BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_final_grid, 3)] BEGIN_DOC ! ! int2_grad1_u12_ao(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2) ! ! where r1 = r(ipoint) ! END_DOC implicit none integer :: ipoint, i, j, m, jpoint double precision :: time0, time1 double precision :: x, y, z, r2 double precision :: dx, dy, dz double precision :: tmp_ct double precision :: tmp0, tmp1, tmp2 double precision :: tmp0_x, tmp0_y, tmp0_z double precision :: tmp1_x, tmp1_y, tmp1_z PROVIDE j2e_type PROVIDE j1e_type call wall_time(time0) print*, ' providing int2_grad1_u12_ao ...' if(read_tc_integ) then print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao' open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read") read(11) int2_grad1_u12_ao close(11) else if(tc_integ_type .eq. "analytic") then write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet.' stop elseif(tc_integ_type .eq. "numeric") then print *, ' Numerical integration over r1 and r2 will be performed' if(tc_save_mem) then integer :: n_blocks, n_rest, n_pass integer :: i_blocks, i_rest, i_pass, ii double precision :: mem, n_double double precision, allocatable :: tmp(:,:,:), xx(:) double precision, allocatable :: tmp_grad1_u12(:,:,:) PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra allocate(tmp(n_points_extra_final_grid,ao_num,ao_num), xx(n_points_extra_final_grid)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (j, i, jpoint) & !$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp) !$OMP DO COLLAPSE(2) do j = 1, ao_num do i = 1, ao_num do jpoint = 1, n_points_extra_final_grid tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL call total_memory(mem) mem = max(1.d0, qp_max_mem - mem) n_double = mem * 1.d8 n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid)) n_rest = int(mod(n_points_final_grid, n_blocks)) n_pass = int((n_points_final_grid - n_rest) / n_blocks) call write_int(6, n_pass, 'Number of passes') call write_int(6, n_blocks, 'Size of the blocks') call write_int(6, n_rest, 'Size of the last block') allocate(tmp_grad1_u12(n_points_extra_final_grid,n_blocks,3)) do i_pass = 1, n_pass ii = (i_pass-1)*n_blocks + 1 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i_blocks, ipoint) & !$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, xx, tmp_grad1_u12) !$OMP DO do i_blocks = 1, n_blocks ipoint = ii - 1 + i_blocks ! r1 call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1), tmp_grad1_u12(1,i_blocks,2), tmp_grad1_u12(1,i_blocks,3), xx(1)) enddo !$OMP END DO !$OMP END PARALLEL do m = 1, 3 call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num) enddo enddo deallocate(tmp_grad1_u12) if(n_rest .gt. 0) then allocate(tmp_grad1_u12(n_points_extra_final_grid,n_rest,3)) ii = n_pass*n_blocks + 1 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i_rest, ipoint) & !$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, xx, tmp_grad1_u12) !$OMP DO do i_rest = 1, n_rest ipoint = ii - 1 + i_rest ! r1 call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1), tmp_grad1_u12(1,i_rest,2), tmp_grad1_u12(1,i_rest,3), xx(1)) enddo !$OMP END DO !$OMP END PARALLEL do m = 1, 3 call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num) enddo deallocate(tmp_grad1_u12) endif deallocate(tmp,xx) else ! TODO combine 1shot & int2_grad1_u12_ao_num PROVIDE int2_grad1_u12_ao_num int2_grad1_u12_ao = int2_grad1_u12_ao_num !PROVIDE int2_grad1_u12_ao_num_1shot !int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot endif elseif(tc_integ_type .eq. "semi-analytic") then print*, ' Numerical integration over r1, with analytical integration over r2' ! --- if(j2e_type .eq. "None") then int2_grad1_u12_ao = 0.d0 elseif( (j2e_type .eq. "Mu") .and. & ( (env_type .eq. "None") .or. (env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss") ) ) then PROVIDE int2_grad1_u2e_ao int2_grad1_u12_ao = int2_grad1_u2e_ao else print *, ' Error in int2_grad1_u12_ao: Unknown Jastrow' stop endif ! j2e_type ! --- if(j1e_type .ne. "None") then PROVIDE elec_num PROVIDE ao_overlap PROVIDE j1e_gradx j1e_grady j1e_gradz tmp_ct = 1.d0 / (dble(elec_num) - 1.d0) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, tmp0_x, tmp0_y, tmp0_z) & !$OMP SHARED (ao_num, n_points_final_grid, tmp_ct, ao_overlap, & !$OMP j1e_gradx, j1e_grady, j1e_gradz, int2_grad1_u12_ao) !$OMP DO do ipoint = 1, n_points_final_grid tmp0_x = tmp_ct * j1e_gradx(ipoint) tmp0_y = tmp_ct * j1e_grady(ipoint) tmp0_z = tmp_ct * j1e_gradz(ipoint) do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_ao(i,j,ipoint,1) = int2_grad1_u12_ao(i,j,ipoint,1) + tmp0_x * ao_overlap(i,j) int2_grad1_u12_ao(i,j,ipoint,2) = int2_grad1_u12_ao(i,j,ipoint,2) + tmp0_y * ao_overlap(i,j) int2_grad1_u12_ao(i,j,ipoint,3) = int2_grad1_u12_ao(i,j,ipoint,3) + tmp0_z * ao_overlap(i,j) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL endif ! j1e_type ! --- else write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet' stop endif ! tc_integ_type endif ! read_tc_integ if(write_tc_integ .and. mpi_master) then print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao' open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write") call ezfio_set_work_empty(.False.) write(11) int2_grad1_u12_ao close(11) call ezfio_set_tc_keywords_io_tc_integ('Read') endif call wall_time(time1) print*, ' wall time for int2_grad1_u12_ao (min) =', (time1-time0)/60.d0 call print_memory_usage() END_PROVIDER ! --- BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_points_final_grid)] BEGIN_DOC ! ! int2_grad1_u12_square_ao = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2 ! END_DOC implicit none integer :: ipoint, i, j, m, jpoint double precision :: x, y, z, r2 double precision :: dx, dy, dz, dr2 double precision :: dx1, dy1, dz1, dx2, dy2, dz2, dr12 double precision :: tmp_ct, tmp_ct1, tmp_ct2 double precision :: tmp0, tmp1, tmp2 double precision :: tmp3, tmp4, tmp5, tmp6 double precision :: tmp0_x, tmp0_y, tmp0_z double precision :: tmp1_x, tmp1_y, tmp1_z double precision :: time0, time1 PROVIDE j2e_type PROVIDE j1e_type PROVIDE tc_integ_type call wall_time(time0) print*, ' providing int2_grad1_u12_square_ao ...' if(tc_integ_type .eq. "analytic") then write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet.' stop elseif(tc_integ_type .eq. "numeric") then print *, ' Numerical integration over r1 and r2 will be performed' if(tc_save_mem) then integer :: n_blocks, n_rest, n_pass integer :: i_blocks, i_rest, i_pass, ii double precision :: mem, n_double double precision, allocatable :: tmp(:,:,:), xx(:,:,:) double precision, allocatable :: tmp_grad1_u12_squared(:,:) PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra allocate(tmp(n_points_extra_final_grid,ao_num,ao_num)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (j, i, jpoint) & !$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp) !$OMP DO COLLAPSE(2) do j = 1, ao_num do i = 1, ao_num do jpoint = 1, n_points_extra_final_grid tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL call total_memory(mem) mem = max(1.d0, qp_max_mem - mem) n_double = mem * 1.d8 n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid)) n_rest = int(mod(n_points_final_grid, n_blocks)) n_pass = int((n_points_final_grid - n_rest) / n_blocks) call write_int(6, n_pass, 'Number of passes') call write_int(6, n_blocks, 'Size of the blocks') call write_int(6, n_rest, 'Size of the last block') allocate(tmp_grad1_u12_squared(n_points_extra_final_grid,n_blocks), xx(n_points_extra_final_grid,n_blocks,3)) do i_pass = 1, n_pass ii = (i_pass-1)*n_blocks + 1 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i_blocks, ipoint) & !$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, xx, final_grid_points, tmp_grad1_u12_squared) !$OMP DO do i_blocks = 1, n_blocks ipoint = ii - 1 + i_blocks ! r1 call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, xx(1,i_blocks,1), xx(1,i_blocks,2), xx(1,i_blocks,3), tmp_grad1_u12_squared(1,i_blocks)) enddo !$OMP END DO !$OMP END PARALLEL call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, -0.5d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12_squared(1,1), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_square_ao(1,1,ii), ao_num*ao_num) enddo deallocate(tmp_grad1_u12_squared, xx) if(n_rest .gt. 0) then ii = n_pass*n_blocks + 1 allocate(tmp_grad1_u12_squared(n_points_extra_final_grid,n_rest), xx(n_points_extra_final_grid,n_rest,3)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i_rest, ipoint) & !$OMP SHARED (n_rest, n_points_extra_final_grid, ii, xx, final_grid_points, tmp_grad1_u12_squared) !$OMP DO do i_rest = 1, n_rest ipoint = ii - 1 + i_rest ! r1 call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, xx(1,i_rest,1), xx(1,i_rest,2), xx(1,i_rest,3), tmp_grad1_u12_squared(1,i_rest)) enddo !$OMP END DO !$OMP END PARALLEL call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, -0.5d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12_squared(1,1), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_square_ao(1,1,ii), ao_num*ao_num) deallocate(tmp_grad1_u12_squared, xx) endif deallocate(tmp) else ! TODO combine 1shot & int2_grad1_u12_square_ao_num PROVIDE int2_grad1_u12_square_ao_num int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num !PROVIDE int2_grad1_u12_square_ao_num_1shot !int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num_1shot endif elseif(tc_integ_type .eq. "semi-analytic") then print*, ' Numerical integration over r1, with analytical integration over r2' ! --- if(j2e_type .eq. "None") then int2_grad1_u12_square_ao = 0.d0 elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) then PROVIDE int2_grad1u2_grad2u2 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j, ipoint) & !$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, int2_grad1u2_grad2u2) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = -0.5d0 * int2_grad1u2_grad2u2(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL FREE int2_grad1u2_grad2u2 elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Prod_Gauss")) then PROVIDE mu_erf PROVIDE env_val env_grad if(use_ipp) then ! the term u12_grad1_u12_env_grad1_env is added directly for performance PROVIDE u12sq_envsq grad12_j12 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j, ipoint) & !$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL FREE u12sq_envsq grad12_j12 else PROVIDE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j, ipoint) & !$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12, u12_grad1_u12_env_grad1_env) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + u12_grad1_u12_env_grad1_env(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL FREE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12 endif ! use_ipp elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Sum_Gauss")) then PROVIDE mu_erf PROVIDE env_type env_val env_grad if(use_ipp) then ! do not free int2_u2_env2 here PROVIDE int2_u2_env2 PROVIDE int2_grad1u2_grad2u2_env2 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j, ipoint, tmp0_x, tmp0_y, tmp0_z, tmp1, tmp2) & !$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, & !$OMP env_val, env_grad, int2_u2_env2, int2_grad1u2_grad2u2_env2) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid tmp0_x = env_grad(1,ipoint) tmp0_y = env_grad(2,ipoint) tmp0_z = env_grad(3,ipoint) tmp1 = -0.5d0 * (tmp0_x * tmp0_x + tmp0_y * tmp0_y + tmp0_z * tmp0_z) tmp2 = 0.5d0 * env_val(ipoint) * env_val(ipoint) do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = tmp1 * int2_u2_env2(i,j,ipoint) + tmp2 * int2_grad1u2_grad2u2_env2(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL FREE int2_grad1u2_grad2u2_env2 else PROVIDE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j, ipoint) & !$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12, u12_grad1_u12_env_grad1_env) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + u12_grad1_u12_env_grad1_env(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL FREE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12 endif ! use_ipp else print *, ' Error in int2_grad1_u12_square_ao: Unknown Jastrow' stop endif ! j2e_type ! --- if(j1e_type .ne. "None") then PROVIDE elec_num PROVIDE ao_overlap PROVIDE j1e_gradx j1e_grady j1e_gradz PROVIDE int2_grad1_u2e_ao tmp_ct1 = -1.0d0 / (dble(elec_num) - 1.d0) tmp_ct2 = -0.5d0 / ((dble(elec_num) - 1.d0) * (dble(elec_num) - 1.d0)) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, dx, dy, dz, r2, & !$OMP tmp0, tmp0_x, tmp0_y, tmp0_z) & !$OMP SHARED (ao_num, n_points_final_grid, & !$OMP tmp_ct1, tmp_ct2, ao_overlap, & !$OMP j1e_gradx, j1e_grady, j1e_gradz, & !$OMP int2_grad1_u2e_ao, int2_grad1_u12_square_ao) !$OMP DO do ipoint = 1, n_points_final_grid dx = j1e_gradx(ipoint) dy = j1e_grady(ipoint) dz = j1e_gradz(ipoint) r2 = dx*dx + dy*dy + dz*dz tmp0 = tmp_ct2 * r2 tmp0_x = tmp_ct1 * dx tmp0_y = tmp_ct1 * dy tmp0_z = tmp_ct1 * dz do j = 1, ao_num do i = 1, ao_num int2_grad1_u12_square_ao(i,j,ipoint) = int2_grad1_u12_square_ao(i,j,ipoint) & + tmp0 * ao_overlap(i,j) & + tmp0_x * int2_grad1_u2e_ao(i,j,ipoint,1) & + tmp0_y * int2_grad1_u2e_ao(i,j,ipoint,2) & + tmp0_z * int2_grad1_u2e_ao(i,j,ipoint,3) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL endif ! j1e_type ! --- else write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet' stop endif ! tc_integ_type call wall_time(time1) print*, ' wall time for int2_grad1_u12_square_ao (min) = ', (time1-time0) / 60.d0 call print_memory_usage() END_PROVIDER ! ---