write(*,'(100(F16.10,X))')mat_ovlp(1:2,1) write(*,'(100(F16.10,X))')mat_ovlp(1:2,2) call lapack_diag(eigval_tmp,eigvec,mat_ovlp,2,2) print*,'eigval_tmp(1) = ',eigval_tmp(1) print*,'eigvec(1) = ',eigvec(1:2,1) print*,'eigval_tmp(2) = ',eigval_tmp(2) print*,'eigvec(2) = ',eigvec(1:2,2) print*,'*****************' phi_1_tilde = 0.d0 phi_2_tilde = 0.d0 chi_1_tilde = 0.d0 chi_2_tilde = 0.d0 do j = 1, n phi_1_tilde(j) += VR(j,i) * eigvec(1,1) + VR(j,i+1) * eigvec(2,1) phi_2_tilde(j) += VR(j,i) * eigvec(1,2) + VR(j,i+1) * eigvec(2,2) chi_1_tilde(j) += VL(j,i+1) * eigvec(1,1) + VL(j,i) * eigvec(2,1) chi_2_tilde(j) += VL(j,i+1) * eigvec(1,2) + VL(j,i) * eigvec(2,2) enddo VR(1:n,i) = phi_1_tilde(1:n) VR(1:n,i+1) = phi_2_tilde(1:n) ! Vl(1:n,i) = -chi_1_tilde(1:n) ! Vl(1:n,i+1) = chi_2_tilde(1:n) i+=1 endif endif i+=1 enddo !print *, ' right eigenvect bef' !do i = 1, n ! write(*, '(1000(F16.10,X))') VR(:,i) !enddo !print *, ' left eigenvect bef' !do i = 1, n ! write(*, '(1000(F16.10,X))') VL(:,i) !enddo thr_diag = 1d-06 thr_norm = 1d+10 !call check_EIGVEC(n, n, A, WR, VL, VR, thr_diag, thr_norm, .false.) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! track & sort the real eigenvalues n_good = 0 !thr = 100d0 thr = Im_thresh_tcscf do i = 1, n !print*, 'Re(i) + Im(i)', WR(i), WI(i) if(dabs(WI(i)) .lt. thr) then n_good += 1 else print*, 'Found an imaginary component to eigenvalue on i = ', i print*, 'Re(i) + Im(i)', WR(i), WI(i) endif enddo if(n_good.ne.n)then print*,'there are some imaginary eigenvalues ' thr_diag = 1d-03 n_good = n endif allocate(list_good(n_good), iorder(n_good)) n_good = 0 do i = 1, n n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) enddo deallocate( WR, WI ) n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo call dsort(eigval, iorder, n_good) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n_real_eigv do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = VL(j,list_good(iorder(i))) enddo enddo deallocate( list_good, iorder ) deallocate( VL, VR ) ASSERT(n==n_real_eigv) !print *, ' eigenvalues' !do i = 1, n ! write(*, '(1000(F16.10,X))') eigval(i) !enddo !print *, ' right eigenvect aft ord' !do i = 1, n ! write(*, '(1000(F16.10,X))') reigvec(:,i) !enddo !print *, ' left eigenvect aft ord' !do i = 1, n ! write(*, '(1000(F16.10,X))') leigvec(:,i) !enddo ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! check bi-orthogonality thr_diag = 10.d0 thr_norm = 1d+10 allocate( S(n_real_eigv,n_real_eigv) ) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .false.) if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .lt. thr_d) ) then print *, ' lapack vectors are normalized and bi-orthogonalized' deallocate(S) return ! accu_nd is modified after adding the normalization elseif( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .gt. thr_d) ) then print *, ' lapack vectors are not normalized but bi-orthogonalized' call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .true.) call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.) deallocate(S) return else print *, ' lapack vectors are not normalized neither bi-orthogonalized' ! --- allocate(deg_num(n)) call reorder_degen_eigvec(n, deg_num, eigval, leigvec, reigvec) call impose_biorthog_degen_eigvec(n, deg_num, eigval, leigvec, reigvec) deallocate(deg_num) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .false.) if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .gt. thr_d) ) then call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.) endif call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .true.) !call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.) deallocate(S) endif ! ! ------------------------------------------------------------------------------------- return end ! --- subroutine non_hrmt_bieig_random_diag(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_good double precision :: thr double precision :: accu_nd integer, allocatable :: list_good(:), iorder(:) double precision, allocatable :: Aw(:,:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:) double precision, allocatable :: S(:,:) double precision :: r ! ------------------------------------------------------------------------------------- ! print *, 'Computing the left/right eigenvectors ...' allocate( WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n) ) Aw(:,:) = A(:,:) call lapack_diag_non_sym_new(n, Aw, WR, WI, VL, VR) thr = 1.d-12 double precision, allocatable :: im_part(:) n_good = 0 do i = 1, n if( dabs(WI(i)).lt.thr ) then n_good += 1 else print*, 'Found an imaginary component to eigenvalue on i = ', i print*, 'Re(i) + Im(i)', WR(i), WI(i) endif enddo print*,'n_good = ',n_good if(n_good .lt. n)then print*,'Removing degeneracies to remove imaginary parts' allocate(im_part(n),iorder(n)) r = 0.d0 do i = 1, n im_part(i) = -dabs(WI(i)) iorder(i) = i enddo call dsort(im_part,iorder,n) thr = 10.d0 * dabs(im_part(1)) print*,'adding random numbers on the diagonal of magnitude ',thr Aw(:,:) = A(:,:) do i = 1, n call RANDOM_NUMBER(r) print*,'r = ',r*thr Aw(i,i) += thr * r enddo print*,'Rediagonalizing the matrix with random numbers' call lapack_diag_non_sym_new(n, Aw, WR, WI, VL, VR) deallocate(im_part,iorder) endif deallocate( Aw ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! track & sort the real eigenvalues n_good = 0 thr = 1.d-5 do i = 1, n if( dabs(WI(i)).lt.thr ) then n_good += 1 else print*, 'Found an imaginary component to eigenvalue on i = ', i print*, 'Re(i) + Im(i)', WR(i), WI(i) endif enddo print*,'n_good = ',n_good allocate( list_good(n_good), iorder(n_good) ) n_good = 0 do i = 1, n if( dabs(WI(i)).lt.thr ) then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo deallocate( WR, WI ) n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo call dsort(eigval, iorder, n_good) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n_real_eigv do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = VL(j,list_good(iorder(i))) enddo enddo deallocate( list_good, iorder ) deallocate( VL, VR ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! check bi-orthogonality allocate( S(n_real_eigv,n_real_eigv) ) ! S = VL x VR call dgemm( 'T', 'N', n_real_eigv, n_real_eigv, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, n_real_eigv do j = 1, n_real_eigv if(i==j) cycle accu_nd = accu_nd + S(j,i) * S(j,i) enddo enddo accu_nd = dsqrt(accu_nd) if(accu_nd .lt. thresh_biorthog_nondiag) then ! L x R is already bi-orthogonal print *, ' L & T bi-orthogonality: ok' deallocate( S ) return else ! impose bi-orthogonality print *, ' L & T bi-orthogonality: not imposed yet' print *, ' accu_nd = ', accu_nd call impose_biorthog_qr(n, n_real_eigv, thresh_biorthog_diag, thresh_biorthog_nondiag, leigvec, reigvec) deallocate( S ) endif ! ! ------------------------------------------------------------------------------------- return end ! --- subroutine non_hrmt_real_im(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the EIGENVALUES sorted the REAL part and corresponding LEFT/RIGHT eigenvetors ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_bad double precision :: thr double precision :: accu_nd integer, allocatable :: iorder(:) double precision, allocatable :: Aw(:,:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:) double precision, allocatable :: S(:,:) double precision :: r ! ------------------------------------------------------------------------------------- ! print *, 'Computing the left/right eigenvectors ...' allocate( WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n), iorder(n)) Aw(:,:) = A(:,:) do i = 1, n call RANDOM_NUMBER(r) Aw(i,i) += 10.d-10* r enddo call lapack_diag_non_sym(n, Aw, WR, WI, VL, VR) ! ------------------------------------------------------------------------------------- ! track & sort the real eigenvalues i = 1 thr = 1.d-15 n_real_eigv = 0 do while (i.le.n) ! print*,i,dabs(WI(i)) if( dabs(WI(i)).gt.thr ) then print*, 'Found an imaginary component to eigenvalue on i = ', i print*, 'Re(i) , Im(i) ', WR(i), WI(i) iorder(i) = i eigval(i) = WR(i) i+=1 print*, 'Re(i+1),Im(i+1)',WR(i), WI(i) iorder(i) = i eigval(i) = WR(i) i+=1 else n_real_eigv += 1 iorder(i) = i eigval(i) = WR(i) i+=1 endif enddo call dsort(eigval, iorder, n) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n do j = 1, n reigvec(j,i) = VR(j,iorder(i)) leigvec(j,i) = VL(j,iorder(i)) enddo enddo deallocate( iorder ) deallocate( VL, VR ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! check bi-orthogonality allocate( S(n,n) ) ! S = VL x VR call dgemm( 'T', 'N', n, n, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, n do j = 1, n if(i==j) cycle accu_nd = accu_nd + S(j,i) * S(j,i) enddo enddo accu_nd = dsqrt(accu_nd) deallocate( S ) end ! --- subroutine non_hrmt_generalized_real_im(n, A, B, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the EIGENVALUES sorted the REAL part and corresponding LEFT/RIGHT eigenvetors ! for A R = lambda B R and A^\dagger L = lambda B^\dagger L ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n),B(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_bad double precision :: thr double precision :: accu_nd integer, allocatable :: iorder(:) double precision, allocatable :: Aw(:,:),Bw(:,:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:), beta(:) double precision, allocatable :: S(:,:) double precision :: r ! ------------------------------------------------------------------------------------- ! print *, 'Computing the left/right eigenvectors ...' allocate( WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n), Bw(n,n),iorder(n),beta(n)) Aw(:,:) = A(:,:) Bw(:,:) = B(:,:) call lapack_diag_general_non_sym(n,Aw,Bw,WR,beta,WI,VL,VR) ! ------------------------------------------------------------------------------------- ! track & sort the real eigenvalues i = 1 thr = 1.d-10 n_real_eigv = 0 do while (i.le.n) if( dabs(WI(i)).gt.thr ) then print*, 'Found an imaginary component to eigenvalue on i = ', i print*, 'Re(i) , Im(i) ', WR(i), WI(i) iorder(i) = i eigval(i) = WR(i)/(beta(i) + 1.d-10) i+=1 print*, 'Re(i+1),Im(i+1)',WR(i), WI(i) iorder(i) = i eigval(i) = WR(i)/(beta(i) + 1.d-10) i+=1 else n_real_eigv += 1 iorder(i) = i eigval(i) = WR(i)/(beta(i) + 1.d-10) i+=1 endif enddo call dsort(eigval, iorder, n) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n do j = 1, n reigvec(j,i) = VR(j,iorder(i)) leigvec(j,i) = VL(j,iorder(i)) enddo enddo deallocate( iorder ) deallocate( VL, VR ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! check bi-orthogonality allocate( S(n,n) ) ! S = VL x VR call dgemm( 'T', 'N', n, n, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, n do j = 1, n if(i==j) cycle accu_nd = accu_nd + S(j,i) * S(j,i) enddo enddo accu_nd = dsqrt(accu_nd) deallocate( S ) end ! --- subroutine non_hrmt_bieig_fullvect(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_good double precision :: thr double precision :: accu_nd integer, allocatable :: iorder(:) double precision, allocatable :: Aw(:,:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:) double precision, allocatable :: S(:,:) double precision, allocatable :: eigval_sorted(:) ! ------------------------------------------------------------------------------------- ! print *, 'Computing the left/right eigenvectors ...' allocate( WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n) ) Aw(:,:) = A(:,:) call lapack_diag_non_sym_new(n, Aw, WR, WI, VL, VR) deallocate( Aw ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! track & sort the real eigenvalues allocate( eigval_sorted(n), iorder(n) ) n_good = 0 thr = 1.d-10 do i = 1, n iorder(i) = i eigval_sorted(i) = WR(i) if(dabs(WI(i)) .gt. thr) then print*, ' Found an imaginary component to eigenvalue on i = ', i print*, ' Re(i) + Im(i)', WR(i), WI(i) else n_good += 1 endif enddo n_real_eigv = n_good call dsort(eigval_sorted, iorder, n) reigvec(:,:) = 0.d0 leigvec(:,:) = 0.d0 do i = 1, n eigval(i) = WR(i) do j = 1, n reigvec(j,i) = VR(j,iorder(i)) leigvec(j,i) = VL(j,iorder(i)) enddo enddo deallocate( eigval_sorted, iorder ) deallocate( WR, WI ) deallocate( VL, VR ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! check bi-orthogonality allocate( S(n,n) ) ! S = VL x VR call dgemm( 'T', 'N', n, n, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, n do j = 1, n if(i==j) cycle accu_nd = accu_nd + S(j,i) * S(j,i) enddo enddo accu_nd = dsqrt(accu_nd) if(accu_nd .lt. thresh_biorthog_nondiag) then ! L x R is already bi-orthogonal !print *, ' L & T bi-orthogonality: ok' deallocate( S ) return else ! impose bi-orthogonality !print *, ' L & T bi-orthogonality: not imposed yet' !print *, ' accu_nd = ', accu_nd call impose_biorthog_qr(n, n, thresh_biorthog_diag, thresh_biorthog_nondiag, leigvec, reigvec) deallocate( S ) endif ! ! ------------------------------------------------------------------------------------- return end ! --- subroutine split_matrix_degen(aw,n,shift) implicit none BEGIN_DOC ! subroutines that splits the degeneracies of a matrix by adding a splitting of magnitude thr * n_degen/2 ! ! WARNING !! THE MATRIX IS ASSUMED TO BE PASSED WITH INCREASING DIAGONAL ELEMENTS END_DOC double precision,intent(inout) :: Aw(n,n) double precision,intent(in) :: shift integer, intent(in) :: n integer :: i,j,n_degen logical :: keep_on i=1 do while(i.lt.n) if(dabs(Aw(i,i)-Aw(i+1,i+1)).lt.shift)then j=1 keep_on = .True. do while(keep_on) if(i+j.gt.n)then keep_on = .False. exit endif if(dabs(Aw(i,i)-Aw(i+j,i+j)).lt.shift)then j+=1 else keep_on=.False. exit endif enddo n_degen = j j=0 keep_on = .True. do while(keep_on) if(i+j+1.gt.n)then keep_on = .False. exit endif if(dabs(Aw(i+j,i+j)-Aw(i+j+1,i+j+1)).lt.shift)then Aw(i+j,i+j) += (j-n_degen/2) * shift j+=1 else keep_on = .False. exit endif enddo Aw(i+n_degen-1,i+n_degen-1) += (n_degen-1-n_degen/2) * shift i+=n_degen else i+=1 endif enddo end subroutine give_degen(a,n,shift,list_degen,n_degen_list) implicit none BEGIN_DOC ! returns n_degen_list :: the number of degenerated SET of elements (i.e. with |A(i)-A(i+1)| below shift) ! ! for each of these sets, list_degen(1,i) = first degenerate element of the set i, ! ! list_degen(2,i) = last degenerate element of the set i. END_DOC double precision,intent(in) :: A(n) double precision,intent(in) :: shift integer, intent(in) :: n integer, intent(out) :: list_degen(2,n),n_degen_list integer :: i,j,n_degen,k logical :: keep_on double precision,allocatable :: Aw(:) list_degen = -1 allocate(Aw(n)) Aw = A i=1 k = 0 do while(i.lt.n) if(dabs(Aw(i)-Aw(i+1)).lt.shift)then k+=1 j=1 list_degen(1,k) = i keep_on = .True. do while(keep_on) if(i+j.gt.n)then keep_on = .False. exit endif if(dabs(Aw(i)-Aw(i+j)).lt.shift)then j+=1 else keep_on=.False. exit endif enddo n_degen = j list_degen(2,k) = list_degen(1,k)-1 + n_degen j=0 keep_on = .True. do while(keep_on) if(i+j+1.gt.n)then keep_on = .False. exit endif if(dabs(Aw(i+j)-Aw(i+j+1)).lt.shift)then Aw(i+j) += (j-n_degen/2) * shift j+=1 else keep_on = .False. exit endif enddo Aw(i+n_degen-1) += (n_degen-1-n_degen/2) * shift i+=n_degen else i+=1 endif enddo n_degen_list = k end subroutine cancel_small_elmts(aw,n,shift) implicit none BEGIN_DOC ! subroutines that splits the degeneracies of a matrix by adding a splitting of magnitude thr * n_degen/2 ! ! WARNING !! THE MATRIX IS ASSUMED TO BE PASSED WITH INCREASING DIAGONAL ELEMENTS END_DOC double precision,intent(inout) :: Aw(n,n) double precision,intent(in) :: shift integer, intent(in) :: n integer :: i,j do i = 1, n do j = 1, n if(dabs(Aw(j,i)).lt.shift)then Aw(j,i) = 0.d0 endif enddo enddo end subroutine check_bi_ortho(reigvec,leigvec,n,S,accu_nd) implicit none integer, intent(in) :: n double precision,intent(in) :: reigvec(n,n),leigvec(n,n) double precision, intent(out) :: S(n,n),accu_nd BEGIN_DOC ! retunrs the overlap matrix S = Leigvec^T Reigvec ! ! and the square root of the sum of the squared off-diagonal elements of S END_DOC integer :: i,j ! S = VL x VR call dgemm( 'T', 'N', n, n, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, n do j = 1, n if(i.ne.j) then accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) end