subroutine $subroutine_diexc(key_in, key_prev, hole_1,particl_1, hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) implicit none integer(bit_kind), intent(in) :: key_in(N_int, 2), hole_1(N_int, 2), hole_2(N_int, 2) integer(bit_kind), intent(in) :: particl_1(N_int, 2), particl_2(N_int, 2) integer(bit_kind) :: p1_mask(N_int, 2), p2_mask(N_int, 2), tmp integer,intent(in) :: i_generator,iproc_in integer :: status(N_int*bit_kind_size, 2) integer :: highest, p1,p2,sp,ni,i,mi,nt,ns,k double precision, intent(in) :: fock_diag_tmp(2,mo_num+1) integer(bit_kind), intent(in) :: key_prev(N_int, 2, *) PROVIDE N_int PROVIDE N_det $declarations highest = 0 do k=1,N_int*bit_kind_size status(k,1) = 0 status(k,2) = 0 enddo do sp=1,2 do ni=1,N_int do i=1,bit_kind_size if(iand(1_bit_kind,shiftr(key_in(ni, sp), (i-1))) == 0) then cycle end if mi = (ni-1)*bit_kind_size+i status(mi, sp) = int(iand(1_bit_kind,shiftr(hole_1(ni,sp),(i-1))),4) status(mi, sp) = status(mi, sp) + 2*int(iand(1_bit_kind,shiftr(hole_2(ni,sp),(i-1))),4) if(status(mi, sp) /= 0 .and. mi > highest) then highest = mi end if end do end do end do do sp=1,2 do p1=1,highest if(status(p1, sp) == 0) then cycle end if do p2=1,highest if(status(p2, sp) == 0) then cycle end if if((status(p1, sp) == 1 .and. status(p2, sp) > 1) .or. & (status(p1, sp) == 2 .and. status(p2, sp) == 3) .or. & (status(p1, sp) == 3 .and. status(p2, sp) == 3 .and. p2 > p1)) then call $subroutine_diexcP(key_in, sp, p1, particl_1, sp, p2, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) end if end do end do end do do p1=1,highest if(status(p1, 1) == 0) then cycle end if do p2=1,highest if(status(p2, 2) == 0) then cycle end if if((status(p1, 1) == 3) .or. & (status(p1, 1) == 1 .and. status(p2, 2) >= 2) .or. & (status(p1, 1) == 2 .and. status(p2, 2) /= 2)) then call $subroutine_diexcP(key_in, 1, p1, particl_1, 2, p2, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) end if end do end do end subroutine subroutine $subroutine_diexcP(key_in, fs1, fh1, particl_1, fs2, fh2, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) implicit none integer(bit_kind), intent(in) :: key_in(N_int, 2), particl_1(N_int, 2), particl_2(N_int, 2) double precision, intent(in) :: fock_diag_tmp(2,mo_num+1) integer(bit_kind) :: p1_mask(N_int, 2), p2_mask(N_int, 2), key_mask(N_int, 2) integer,intent(in) :: fs1,fs2,i_generator,iproc_in, fh1,fh2 integer(bit_kind) :: miniList(N_int, 2, N_det) integer :: n_minilist, n_alpha, n_beta, deg(2), i, ni, k $declarations integer(bit_kind), parameter :: one = 1_bit_kind do k=1,N_int p1_mask(k,1) = 0_bit_kind p1_mask(k,2) = 0_bit_kind p2_mask(k,1) = 0_bit_kind p2_mask(k,2) = 0_bit_kind enddo p1_mask(shiftr(fh1-1,bit_kind_shift) + 1, fs1) = shiftl(one,iand(fh1-1,bit_kind_size-1)) p2_mask(shiftr(fh2-1,bit_kind_shift) + 1, fs2) = shiftl(one,iand(fh2-1,bit_kind_size-1)) do k=1,N_int key_mask(k,1) = key_in(k,1) key_mask(k,2) = key_in(k,2) enddo key_mask(shiftr(fh1-1,bit_kind_shift) + 1, fs1) -= shiftl(one,iand(fh1-1,bit_kind_size-1)) key_mask(shiftr(fh2-1,bit_kind_shift) + 1, fs2) -= shiftl(one,iand(fh2-1,bit_kind_size-1)) call $subroutine_diexcOrg(key_in, key_mask, p1_mask, particl_1, p2_mask, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) end subroutine subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in $parameters ) use omp_lib use bitmasks implicit none BEGIN_DOC ! Generate all double excitations of key_in using the bit masks of holes and ! particles. ! Assume N_int is already provided. END_DOC integer,parameter :: size_max = $size_max $declarations integer ,intent(in) :: i_generator integer(bit_kind),intent(in) :: key_in(N_int,2), key_mask(N_int, 2) integer(bit_kind),allocatable :: keys_out(:,:,:) integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2) integer, intent(in) :: iproc_in double precision, intent(in) :: fock_diag_tmp(2,mo_num+1) integer(bit_kind), allocatable :: hole_save(:,:) integer(bit_kind), allocatable :: key(:,:),hole(:,:), particle(:,:) integer(bit_kind), allocatable :: hole_tmp(:,:), particle_tmp(:,:) integer(bit_kind), allocatable :: key_union_hole_part(:) integer :: ii,i,jj,j,k,ispin,l integer, allocatable :: occ_particle(:,:), occ_hole(:,:) integer, allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) integer :: kk,pp,other_spin,key_idx integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) double precision :: mo_two_e_integral logical :: is_a_two_holes_two_particles integer, allocatable :: ia_ja_pairs(:,:,:) integer, allocatable :: ib_jb_pairs(:,:) double precision :: diag_H_mat_elem integer :: iproc integer :: jtest_vvvv logical :: check_double_excitation logical :: is_a_1h1p logical :: is_a_1h2p logical :: is_a_1h logical :: is_a_1p logical :: is_a_2p logical :: is_a_2h1p logical :: is_a_2h logical :: b_cycle logical :: yes_no check_double_excitation = .True. iproc = iproc_in $initialization $omp_parallel !$ iproc = omp_get_thread_num() allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& occ_hole_tmp(N_int*bit_kind_size,2),key_union_hole_part(N_int)) $init_thread !!!! First couple hole particle do j = 1, N_int hole(j,1) = iand(hole_1(j,1),key_in(j,1)) hole(j,2) = iand(hole_1(j,2),key_in(j,2)) particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) enddo call bitstring_to_list_ab(particle,occ_particle,N_elec_in_key_part_1,N_int) call bitstring_to_list_ab(hole,occ_hole,N_elec_in_key_hole_1,N_int) allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_num,2), & ib_jb_pairs(2,0:(elec_alpha_num)*mo_num)) do ispin=1,2 i=0 do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole i_a = occ_hole(ii,ispin) ASSERT (i_a > 0) ASSERT (i_a <= mo_num) do jj=1,N_elec_in_key_part_1(ispin) !particle j_a = occ_particle(jj,ispin) ASSERT (j_a > 0) ASSERT (j_a <= mo_num) i += 1 ia_ja_pairs(1,i,ispin) = i_a ia_ja_pairs(2,i,ispin) = j_a enddo enddo ia_ja_pairs(1,0,ispin) = i enddo key_idx = 0 integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b integer(bit_kind) :: test(N_int,2) double precision :: accu logical, allocatable :: array_pairs(:,:) allocate(array_pairs(mo_num,mo_num)) accu = 0.d0 do ispin=1,2 other_spin = iand(ispin,1)+1 $omp_do do ii=1,ia_ja_pairs(1,0,ispin) i_a = ia_ja_pairs(1,ii,ispin) ASSERT (i_a > 0) ASSERT (i_a <= mo_num) j_a = ia_ja_pairs(2,ii,ispin) ASSERT (j_a > 0) ASSERT (j_a <= mo_num) hole = key_in k = shiftr(i_a-1,bit_kind_shift)+1 j = i_a-shiftl(k-1,bit_kind_shift)-1 hole(k,ispin) = ibclr(hole(k,ispin),j) k_a = shiftr(j_a-1,bit_kind_shift)+1 l_a = j_a-shiftl(k_a-1,bit_kind_shift)-1 hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) !!!! Second couple hole particle do j = 1, N_int hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1)) hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2)) particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1)) particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2)) enddo call bitstring_to_list_ab(particle_tmp,occ_particle_tmp,N_elec_in_key_part_2,N_int) call bitstring_to_list_ab(hole_tmp,occ_hole_tmp,N_elec_in_key_hole_2,N_int) ! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : single exc :: orb(i_a,ispin) --> orb(j_a,ispin) hole_save = hole ! Build array of the non-zero integrals of second excitation $filter_integrals if (ispin == 1) then integer :: jjj i=0 do kk = 1,N_elec_in_key_hole_2(other_spin) i_b = occ_hole_tmp(kk,other_spin) ASSERT (i_b > 0) ASSERT (i_b <= mo_num) do jjj=1,N_elec_in_key_part_2(other_spin) ! particle j_b = occ_particle_tmp(jjj,other_spin) ASSERT (j_b > 0) ASSERT (j_b <= mo_num) if (array_pairs(i_b,j_b)) then $filter_vvvv_excitation i+= 1 ib_jb_pairs(1,i) = i_b ib_jb_pairs(2,i) = j_b endif enddo enddo ib_jb_pairs(1,0) = i do kk = 1,ib_jb_pairs(1,0) hole = hole_save i_b = ib_jb_pairs(1,kk) j_b = ib_jb_pairs(2,kk) k = shiftr(i_b-1,bit_kind_shift)+1 j = i_b-shiftl(k-1,bit_kind_shift)-1 hole(k,other_spin) = ibclr(hole(k,other_spin),j) key = hole k = shiftr(j_b-1,bit_kind_shift)+1 l = j_b-shiftl(k-1,bit_kind_shift)-1 key(k,other_spin) = ibset(key(k,other_spin),l) $filter2h2p_double $filter_only_1h1p_double $filter_only_1h2p_double $filter_only_2h2p_double $only_2p_double $only_2h_double $only_1h_double $only_1p_double $only_2h1p_double $filter_only_connected_to_hf_double key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = key(k,1) keys_out(k,2,key_idx) = key(k,2) enddo ASSERT (key_idx <= size_max) if (key_idx == size_max) then $keys_work key_idx = 0 endif enddo endif ! does all the single excitations of the same spin i=0 do kk = 1,N_elec_in_key_hole_2(ispin) i_b = occ_hole_tmp(kk,ispin) if (i_b <= i_a.or.i_b == j_a) cycle ASSERT (i_b > 0) ASSERT (i_b <= mo_num) do jjj=1,N_elec_in_key_part_2(ispin) ! particule j_b = occ_particle_tmp(jjj,ispin) ASSERT (j_b > 0) ASSERT (j_b <= mo_num) if (j_b <= j_a) cycle if (array_pairs(i_b,j_b)) then $filter_vvvv_excitation i+= 1 ib_jb_pairs(1,i) = i_b ib_jb_pairs(2,i) = j_b endif enddo enddo ib_jb_pairs(1,0) = i do kk = 1,ib_jb_pairs(1,0) hole = hole_save i_b = ib_jb_pairs(1,kk) j_b = ib_jb_pairs(2,kk) k = shiftr(i_b-1,bit_kind_shift)+1 j = i_b-shiftl(k-1,bit_kind_shift)-1 hole(k,ispin) = ibclr(hole(k,ispin),j) key = hole k = shiftr(j_b-1,bit_kind_shift)+1 l = j_b-shiftl(k-1,bit_kind_shift)-1 key(k,ispin) = ibset(key(k,ispin),l) $filter2h2p_double $filter_only_1h1p_double $filter_only_1h2p_double $filter_only_2h2p_double $only_2p_double $only_2h_double $only_1h_double $only_1p_double $only_2h1p_double $filter_only_connected_to_hf_double key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = key(k,1) keys_out(k,2,key_idx) = key(k,2) enddo ASSERT (key_idx <= size_max) if (key_idx == size_max) then $keys_work key_idx = 0 endif enddo ! kk enddo ! ii $omp_enddo enddo ! ispin $keys_work $deinit_thread deallocate (ia_ja_pairs, ib_jb_pairs, & keys_out, hole_save, & key,hole, particle, hole_tmp, & particle_tmp, occ_particle, & occ_hole, occ_particle_tmp, & occ_hole_tmp,array_pairs,key_union_hole_part) $omp_end_parallel $finalization end subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generator,iproc_in $parameters ) use omp_lib use bitmasks implicit none BEGIN_DOC ! Generate all single excitations of key_in using the bit masks of holes and ! particles. ! Assume N_int is already provided. END_DOC integer,parameter :: size_max = $size_max $declarations integer ,intent(in) :: i_generator integer(bit_kind),intent(in) :: key_in(N_int,2) integer(bit_kind),intent(in) :: hole_1(N_int,2), particl_1(N_int,2) integer, intent(in) :: iproc_in double precision, intent(in) :: fock_diag_tmp(2,mo_num+1) integer(bit_kind),allocatable :: keys_out(:,:,:) integer(bit_kind),allocatable :: hole_save(:,:) integer(bit_kind),allocatable :: key(:,:),hole(:,:), particle(:,:) integer(bit_kind),allocatable :: hole_tmp(:,:), particle_tmp(:,:) integer(bit_kind),allocatable :: hole_2(:,:), particl_2(:,:) integer :: ii,i,jj,j,k,ispin,l integer,allocatable :: occ_particle(:,:), occ_hole(:,:) integer,allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) integer,allocatable :: ib_jb_pairs(:,:) integer :: kk,pp,other_spin,key_idx integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) logical :: is_a_two_holes_two_particles integer(bit_kind), allocatable :: key_union_hole_part(:) integer, allocatable :: ia_ja_pairs(:,:,:) logical, allocatable :: array_pairs(:,:) double precision :: diag_H_mat_elem integer :: iproc integer(bit_kind) :: key_mask(N_int, 2) logical :: check_double_excitation logical :: is_a_2h1p logical :: is_a_2h logical :: is_a_1h1p logical :: is_a_1h2p logical :: is_a_1h logical :: is_a_1p logical :: is_a_2p logical :: yes_no do k=1,N_int key_mask(k,1) = 0_bit_kind key_mask(k,2) = 0_bit_kind enddo iproc = iproc_in check_double_excitation = .True. $check_double_excitation $initialization $omp_parallel !$ iproc = omp_get_thread_num() allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& occ_hole_tmp(N_int*bit_kind_size,2),key_union_hole_part(N_int)) $init_thread !!!! First couple hole particle do j = 1, N_int hole(j,1) = iand(hole_1(j,1),key_in(j,1)) hole(j,2) = iand(hole_1(j,2),key_in(j,2)) particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) enddo call bitstring_to_list_ab(particle,occ_particle,N_elec_in_key_part_1,N_int) call bitstring_to_list_ab(hole,occ_hole,N_elec_in_key_hole_1,N_int) allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_num,2)) do ispin=1,2 i=0 do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole i_a = occ_hole(ii,ispin) do jj=1,N_elec_in_key_part_1(ispin) !particule j_a = occ_particle(jj,ispin) i += 1 ia_ja_pairs(1,i,ispin) = i_a ia_ja_pairs(2,i,ispin) = j_a enddo enddo ia_ja_pairs(1,0,ispin) = i enddo key_idx = 0 integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b integer(bit_kind) :: test(N_int,2) double precision :: accu accu = 0.d0 do ispin=1,2 other_spin = iand(ispin,1)+1 $omp_do do ii=1,ia_ja_pairs(1,0,ispin) i_a = ia_ja_pairs(1,ii,ispin) j_a = ia_ja_pairs(2,ii,ispin) hole = key_in k = shiftr(i_a-1,bit_kind_shift)+1 j = i_a-shiftl(k-1,bit_kind_shift)-1 $filterhole hole(k,ispin) = ibclr(hole(k,ispin),j) k_a = shiftr(j_a-1,bit_kind_shift)+1 l_a = j_a-shiftl(k_a-1,bit_kind_shift)-1 $filterparticle hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) $only_2p_single $only_2h_single $only_1h_single $only_1p_single $only_2h1p_single $filter1h $filter1p $filter2p $filter2h2p_single $filter_only_1h1p_single $filter_only_1h2p_single $filter_only_2h2p_single $filter_only_connected_to_hf_single key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = hole(k,1) keys_out(k,2,key_idx) = hole(k,2) enddo if (key_idx == size_max) then $keys_work key_idx = 0 endif enddo ! ii $omp_enddo enddo ! ispin $keys_work $deinit_thread deallocate (ia_ja_pairs, & keys_out, hole_save, & key,hole, particle, hole_tmp,& particle_tmp, occ_particle, & occ_hole, occ_particle_tmp,& occ_hole_tmp,key_union_hole_part) $omp_end_parallel $finalization end