! --- BEGIN_PROVIDER [ double precision, ref_tc_energy_tot] &BEGIN_PROVIDER [ double precision, ref_tc_energy_1e] &BEGIN_PROVIDER [ double precision, ref_tc_energy_2e] &BEGIN_PROVIDER [ double precision, ref_tc_energy_3e] BEGIN_DOC ! ! Various component of the TC energy for the reference "HF" Slater determinant ! END_DOC implicit none double precision :: hmono, htwoe, htot, hthree PROVIDE N_int PROVIDE HF_bitmask PROVIDE mo_l_coef mo_r_coef call diag_htc_bi_orth_2e_brute(N_int, HF_bitmask, hmono, htwoe, htot) ref_tc_energy_1e = hmono ref_tc_energy_2e = htwoe if(three_body_h_tc) then call diag_htc_bi_orth_3e_brute(N_int, HF_bitmask, hthree) ref_tc_energy_3e = hthree else ref_tc_energy_3e = 0.d0 endif ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion if(noL_standard) then PROVIDE noL_0e ref_tc_energy_tot += noL_0e endif END_PROVIDER ! --- subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot) BEGIN_DOC ! ! Computes $\langle i|H|i \rangle$. ! END_DOC implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det_in(Nint,2) double precision, intent(out) :: hmono, htwoe, htot, hthree integer(bit_kind) :: hole(Nint,2) integer(bit_kind) :: particle(Nint,2) integer :: i, nexc(2), ispin integer :: occ_particle(Nint*bit_kind_size,2) integer :: occ_hole(Nint*bit_kind_size,2) integer(bit_kind) :: det_tmp(Nint,2) integer :: na, nb ASSERT (Nint > 0) ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) nexc(1) = 0 nexc(2) = 0 do i = 1, Nint hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) particle(i,1) = iand(hole(i,1),det_in(i,1)) particle(i,2) = iand(hole(i,2),det_in(i,2)) hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) nexc(1) = nexc(1) + popcnt(hole(i,1)) nexc(2) = nexc(2) + popcnt(hole(i,2)) enddo if (nexc(1)+nexc(2) == 0) then hmono = ref_tc_energy_1e htwoe = ref_tc_energy_2e hthree = ref_tc_energy_3e htot = ref_tc_energy_tot return endif !call debug_det(det_in,Nint) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(particle, occ_particle, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha ASSERT (tmp(2) == nexc(2)) ! Number of particle beta !DIR$ FORCEINLINE call bitstring_to_list_ab(hole, occ_hole, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha ASSERT (tmp(2) == nexc(2)) ! Number of holes beta hmono = ref_tc_energy_1e htwoe = ref_tc_energy_2e hthree = ref_tc_energy_3e det_tmp = ref_bitmask do ispin = 1, 2 na = elec_num_tab(ispin) nb = elec_num_tab(iand(ispin,1)+1) do i = 1, nexc(ispin) !DIR$ FORCEINLINE call ac_tc_operator(occ_particle(i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb) !DIR$ FORCEINLINE call a_tc_operator (occ_hole (i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb) enddo enddo htot = hmono + htwoe + hthree + nuclear_repulsion if(noL_standard) then PROVIDE noL_0e htot += noL_0e endif end ! --- subroutine ac_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb) BEGIN_DOC ! ! Routine that computes one- and two-body energy corresponding ! ! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin' ! ! onto a determinant 'key'. ! ! in output, the determinant key is changed by the ADDITION of that electron ! ! and the quantities hmono,htwoe,hthree are INCREMENTED ! END_DOC use bitmasks implicit none integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hmono, htwoe, hthree integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k, l, i, jj, mm, j, m integer :: tmp(2) double precision :: direct_int, exchange_int if (iorb < 1) then print *, irp_here, ': iorb < 1' print *, iorb, mo_num stop -1 endif if (iorb > mo_num) then print *, irp_here, ': iorb > mo_num' print *, iorb, mo_num stop -1 endif ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) ASSERT (tmp(1) == elec_alpha_num) ASSERT (tmp(2) == elec_beta_num) k = shiftr(iorb-1,bit_kind_shift)+1 ASSERT (k >0) l = iorb - shiftl(k-1,bit_kind_shift)-1 ASSERT (l >= 0) key(k,ispin) = ibset(key(k,ispin),l) other_spin = iand(ispin,1)+1 hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb) ! Same spin do i = 1, na htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i = 1, nb htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) enddo if(three_body_h_tc .and. (elec_num.gt.2) .and. three_e_3_idx_term) then !!!!! 3-e part !! same-spin/same-spin do j = 1, na jj = occ(j,ispin) do m = j+1, na mm = occ(m,ispin) hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb) enddo enddo !! same-spin/oposite-spin do j = 1, na jj = occ(j,ispin) do m = 1, nb mm = occ(m,other_spin) direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR hthree += direct_int - exchange_int enddo enddo !! oposite-spin/opposite-spin do j = 1, nb jj = occ(j,other_spin) do m = j+1, nb mm = occ(m,other_spin) direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR hthree += direct_int - exchange_int enddo enddo endif na = na + 1 end ! --- subroutine a_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb) use bitmasks implicit none BEGIN_DOC ! ! Routine that computes one- and two-body energy corresponding ! ! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin' ! ! onto a determinant 'key'. ! ! in output, the determinant key is changed by the REMOVAL of that electron ! ! and the quantities hmono,htwoe,hthree are INCREMENTED ! END_DOC integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hmono,htwoe,hthree double precision :: direct_int, exchange_int integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k, l, i, jj, mm, j, m integer :: tmp(2) ASSERT (iorb > 0) ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) k = shiftr(iorb-1,bit_kind_shift)+1 ASSERT (k>0) l = iorb - shiftl(k-1,bit_kind_shift)-1 key(k,ispin) = ibclr(key(k,ispin),l) other_spin = iand(ispin,1)+1 !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) na = na-1 hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb) ! Same spin do i = 1, na htwoe = htwoe - mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i = 1, nb htwoe = htwoe - mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) enddo if(three_body_h_tc .and. elec_num.gt.2 .and. three_e_3_idx_term) then !!!!! 3-e part !! same-spin/same-spin do j = 1, na jj = occ(j,ispin) do m = j+1, na mm = occ(m,ispin) hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb) enddo enddo !! same-spin/oposite-spin do j = 1, na jj = occ(j,ispin) do m = 1, nb mm = occ(m,other_spin) direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR hthree -= (direct_int - exchange_int) enddo enddo !! oposite-spin/opposite-spin do j = 1, nb jj = occ(j,other_spin) do m = j+1, nb mm = occ(m,other_spin) direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR hthree -= (direct_int - exchange_int) enddo enddo endif end ! --- subroutine diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, det_in,htot) BEGIN_DOC ! Computes $\langle i|H|i \rangle$. WITHOUT ANY CONTRIBUTIONS FROM 3E TERMS END_DOC implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det_in(Nint,2) double precision, intent(out) :: htot double precision :: hmono, htwoe integer(bit_kind) :: hole(Nint,2) integer(bit_kind) :: particle(Nint,2) integer :: i, nexc(2), ispin integer :: occ_particle(Nint*bit_kind_size,2) integer :: occ_hole(Nint*bit_kind_size,2) integer(bit_kind) :: det_tmp(Nint,2) integer :: na, nb ASSERT (Nint > 0) ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) nexc(1) = 0 nexc(2) = 0 do i=1,Nint hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) particle(i,1) = iand(hole(i,1),det_in(i,1)) particle(i,2) = iand(hole(i,2),det_in(i,2)) hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) nexc(1) = nexc(1) + popcnt(hole(i,1)) nexc(2) = nexc(2) + popcnt(hole(i,2)) enddo if(nexc(1)+nexc(2) == 0) then hmono = ref_tc_energy_1e htwoe = ref_tc_energy_2e htot = ref_tc_energy_tot return endif !call debug_det(det_in,Nint) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(particle, occ_particle, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha ASSERT (tmp(2) == nexc(2)) ! Number of particle beta !DIR$ FORCEINLINE call bitstring_to_list_ab(hole, occ_hole, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha ASSERT (tmp(2) == nexc(2)) ! Number of holes beta det_tmp = ref_bitmask hmono = ref_tc_energy_1e htwoe = ref_tc_energy_2e do ispin=1,2 na = elec_num_tab(ispin) nb = elec_num_tab(iand(ispin,1)+1) do i=1,nexc(ispin) !DIR$ FORCEINLINE call ac_tc_operator_no_3e( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb) !DIR$ FORCEINLINE call a_tc_operator_no_3e ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb) enddo enddo htot = hmono+htwoe end subroutine ac_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb) use bitmasks implicit none BEGIN_DOC ! Routine that computes one- and two-body energy corresponding ! ! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin' ! ! onto a determinant 'key'. ! ! in output, the determinant key is changed by the ADDITION of that electron ! ! and the quantities hmono,htwoe are INCREMENTED END_DOC integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hmono,htwoe integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k,l,i,jj,mm,j,m double precision :: direct_int, exchange_int if (iorb < 1) then print *, irp_here, ': iorb < 1' print *, iorb, mo_num stop -1 endif if (iorb > mo_num) then print *, irp_here, ': iorb > mo_num' print *, iorb, mo_num stop -1 endif ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) ASSERT (tmp(1) == elec_alpha_num) ASSERT (tmp(2) == elec_beta_num) k = shiftr(iorb-1,bit_kind_shift)+1 ASSERT (k >0) l = iorb - shiftl(k-1,bit_kind_shift)-1 ASSERT (l >= 0) key(k,ispin) = ibset(key(k,ispin),l) other_spin = iand(ispin,1)+1 hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb) ! Same spin do i=1,na htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i=1,nb htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) enddo na = na+1 end subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb) use bitmasks implicit none BEGIN_DOC ! Routine that computes one- and two-body energy corresponding ! ! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin' ! ! onto a determinant 'key'. ! ! in output, the determinant key is changed by the REMOVAL of that electron ! ! and the quantities hmono,htwoe are INCREMENTED END_DOC integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hmono,htwoe double precision :: direct_int, exchange_int integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k,l,i,jj,mm,j,m integer :: tmp(2) ASSERT (iorb > 0) ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) k = shiftr(iorb-1,bit_kind_shift)+1 ASSERT (k>0) l = iorb - shiftl(k-1,bit_kind_shift)-1 key(k,ispin) = ibclr(key(k,ispin),l) other_spin = iand(ispin,1)+1 !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) na = na-1 hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb) ! Same spin do i = 1, na htwoe = htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i = 1, nb htwoe = htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) enddo end ! --- subroutine diag_htc_bi_orth_2e_brute(Nint, key_i, hmono, htwoe, htot) BEGIN_DOC ! ! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS ! END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2) double precision, intent(out) :: hmono,htwoe,htot integer :: occ(Nint*bit_kind_size,2) integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk double precision :: get_mo_two_e_integral_tc_int integer(bit_kind) :: key_i_core(Nint,2) PROVIDE mo_bi_ortho_tc_two_e hmono = 0.d0 htwoe = 0.d0 htot = 0.d0 call bitstring_to_list_ab(key_i, occ, Ne, Nint) do ispin = 1, 2 do i = 1, Ne(ispin) ii = occ(i,ispin) hmono += mo_bi_ortho_tc_one_e(ii,ii) enddo enddo ! alpha/beta two-body ispin = 1 jspin = 2 do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1)) ii = occ(i,ispin) do j = 1, Ne(jspin) ! electron 2 jj = occ(j,jspin) htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii) enddo enddo ! alpha/alpha two-body do i = 1, Ne(ispin) ii = occ(i,ispin) do j = i+1, Ne(ispin) jj = occ(j,ispin) htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii) enddo enddo ! beta/beta two-body do i = 1, Ne(jspin) ii = occ(i,jspin) do j = i+1, Ne(jspin) jj = occ(j,jspin) htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii) enddo enddo htot = hmono + htwoe end ! --- subroutine diag_htc_bi_orth_3e_brute(Nint, key_i, hthree) BEGIN_DOC ! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2) double precision, intent(out) :: hthree integer :: occ(Nint*bit_kind_size,2) integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm integer(bit_kind) :: key_i_core(Nint,2) double precision :: direct_int, exchange_int, ref double precision, external :: sym_3_e_int_from_6_idx_tensor double precision, external :: three_e_diag_parrallel_spin PROVIDE mo_l_coef mo_r_coef if(core_tc_op) then do i = 1, Nint key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1)) key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2)) enddo call bitstring_to_list_ab(key_i_core, occ, Ne, Nint) else call bitstring_to_list_ab(key_i, occ, Ne, Nint) endif hthree = 0.d0 if((Ne(1)+Ne(2)) .ge. 3) then ! alpha/alpha/beta three-body do i = 1, Ne(1) ii = occ(i,1) do j = i+1, Ne(1) jj = occ(j,1) do m = 1, Ne(2) mm = occ(m,2) !direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor !exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor hthree += direct_int - exchange_int enddo enddo enddo ! beta/beta/alpha three-body do i = 1, Ne(2) ii = occ(i,2) do j = i+1, Ne(2) jj = occ(j,2) do m = 1, Ne(1) mm = occ(m,1) !direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor !exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) hthree += direct_int - exchange_int enddo enddo enddo ! alpha/alpha/alpha three-body do i = 1, Ne(1) ii = occ(i,1) ! 1 do j = i+1, Ne(1) jj = occ(j,1) ! 2 do m = j+1, Ne(1) mm = occ(m,1) ! 3 !hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors enddo enddo enddo ! beta/beta/beta three-body do i = 1, Ne(2) ii = occ(i,2) ! 1 do j = i+1, Ne(2) jj = occ(j,2) ! 2 do m = j+1, Ne(2) mm = occ(m,2) ! 3 !hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors enddo enddo enddo endif end BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)] BEGIN_DOC ! ! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS ! ! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form for same spin matrix elements ! ! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign ! END_DOC implicit none integer :: i, j, m double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin three_e_diag_parrallel_spin_prov = 0.d0 print *, ' Providing the three_e_diag_parrallel_spin_prov ...' integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs call wall_time(wall0) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,m,integral) & !$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov) !$OMP DO SCHEDULE (dynamic) do i = 1, mo_num do j = 1, mo_num do m = j, mo_num three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL do i = 1, mo_num do j = 1, mo_num do m = 1, j three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i) enddo enddo enddo call wall_time(wall1) print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0 END_PROVIDER BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC ! ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs ! ! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of for same spin matrix elements ! ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign ! END_DOC implicit none integer :: i, j, k, m double precision :: integral, wall1, wall0, three_e_single_parrallel_spin three_e_single_parrallel_spin_prov = 0.d0 print *, ' Providing the three_e_single_parrallel_spin_prov ...' integral = three_e_single_parrallel_spin(1,1,1,1) call wall_time(wall0) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,m,integral) & !$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov) !$OMP DO SCHEDULE (dynamic) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do m = 1, mo_num three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i) enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL call wall_time(wall1) print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0 END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC ! ! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs ! ! three_e_double_parrallel_spin_prov(m,l,j,k,i) = ::: notice that i is the RIGHT MO and k is the LEFT MO ! ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign END_DOC implicit none integer :: i, j, k, m, l double precision :: integral, wall1, wall0, three_e_double_parrallel_spin three_e_double_parrallel_spin_prov = 0.d0 print *, ' Providing the three_e_double_parrallel_spin_prov ...' call wall_time(wall0) integral = three_e_double_parrallel_spin(1,1,1,1,1) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,m,l,integral) & !$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov) !$OMP DO SCHEDULE (dynamic) do i = 1, mo_num do k = 1, mo_num do j = 1, mo_num do l = 1, mo_num do m = 1, mo_num three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i) enddo enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL call wall_time(wall1) print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0 END_PROVIDER