subroutine u_0_H_tc_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze, do_right) use bitmasks implicit none BEGIN_DOC ! Computes $E_0 = \frac{\langle u_0 | H_TC | u_0 \rangle}{\langle u_0 | u_0 \rangle}$ ! ! n : number of determinants ! ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> END_DOC integer, intent(in) :: n,Nint, N_st, sze logical, intent(in) :: do_right double precision, intent(out) :: e_0(N_st) double precision, intent(inout) :: u_0(sze,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision, allocatable :: v_0(:,:), u_1(:,:) double precision :: u_dot_u,u_dot_v,diag_H_mat_elem integer :: i,j, istate allocate (v_0(n,N_st),u_1(n,N_st)) u_1(:,:) = 0.d0 u_1(1:n,1:N_st) = u_0(1:n,1:N_st) call H_tc_u_0_nstates_openmp(v_0,u_1,N_st,n, do_right) u_0(1:n,1:N_st) = u_1(1:n,1:N_st) deallocate(u_1) double precision :: norm !$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED) do i=1,N_st norm = u_dot_u(u_0(1,i),n) if (norm /= 0.d0) then e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) / dsqrt(norm) else e_0(i) = 0.d0 endif enddo !$OMP END PARALLEL DO deallocate (v_0) end subroutine H_tc_u_0_opt(v_0,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! Computes $v_0 = H | u_0\rangle$. ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st) logical :: do_right do_right = .True. call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right) end subroutine H_tc_dagger_u_0_opt(v_0,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! Computes $v_0 = H | u_0\rangle$. ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st) logical :: do_right do_right = .False. call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right) end subroutine H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right) use bitmasks implicit none BEGIN_DOC ! Computes $v_0 = H | u_0\rangle$. ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. ! ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> END_DOC integer, intent(in) :: N_st,sze double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st) logical, intent(in) :: do_right integer :: k double precision, allocatable :: u_t(:,:), v_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det),v_t(N_st,N_det)) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo v_t = 0.d0 call dtranspose( & u_0, & size(u_0, 1), & u_t, & size(u_t, 1), & N_det, N_st) call H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,1,N_det,0,1, do_right) deallocate(u_t) call dtranspose( & v_t, & size(v_t, 1), & v_0, & size(v_0, 1), & N_st, N_det) deallocate(v_t) do k=1,N_st call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det) call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo end subroutine H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,istart,iend,ishift,istep, do_right) use bitmasks implicit none BEGIN_DOC ! Computes $v_t = H | u_t\rangle$ ! ! Default should be 1,N_det,0,1 ! ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep double precision, intent(in) :: u_t(N_st,N_det) logical, intent(in) :: do_right double precision, intent(out) :: v_t(N_st,sze) PROVIDE ref_bitmask_energy N_int select case (N_int) case (1) call H_tc_u_0_nstates_openmp_work_1(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) case (2) call H_tc_u_0_nstates_openmp_work_2(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) case (3) call H_tc_u_0_nstates_openmp_work_3(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) case (4) call H_tc_u_0_nstates_openmp_work_4(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) case default call H_tc_u_0_nstates_openmp_work_N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) end select end BEGIN_TEMPLATE subroutine H_tc_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right) use bitmasks implicit none BEGIN_DOC ! Computes $v_t = H | u_t \\rangle$ ! ! Default should be 1,N_det,0,1 ! ! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi> END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep double precision, intent(in) :: u_t(N_st,N_det) logical, intent(in) :: do_right double precision, intent(out) :: v_t(N_st,sze) double precision :: hij integer :: i,j,k,l,kk integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: istate integer :: krow, kcol, krow_b, kcol_b integer :: lrow, lcol integer :: mrow, mcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev integer*8 :: k8 logical :: compute_singles integer*8 :: last_found, left, right, right_max double precision :: rss, mem, ratio double precision, allocatable :: utl(:,:) integer, parameter :: block_size=128 logical :: u_is_sparse ! call resident_memory(rss) ! mem = dble(singles_beta_csc_size) / 1024.d0**3 ! ! compute_singles = (mem+rss > qp_max_mem) ! ! if (.not.compute_singles) then ! provide singles_beta_csc ! endif compute_singles=.True. maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson !$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) & !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & !$OMP psi_bilinear_matrix_columns, & !$OMP psi_det_alpha_unique, psi_det_beta_unique, & !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, & !$OMP psi_bilinear_matrix_transp_rows, & !$OMP psi_bilinear_matrix_transp_columns, & !$OMP psi_bilinear_matrix_transp_order, N_st, & !$OMP psi_bilinear_matrix_order_transp_reverse, & !$OMP psi_bilinear_matrix_columns_loc, & !$OMP psi_bilinear_matrix_transp_rows_loc, & !$OMP istart, iend, istep, irp_here, v_t, & !$OMP ishift, idx0, u_t, maxab, compute_singles, & !$OMP singles_alpha_csc,singles_alpha_csc_idx, & !$OMP singles_beta_csc,singles_beta_csc_idx) & !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & !$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, & !$OMP buffer, doubles, n_doubles, umax, & !$OMP tmp_det2, hij, idx, l, kcol_prev,hmono, htwoe, hthree, & !$OMP singles_a, n_singles_a, singles_b, ratio, & !$OMP n_singles_b, k8, last_found,left,right,right_max) ! Alpha/Beta double excitations ! ============================= allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab), utl(N_st,block_size)) kcol_prev=-1 ! Check if u has multiple zeros kk=1 ! Avoid division by zero !$OMP DO do k=1,N_det umax = 0.d0 do l=1,N_st umax = max(umax, dabs(u_t(l,k))) enddo if (umax < 1.d-20) then !$OMP ATOMIC kk = kk+1 endif enddo !$OMP END DO u_is_sparse = N_det / kk < 20 ! 5% ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) !$OMP DO SCHEDULE(guided,64) do k_a=istart+ishift,iend,istep ! Loop over all determinants (/!\ not in psidet order) krow = psi_bilinear_matrix_rows(k_a) ! Index of alpha part of determinant k_a ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ! Index of beta part of determinant k_a ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) if (kcol /= kcol_prev) then tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (compute_singles) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) else n_singles_b = 0 !DIR$ LOOP COUNT avg(1000) do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1 n_singles_b = n_singles_b+1 singles_b(n_singles_b) = singles_beta_csc(k8) enddo endif endif kcol_prev = kcol ! -> Here, tmp_det is determinant k_a ! Loop over singly excited beta columns ! ------------------------------------- !DIR$ LOOP COUNT avg(1000) do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) ! tmp_det2 is a single excitation of tmp_det in the beta spin ! the alpha part is not defined yet !--- ! if (compute_singles) then l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) ! rows : | 1 2 3 4 | 1 3 4 6 | .... | 1 2 4 5 | ! cols : | 1 1 1 1 | 2 2 2 2 | .... | 8 8 8 8 | ! index : | 1 2 3 4 | 5 6 7 8 | .... | 58 59 60 61 | ! ^ ^ ! | | ! l_a N_det ! l_a is the index in the big vector os size Ndet of the position of the first element of column lcol ! Below we identify all the determinants with the same beta part !DIR$ UNROLL(8) !DIR$ LOOP COUNT avg(50000) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 ! Get all single excitations from tmp_det(1,1) to buffer(1,?) call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- double precision :: umax !DIR$ LOOP COUNT avg(1000) do k = 1,n_singles_a,block_size umax = 0.d0 ! Prefetch u_t(:,l_a) if (u_is_sparse) then do kk=0,block_size-1 if (k+kk > n_singles_a) exit l_a = singles_a(k+kk) ASSERT (l_a <= N_det) do l=1,N_st utl(l,kk+1) = u_t(l,l_a) umax = max(umax, dabs(utl(l,kk+1))) enddo enddo else do kk=0,block_size-1 if (k+kk > n_singles_a) exit l_a = singles_a(k+kk) ASSERT (l_a <= N_det) utl(:,kk+1) = u_t(:,l_a) enddo umax = 1.d0 endif if (umax < 1.d-20) cycle do kk=0,block_size-1 if (k+kk > n_singles_a) exit l_a = singles_a(k+kk) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) ! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! double alpha-beta if(do_right)then call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) else call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) endif !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) enddo enddo enddo enddo enddo !$OMP END DO !$OMP DO SCHEDULE(guided,64) do k_a=istart+ishift,iend,istep ! Single and double alpha excitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) !DIR$ LOOP COUNT avg(200000) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot idx(i) = l_a l_a = l_a+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) !DIR$ LOOP COUNT avg(1000) do i=1,n_singles_a,block_size umax = 0.d0 ! Prefetch u_t(:,l_a) if (u_is_sparse) then do kk=0,block_size-1 if (i+kk > n_singles_a) exit l_a = singles_a(i+kk) ASSERT (l_a <= N_det) do l=1,N_st utl(l,kk+1) = u_t(l,l_a) umax = max(umax, dabs(utl(l,kk+1))) enddo enddo else do kk=0,block_size-1 if (i+kk > n_singles_a) exit l_a = singles_a(i+kk) ASSERT (l_a <= N_det) utl(:,kk+1) = u_t(:,l_a) enddo umax = 1.d0 endif if (umax < 1.d-20) cycle do kk=0,block_size-1 if (i+kk > n_singles_a) exit l_a = singles_a(i+kk) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) ! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij) if(do_right)then call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) else call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) endif !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) enddo enddo enddo ! Compute Hij for all alpha doubles ! ---------------------------------- !DIR$ LOOP COUNT avg(50000) do i=1,n_doubles,block_size umax = 0.d0 ! Prefetch u_t(:,l_a) if (u_is_sparse) then do kk=0,block_size-1 if (i+kk > n_doubles) exit l_a = doubles(i+kk) ASSERT (l_a <= N_det) do l=1,N_st utl(l,kk+1) = u_t(l,l_a) umax = max(umax, dabs(utl(l,kk+1))) enddo enddo else do kk=0,block_size-1 if (i+kk > n_doubles) exit l_a = doubles(i+kk) ASSERT (l_a <= N_det) utl(:,kk+1) = u_t(:,l_a) enddo umax = 1.d0 endif if (umax < 1.d-20) cycle do kk=0,block_size-1 if (i+kk > n_doubles) exit l_a = doubles(i+kk) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) ! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) if(do_right)then call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) else call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) endif !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) enddo enddo enddo ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) !DIR$ LOOP COUNT avg(200000) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) !DIR$ LOOP COUNT avg(1000) do i=1,n_singles_b,block_size umax = 0.d0 if (u_is_sparse) then do kk=0,block_size-1 if (i+kk > n_singles_b) exit l_b = singles_b(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_b <= N_det) ASSERT (l_a <= N_det) do l=1,N_st utl(l,kk+1) = u_t(l,l_a) umax = max(umax, dabs(utl(l,kk+1))) enddo enddo else do kk=0,block_size-1 if (i+kk > n_singles_b) exit l_b = singles_b(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_b <= N_det) ASSERT (l_a <= N_det) utl(:,kk+1) = u_t(:,l_a) enddo umax = 1.d0 endif if (umax < 1.d-20) cycle do kk=0,block_size-1 if (i+kk > n_singles_b) exit l_b = singles_b(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) ! call i_H_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij) if(do_right)then call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) else call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) endif !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) enddo enddo enddo ! Compute Hij for all beta doubles ! ---------------------------------- !DIR$ LOOP COUNT avg(50000) do i=1,n_doubles,block_size umax = 0.d0 if (u_is_sparse) then do kk=0,block_size-1 if (i+kk > n_doubles) exit l_b = doubles(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_b <= N_det) ASSERT (l_a <= N_det) do l=1,N_st utl(l,kk+1) = u_t(l,l_a) umax = max(umax, dabs(utl(l,kk+1))) enddo enddo else do kk=0,block_size-1 if (i+kk > n_doubles) exit l_b = doubles(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_b <= N_det) ASSERT (l_a <= N_det) utl(:,kk+1) = u_t(:,l_a) enddo umax = 1.d0 endif if (umax < 1.d-20) cycle do kk=0,block_size-1 if (i+kk > n_doubles) exit l_b = doubles(i+kk) l_a = psi_bilinear_matrix_transp_order(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol) ! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) if(do_right)then call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) else call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij) endif !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) enddo enddo enddo ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- if (u_is_sparse) then umax = 0.d0 do l=1,N_st umax = max(umax, dabs(u_t(l,k_a))) enddo else umax = 1.d0 endif if (umax < 1.d-20) cycle krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) double precision, external :: diag_H_mat_elem double precision :: hmono, htwoe, hthree ! hij = diag_H_mat_elem(tmp_det,$N_int) call diag_htilde_mu_mat_fock_bi_ortho ($N_int, tmp_det, hmono, htwoe, hthree, hij) !DIR$ LOOP COUNT AVG(4) do l=1,N_st v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a) enddo end do !$OMP END DO deallocate(buffer, singles_a, singles_b, doubles, idx, utl) !$OMP END PARALLEL end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE