subroutine H_tc_s2_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze) BEGIN_DOC ! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC use bitmasks implicit none integer, intent(in) :: N_st,sze double precision, intent(in) :: u_0(sze,N_st) double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st) call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze) integer :: i,j,degree,ist double precision :: hmono, htwoe, hthree, htot do i = 1, N_det do j = 1, N_det call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) if(degree .ne. 3)cycle call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot) do ist = 1, N_st v_0(i,ist) += htot * u_0(j,ist) enddo enddo enddo end subroutine H_tc_s2_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze) BEGIN_DOC ! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC use bitmasks implicit none integer, intent(in) :: N_st,sze double precision, intent(in) :: u_0(sze,N_st) double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st) call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze) integer :: i,j,degree,ist double precision :: hmono, htwoe, hthree, htot !$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) & !$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) & !$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot) do i = 1, N_det do j = 1, N_det call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) if(degree .ne. 3)cycle call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot) do ist = 1, N_st v_0(i,ist) += htot * u_0(j,ist) enddo enddo enddo !$OMP END PARALLEL DO end ! --- subroutine H_tc_s2_dagger_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze) BEGIN_DOC ! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC use bitmasks implicit none integer, intent(in) :: N_st,sze double precision, intent(in) :: u_0(sze,N_st) double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st) call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze) integer :: i,j,degree,ist double precision :: hmono, htwoe, hthree, htot do i = 1, N_det do j = 1, N_det call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) if(degree .ne. 3)cycle call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot) do ist = 1, N_st v_0(i,ist) += htot * u_0(j,ist) enddo enddo enddo end subroutine H_tc_s2_dagger_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze) BEGIN_DOC ! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC use bitmasks implicit none integer, intent(in) :: N_st,sze double precision, intent(in) :: u_0(sze,N_st) double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st) call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze) integer :: i,j,degree,ist double precision :: hmono, htwoe, hthree, htot !$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) & !$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) & !$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot) do i = 1, N_det do j = 1, N_det call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) if(degree .ne. 3)cycle call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot) do ist = 1, N_st v_0(i,ist) += htot * u_0(j,ist) enddo enddo enddo !$OMP END PARALLEL DO end ! --- subroutine triple_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot) use bitmasks BEGIN_DOC ! for triple excitation !! !! WARNING !! ! ! Genuine triple excitations of the same spin are not yet implemented END_DOC implicit none integer(bit_kind), intent(in) :: key_j(N_int,2),key_i(N_int,2) integer, intent(in) :: Nint double precision, intent(out) :: hmono, htwoe, hthree, htot integer :: degree integer :: h1, p1, h2, p2, s1, s2, h3, p3, s3 integer :: holes_array(100,2),particles_array(100,2),degree_array(2) double precision :: phase,sym_3_e_int_from_6_idx_tensor hmono = 0.d0 htwoe = 0.d0 hthree = 0.d0 htot = 0.d0 call get_excitation_general(key_j, key_i, Nint,degree_array,holes_array, particles_array,phase) degree = degree_array(1) + degree_array(2) if(degree .ne. 3)return if(degree_array(1)==3.or.degree_array(2)==3)then if(degree_array(1) == 3)then h1 = holes_array(1,1) h2 = holes_array(2,1) h3 = holes_array(3,1) p1 = particles_array(1,1) p2 = particles_array(2,1) p3 = particles_array(3,1) else h1 = holes_array(1,2) h2 = holes_array(2,2) h3 = holes_array(3,2) p1 = particles_array(1,2) p2 = particles_array(2,2) p3 = particles_array(3,2) endif hthree = sym_3_e_int_from_6_idx_tensor(p3, p2, p1, h3, h2, h1) else if(degree_array(1) == 2.and.degree_array(2) == 1)then ! double alpha + single beta h1 = holes_array(1,1) h2 = holes_array(2,1) h3 = holes_array(1,2) p1 = particles_array(1,1) p2 = particles_array(2,1) p3 = particles_array(1,2) else if(degree_array(2) == 2 .and. degree_array(1) == 1)then ! double beta + single alpha h1 = holes_array(1,2) h2 = holes_array(2,2) h3 = holes_array(1,1) p1 = particles_array(1,2) p2 = particles_array(2,2) p3 = particles_array(1,1) else print*,'PB !!' stop endif hthree = three_body_ints_bi_ort(p3,p2,p1,h3,h2,h1) - three_body_ints_bi_ort(p3,p2,p1,h3,h1,h2) endif hthree *= phase htot = hthree end