! --- BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_old, (mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC ! Normal ordering of the three body interaction on the HF density END_DOC use bitmasks ! you need to include the bitmasks_module.f90 features implicit none integer :: i, h1, p1, h2, p2 integer :: hh1, hh2, pp1, pp2 integer :: Ne(2) double precision :: hthree_aba, hthree_aaa, hthree_aab double precision :: wall0, wall1 integer, allocatable :: occ(:,:) integer(bit_kind), allocatable :: key_i_core(:,:) print*,' Providing normal_two_body_bi_orth_old ...' call wall_time(wall0) PROVIDE N_int if(read_tc_norm_ord) then open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="read") read(11) normal_two_body_bi_orth_old close(11) else PROVIDE N_int allocate( occ(N_int*bit_kind_size,2) ) allocate( key_i_core(N_int,2) ) if(core_tc_op) then do i = 1, N_int key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1)) key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2)) enddo call bitstring_to_list_ab(key_i_core,occ,Ne,N_int) else call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int) endif normal_two_body_bi_orth_old = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) & !$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth_old) !$OMP DO SCHEDULE (static) do hh1 = 1, n_act_orb h1 = list_act(hh1) do pp1 = 1, n_act_orb p1 = list_act(pp1) do hh2 = 1, n_act_orb h2 = list_act(hh2) do pp2 = 1, n_act_orb p2 = list_act(pp2) ! all contributions from the 3-e terms to the double excitations ! s1:(h1-->p1), s2:(h2-->p2) from the HF reference determinant ! opposite spin double excitations : s1 /= s2 call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba) ! same spin double excitations : s1 == s2 if(h1h2 ! same spin double excitations with same spin contributions if(Ne(2).ge.3)then call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2 else hthree_aaa = 0.d0 endif else ! with opposite spin contributions call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab) if(Ne(2).ge.3)then ! same spin double excitations with same spin contributions call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa) else hthree_aaa = 0.d0 endif endif normal_two_body_bi_orth_old(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa) enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL deallocate( occ ) deallocate( key_i_core ) endif if(write_tc_norm_ord.and.mpi_master) then open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="write") call ezfio_set_work_empty(.False.) write(11) normal_two_body_bi_orth_old close(11) call ezfio_set_tc_keywords_io_tc_integ('Read') endif call wall_time(wall1) print*,' Wall time for normal_two_body_bi_orth_old ', wall1-wall0 END_PROVIDER ! --- subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree) use bitmasks ! you need to include the bitmasks_module.f90 features BEGIN_DOC ! give the contribution for a double excitation of opposite spin BUT averaged over spin ! ! it is the average of and ! ! because the orbitals h1,h2,p1,p2 are spatial orbitals and therefore can be of different spins END_DOC implicit none integer, intent(in) :: Nint, h1, h2, p1, p2 integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2) double precision, intent(out) :: hthree integer :: ii, i double precision :: int_direct, int_exc_12, int_exc_13, integral !!!! double alpha/beta hthree = 0.d0 do ii = 1, Ne(2) ! purely closed shell part i = occ(ii,2) call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral) int_direct = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral) int_exc_13 = -1.d0 * integral call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral) int_exc_12 = -1.d0 * integral hthree += 2.d0 * int_direct - 1.d0 * (int_exc_13 + int_exc_12) enddo do ii = Ne(2) + 1, Ne(1) ! purely open-shell part i = occ(ii,1) call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral) int_direct = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral) int_exc_13 = -1.d0 * integral call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral) int_exc_12 = -1.d0 * integral hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12) ! spin average ! hthree += 1.d0 * int_direct - 1.0d0 * (int_exc_13 + int_exc_12) enddo return end ! --- BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)] BEGIN_DOC ! Normal ordered two-body sector of the three-body terms for opposite spin double excitations END_DOC use bitmasks ! you need to include the bitmasks_module.f90 features implicit none integer :: h1, p1, h2, p2, i integer :: hh1, hh2, pp1, pp2 integer :: Ne(2) integer, allocatable :: occ(:,:) integer(bit_kind), allocatable :: key_i_core(:,:) double precision :: hthree PROVIDE N_int allocate( key_i_core(N_int,2) ) allocate( occ(N_int*bit_kind_size,2) ) if(core_tc_op) then do i = 1, N_int key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1)) key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2)) enddo call bitstring_to_list_ab(key_i_core,occ,Ne,N_int) else call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int) endif normal_two_body_bi_orth_ab = 0.d0 do hh1 = 1, n_act_orb h1 = list_act(hh1) do pp1 = 1, n_act_orb p1 = list_act(pp1) do hh2 = 1, n_act_orb h2 = list_act(hh2) do pp2 = 1, n_act_orb p2 = list_act(pp2) call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree) normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree enddo enddo enddo enddo deallocate( key_i_core ) deallocate( occ ) END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)] BEGIN_DOC ! Normal ordered two-body sector of the three-body terms for same spin double excitations END_DOC use bitmasks ! you need to include the bitmasks_module.f90 features implicit none integer :: i,ii,j,h1,p1,h2,p2 integer :: hh1,hh2,pp1,pp2 integer :: Ne(2) integer, allocatable :: occ(:,:) integer(bit_kind), allocatable :: key_i_core(:,:) double precision :: hthree_aab, hthree_aaa PROVIDE N_int allocate( key_i_core(N_int,2) ) allocate( occ(N_int*bit_kind_size,2) ) if(core_tc_op)then do i = 1, N_int key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1)) key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2)) enddo call bitstring_to_list_ab(key_i_core, occ, Ne, N_int) else call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int) endif normal_two_body_bi_orth_aa_bb = 0.d0 do hh1 = 1, n_act_orb h1 = list_act(hh1) do pp1 = 1 , n_act_orb p1 = list_act(pp1) do hh2 = 1, n_act_orb h2 = list_act(hh2) do pp2 = 1 , n_act_orb p2 = list_act(pp2) if(h1h2 if(Ne(2).ge.3)then call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2 else hthree_aaa = 0.d0 endif else call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab) if(Ne(2).ge.3)then call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa) else hthree_aaa = 0.d0 endif endif normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa enddo enddo enddo enddo deallocate( key_i_core ) deallocate( occ ) END_PROVIDER ! --- subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree) BEGIN_DOC ! pure same spin contribution to same spin double excitation s1=h1,p1, s2=h2,p2, with s1==s2 END_DOC use bitmasks ! you need to include the bitmasks_module.f90 features implicit none integer, intent(in) :: Nint, h1, h2, p1, p2 integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2) double precision, intent(out) :: hthree integer :: ii,i double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23 double precision :: integral,int_exc_l,int_exc_ll hthree = 0.d0 do ii = 1, Ne(2) ! purely closed shell part i = occ(ii,2) call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral) int_direct = -1.d0 * integral call give_integrals_3_body_bi_ort(p2, p1, i, i, h2, h1, integral) int_exc_l = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral) int_exc_ll= -1.d0 * integral call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral) int_exc_12= -1.d0 * integral call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral) int_exc_13= -1.d0 * integral call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral) int_exc_23= -1.d0 * integral hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23) enddo do ii = Ne(2)+1,Ne(1) ! purely open-shell part i = occ(ii,1) call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral) int_direct = -1.d0 * integral call give_integrals_3_body_bi_ort(p2, p1, i , i, h2, h1, integral) int_exc_l = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral) int_exc_ll = -1.d0 * integral call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral) int_exc_12 = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral) int_exc_13 = -1.d0 * integral call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral) int_exc_23 = -1.d0 * integral !hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23)) hthree += 0.5d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23)) enddo return end ! --- subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree) use bitmasks ! you need to include the bitmasks_module.f90 features implicit none integer, intent(in) :: Nint, h1, h2, p1, p2 integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2) double precision, intent(out) :: hthree integer :: ii, i double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23 double precision :: integral, int_exc_l, int_exc_ll hthree = 0.d0 do ii = 1, Ne(2) ! purely closed shell part i = occ(ii,2) call give_integrals_3_body_bi_ort(p2, p1, i, h2, h1, i, integral) int_direct = -1.d0 * integral call give_integrals_3_body_bi_ort(p1, p2, i, h2, h1, i, integral) int_exc_23= -1.d0 * integral hthree += 1.d0 * int_direct - int_exc_23 enddo return end ! ---