double precision function ovlp_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta) BEGIN_DOC ! Computes the following integral : ! ! .. math:: ! ! \int dr exp(-gam (r - D)) exp(-delta * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! END_DOC implicit none double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D double precision, intent(in) :: delta ! gaussian in r-r_D double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" integer, intent(in) :: power_A(3),power_B(3) integer :: i double precision :: integral,gama_gauss double precision, allocatable :: expos_slat(:) allocate(expos_slat(n_max_fit_slat)) double precision :: overlap_gauss_r12 ovlp_stg_gauss_int_phi_ij = 0.d0 call expo_fit_slater_gam(gam,expos_slat) do i = 1, n_max_fit_slat gama_gauss = expos_slat(i)+delta integral = overlap_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta) ovlp_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral enddo end double precision function erf_mu_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu) BEGIN_DOC ! Computes the following integral : ! ! .. math:: ! ! \int dr exp(-gam(r - D)-delta(r - D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! END_DOC implicit none include 'constants.include.F' double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D double precision, intent(in) :: delta ! gaussian in r-r_D double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" integer, intent(in) :: power_A(3),power_B(3) integer :: i double precision :: NAI_pol_mult_erf_gauss_r12 double precision :: integral,gama_gauss double precision, allocatable :: expos_slat(:) allocate(expos_slat(n_max_fit_slat)) erf_mu_stg_gauss_int_phi_ij = 0.d0 call expo_fit_slater_gam(gam,expos_slat) do i = 1, n_max_fit_slat gama_gauss = expos_slat(i) + delta integral = NAI_pol_mult_erf_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu) erf_mu_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral enddo end double precision function overlap_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta) BEGIN_DOC ! Computes the following integral : ! ! .. math:: ! ! \int dr exp(-gam (r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! END_DOC implicit none double precision, intent(in) :: D_center(3), gam ! pure Slater "D" double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" integer, intent(in) :: power_A(3),power_B(3) integer :: i double precision :: expos_slat(n_max_fit_slat),integral,delta double precision :: overlap_gauss_r12 overlap_stg_gauss = 0.d0 call expo_fit_slater_gam(gam,expos_slat) do i = 1, n_max_fit_slat delta = expos_slat(i) integral = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta) overlap_stg_gauss += coef_fit_slat_gauss(i) * integral enddo end double precision function erf_mu_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu) BEGIN_DOC ! Computes the following integral : ! ! .. math:: ! ! \int dr exp(-gam(r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 ) ! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! END_DOC implicit none include 'constants.include.F' double precision, intent(in) :: D_center(3), gam ! pure Slater "D" double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B" integer, intent(in) :: power_A(3),power_B(3) integer :: i double precision :: expos_slat(n_max_fit_slat),integral,delta double precision :: NAI_pol_mult_erf_gauss_r12 erf_mu_stg_gauss = 0.d0 call expo_fit_slater_gam(gam,expos_slat) do i = 1, n_max_fit_slat delta = expos_slat(i) integral = NAI_pol_mult_erf_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu) erf_mu_stg_gauss += coef_fit_slat_gauss(i) * integral enddo end