double precision function exp_dl(x,n) implicit none double precision, intent(in) :: x integer , intent(in) :: n integer :: i exp_dl = 1.d0 do i = 1, n exp_dl += fact_inv(i) * x**dble(i) enddo end subroutine exp_dl_rout(x,n, array) implicit none double precision, intent(in) :: x integer , intent(in) :: n double precision, intent(out):: array(0:n) integer :: i double precision :: accu accu = 1.d0 array(0) = 1.d0 do i = 1, n accu += fact_inv(i) * x**dble(i) array(i) = accu enddo end subroutine exp_dl_ovlp_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,n_taylor,array_ints,integral_taylor,exponent_exp) BEGIN_DOC ! Computes the following integrals : ! ! .. math:: ! ! array(i) = \int dr EXP{exponent_exp * [exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2)] (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! ! ! and gives back the Taylor expansion of the exponential in integral_taylor END_DOC implicit none double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x) integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D double precision, intent(in) :: delta ! gaussian in r-r_D double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" double precision, intent(in) :: exponent_exp integer, intent(in) :: power_A(3),power_B(3) double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor integer :: i,dim1 double precision :: delta_exp,gam_exp,ovlp_stg_gauss_int_phi_ij double precision :: overlap_x,overlap_y,overlap_z,overlap dim1=100 call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1) array_ints(0) = overlap integral_taylor = array_ints(0) do i = 1, n_taylor delta_exp = dble(i) * delta gam_exp = dble(i) * gam array_ints(i) = ovlp_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta) integral_taylor += (-zeta*exponent_exp)**dble(i) * fact_inv(i) * array_ints(i) enddo end subroutine exp_dl_erf_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu,n_taylor,array_ints,integral_taylor) BEGIN_DOC ! Computes the following integrals : ! ! .. math:: ! ! array(i) = \int dr exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! ! ! and gives back the Taylor expansion of the exponential in integral_taylor END_DOC implicit none integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x) double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D double precision, intent(in) :: delta ! gaussian in r-r_D double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" integer, intent(in) :: power_A(3),power_B(3) double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor integer :: i,dim1 double precision :: delta_exp,gam_exp,NAI_pol_mult_erf,erf_mu_stg_gauss_int_phi_ij dim1=100 array_ints(0) = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_max_integrals,mu) integral_taylor = array_ints(0) do i = 1, n_taylor delta_exp = dble(i) * delta gam_exp = dble(i) * gam array_ints(i) = erf_mu_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu) integral_taylor += (-zeta)**dble(i) * fact_inv(i) * array_ints(i) enddo end