10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:53:43 +01:00

minor modifs

This commit is contained in:
eginer 2024-05-21 13:01:48 +02:00
commit fca30b9479
206 changed files with 8331 additions and 10182 deletions

32
.readthedocs.yaml Normal file
View File

@ -0,0 +1,32 @@
# .readthedocs.yaml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Set the OS, Python version and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.12"
# You can also specify other tool versions:
# nodejs: "19"
# rust: "1.64"
# golang: "1.19"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Optionally build your docs in additional formats such as PDF and ePub
# formats:
# - pdf
# - epub
# Optional but recommended, declare the Python requirements required
# to build your documentation
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
install:
- requirements: docs/requirements.txt

View File

@ -2,4 +2,4 @@ default: build.ninja
bash -c "source quantum_package.rc ; ninja"
build.ninja:
@bash -c ' echo '' ; echo xxxxxxxxxxxxxxxxxx ; echo "The QP is not configured yet. Please run the ./configure command" ; echo xxxxxxxxxxxxxxxxxx ; echo '' ; ./configure --help' | more
@bash -c ' echo '' ; echo xxxxxxxxxxxxxxxxxx ; echo "QP is not configured yet. Please run the ./configure command" ; echo xxxxxxxxxxxxxxxxxx ; echo '' ; ./configure --help' | more

View File

@ -2,6 +2,9 @@
executables for Quantum Package. Please use ifort as long as you can, and
consider switching to gfortran in the long term.
---
# Quantum Package 2.2
<!--- img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250" --->

View File

@ -227,8 +227,8 @@ def write_ezfio(res, filename):
shell_index += [nshell_tot] * len(b.prim)
shell_num = len(ang_mom)
assert(shell_index[0] = 1)
assert(shell_index[-1] = shell_num)
assert(shell_index[0] == 1)
assert(shell_index[-1] == shell_num)
# ~#~#~#~#~ #
# W r i t e #

View File

@ -97,7 +97,7 @@ end
def get_repositories():
l_result = [f for f in os.listdir(QP_PLUGINS) \
if f not in [".gitignore", "local"] ]
if f not in [".gitignore", "local", "README.rst"] ]
return sorted(l_result)

View File

@ -83,6 +83,7 @@ def main(arguments):
elif charge <= 118: n_frozen += 43
elif arguments["--small"]:
for charge in ezfio.nuclei_nucl_charge:
if charge <= 4: pass
elif charge <= 18: n_frozen += 1
elif charge <= 36: n_frozen += 5

10
configure vendored
View File

@ -9,7 +9,7 @@ echo "QP_ROOT="$QP_ROOT
unset CC
unset CCXX
TREXIO_VERSION=2.3.2
TREXIO_VERSION=2.4.2
# Force GCC instead of ICC for dependencies
export CC=gcc
@ -219,7 +219,7 @@ EOF
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} --without-hdf5 CFLAGS='-g'
make -j 8 && make -j 8 check && make -j 8 install
(make -j 8 || make) && make check && make -j 8 install
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
mv ninja "\${QP_ROOT}"/bin/
EOF
@ -233,7 +233,7 @@ EOF
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} CFLAGS="-g"
make -j 8 && make -j 8 check && make -j 8 install
(make -j 8 || make) && make check && make -j 8 install
EOF
elif [[ ${PACKAGE} = qmckl ]] ; then
@ -245,7 +245,7 @@ EOF
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc CFLAGS='-g'
make && make -j 4 check && make install
(make -j 8 || make) && make check && make install
EOF
elif [[ ${PACKAGE} = qmckl-intel ]] ; then
@ -257,7 +257,7 @@ EOF
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc --with-icc --with-ifort CFLAGS='-g'
make && make -j 4 check && make install
(make -j 8 || make) && make check && make install
EOF

View File

@ -20,5 +20,5 @@ Then, to reference for "myref" just type :ref:`myref`
or use `IRPF90`_ and define
_IRPF90: http://irpf90.ups-tlse.fr
somewhere
* References of published results with QP should be added into docs/source/research.bib in bibtex
* References of published results with QP should be added into docs/source/references.bib in bibtex
format

View File

@ -1,2 +1,2 @@
sphinxcontrib-bibtex==0.4.0
sphinx-rtd-theme==0.4.2
sphinxcontrib-bibtex
sphinx-rtd-theme

View File

@ -2,13 +2,13 @@
Contributors
============
The |qp| is maintained by
The |qp| is maintained by
Anthony Scemama
Anthony Scemama
| `Laboratoire de Chimie et Physique Quantiques <http://www.lcpq.ups-tlse.fr/>`_,
| CNRS - Université Paul Sabatier
| Toulouse, France
| scemama@irsamc.ups-tlse.fr
| scemama@irsamc.ups-tlse.fr
Emmanuel Giner
@ -18,27 +18,27 @@ Emmanuel Giner
| emmanuel.giner@lct.jussieu.fr
Thomas Applencourt
| `Argonne Leadership Computing Facility <http://www.alcf.anl.gov/>`_
| Argonne, USA
| tapplencourt@anl.gov
The following people have contributed to this project (by alphabetical order):
* Abdallah Ammar
* Thomas Applencourt
* Roland Assaraf
* Pierrette Barbaresco
* Anouar Benali
* Chandler Bennet
* Michel Caffarel
* Vijay Gopal Chilkuri
* Yann Damour
* Grégoire David
* Amanda Dumi
* Anthony Ferté
* Madeline Galbraith
* Madeline Galbraith
* Yann Garniron
* Kevin Gasperich
* Fabris Kossoski
* Pierre-François Loos
* Jean-Paul Malrieu
* Antoine Marie
* Barry Moore
* Julien Paquier
* Barthélémy Pradines
@ -46,9 +46,11 @@ The following people have contributed to this project (by alphabetical order):
* Nicolas Renon
* Lorenzo Tenti
* Julien Toulouse
* Diata Traoré
* Mikaël Véril
If you have contributed and don't appear in this list, please modify this file
If you have contributed and don't appear in this list, please modify the file
`$QP_ROOT/docs/source/appendix/contributors.rst`
and submit a pull request.

View File

@ -0,0 +1,8 @@
References
==========
.. bibliography:: /references.bib
:style: unsrt
:all:

View File

@ -1,8 +0,0 @@
Some research made with the |qp|
================================
.. bibliography:: /research.bib
:style: unsrt
:all:

View File

@ -29,7 +29,8 @@ def generate_modules(abs_module, entities):
rst += ["", "EZFIO parameters", "----------------", ""]
config_file = configparser.ConfigParser()
with open(EZFIO, 'r') as f:
config_file.readfp(f)
# config_file.readfp(f)
config_file.read_file(f)
for section in config_file.sections():
doc = config_file.get(section, "doc")
doc = " " + doc.replace("\n", "\n\n ")+"\n"

View File

@ -70,7 +70,7 @@ master_doc = 'index'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = "en"
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
@ -208,3 +208,5 @@ epub_exclude_files = ['search.html']
# -- Extension configuration -------------------------------------------------
bibtex_bibfiles = [ "references.bib" ]

View File

@ -39,9 +39,10 @@
programmers_guide/programming
programmers_guide/ezfio
programmers_guide/plugins
programmers_guide/plugins_tuto_intro
programmers_guide/plugins_tuto_I
programmers_guide/new_ks
programmers_guide/index
programmers_guide/plugins
.. toctree::
@ -52,5 +53,6 @@
appendix/benchmarks
appendix/license
appendix/contributors
appendix/references

View File

@ -11,25 +11,25 @@ The |qp|
What it is
==========
The |qp| is an open-source **programming environment** for quantum chemistry.
It has been built from the **developper** point of view in order to help
the design of new quantum chemistry methods,
especially for `wave function theory <https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods>`_ (|WFT|).
The |qp| is an open-source **programming environment** for quantum chemistry.
It has been built from the **developper** point of view in order to help
the design of new quantum chemistry methods,
especially for `wave function theory <https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods>`_ (|WFT|).
From the **user** point of view, the |qp| proposes a stand-alone path
to use optimized selected configuration interaction |sCI| based on the
|CIPSI| algorithm that can efficiently reach near-full configuration interaction
|FCI| quality for relatively large systems (see for instance :cite:`Caffarel_2016,Caffarel_2016.2,Loos_2018,Scemama_2018,Dash_2018,Garniron_2017.2,Loos_2018,Garniron_2018,Giner2018Oct`).
To have a simple example of how to use the |CIPSI| program, go to the `users_guide/quickstart`.
From the **user** point of view, the |qp| proposes a stand-alone path
to use optimized selected configuration interaction |sCI| based on the
|CIPSI| algorithm that can efficiently reach near-full configuration interaction
|FCI| quality for relatively large systems.
To have a simple example of how to use the |CIPSI| program, go to the `users_guide/quickstart`.
The main goal is the development of selected configuration interaction |sCI|
methods and multi-reference perturbation theory |MRPT| in the
determinant-driven paradigm. It also contains the very basics of Kohn-Sham `density functional theory <https://en.wikipedia.org/wiki/Density_functional_theory>`_ |KS-DFT| and `range-separated hybrids <https://aip.scitation.org/doi/10.1063/1.1383587>`_ |RSH|.
determinant-driven paradigm. It also contains the very basics of Kohn-Sham `density functional theory <https://en.wikipedia.org/wiki/Density_functional_theory>`_ |KS-DFT| and `range-separated hybrids <https://aip.scitation.org/doi/10.1063/1.1383587>`_ |RSH|.
The determinant-driven framework allows the programmer to include any arbitrary set of
determinants in the variational space, and thus gives a complete freedom in the methodological
development. The basic ingredients of |RSH| together with those of the |WFT| framework available in the |qp| library allows one to easily develop range-separated DFT (|RSDFT|) approaches (see for instance the plugins at `<https://gitlab.com/eginer/qp_plugins_eginer>`_).
The determinant-driven framework allows the programmer to include any arbitrary set of
determinants in the variational space, and thus gives a complete freedom in the methodological
development. The basic ingredients of |RSH| together with those of the |WFT| framework available in the |qp| library allows one to easily develop range-separated DFT (|RSDFT|) approaches (see for instance the plugins at `<https://gitlab.com/eginer/qp_plugins_eginer>`_).
All the programs are developed with the `IRPF90`_ code generator, which considerably simplifies
the collaborative development, and the development of new features.
@ -40,20 +40,20 @@ What it is not
==============
The |qp| is *not* a general purpose quantum chemistry program.
First of all, it is a *library* to develop new theories and algorithms in quantum chemistry.
First of all, it is a *library* to develop new theories and algorithms in quantum chemistry.
Therefore, beside the use of the programs of the core modules, the users of the |qp| should develop their own programs.
The |qp| has been designed specifically for |sCI|, so all the
algorithms which are programmed are not adapted to run SCF or DFT calculations
on thousands of atoms. Currently, the systems targeted have less than 600
molecular orbitals. This limit is due to the memory bottleneck induced by the storring of the two-electron integrals (see ``mo_two_e_integrals`` and ``ao_two_e_integrals``).
molecular orbitals. This limit is due to the memory bottleneck induced by the storring of the two-electron integrals (see ``mo_two_e_integrals`` and ``ao_two_e_integrals``).
The |qp| is *not* a massive production code. For conventional
methods such as Hartree-Fock, CISD or MP2, the users are recommended to use the
existing standard production codes which are designed to make these methods run
fast. Again, the role of the |qp| is to make life simple for the
developer. Once a new method is developed and tested, the developer is encouraged
to consider re-expressing it with an integral-driven formulation, and to
to consider re-expressing it with an integral-driven formulation, and to
implement the new method in open-source production codes, such as `NWChem`_
or |GAMESS|.

View File

@ -1,182 +0,0 @@
@article{Bytautas_2009,
doi = {10.1016/j.chemphys.2008.11.021},
url = {https://doi.org/10.1016%2Fj.chemphys.2008.11.021},
year = 2009,
month = {feb},
publisher = {Elsevier {BV}},
volume = {356},
number = {1-3},
pages = {64--75},
author = {Laimutis Bytautas and Klaus Ruedenberg},
title = {A priori identification of configurational deadwood},
journal = {Chemical Physics}
}
@article{Anderson_2018,
doi = {10.1016/j.comptc.2018.08.017},
url = {https://doi.org/10.1016%2Fj.comptc.2018.08.017},
year = 2018,
month = {oct},
publisher = {Elsevier {BV}},
volume = {1142},
pages = {66--77},
author = {James S.M. Anderson and Farnaz Heidar-Zadeh and Paul W. Ayers},
title = {Breaking the curse of dimension for the electronic Schrodinger equation with functional analysis},
journal = {Computational and Theoretical Chemistry}
}
@article{Bender_1969,
doi = {10.1103/physrev.183.23},
url = {http://dx.doi.org/10.1103/PhysRev.183.23},
year = 1969,
month = {jul},
publisher = {American Physical Society ({APS})},
volume = {183},
number = {1},
pages = {23--30},
author = {Charles F. Bender and Ernest R. Davidson},
title = {Studies in Configuration Interaction: The First-Row Diatomic Hydrides},
journal = {Phys. Rev.}
}
@article{Whitten_1969,
doi = {10.1063/1.1671985},
url = {https://doi.org/10.1063%2F1.1671985},
year = 1969,
month = {dec},
publisher = {{AIP} Publishing},
volume = {51},
number = {12},
pages = {5584--5596},
author = {J. L. Whitten and Melvyn Hackmeyer},
title = {Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The {CI} Formulation and Studies of Formaldehyde},
journal = {The Journal of Chemical Physics}
}
@article{Huron_1973,
doi = {10.1063/1.1679199},
url = {https://doi.org/10.1063%2F1.1679199},
year = 1973,
month = {jun},
publisher = {{AIP} Publishing},
volume = {58},
number = {12},
pages = {5745--5759},
author = {B. Huron and J. P. Malrieu and P. Rancurel},
title = {Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Knowles_1984,
author="Peter J. Knowles and Nicholas C Handy",
year=1984,
journal={Chem. Phys. Letters},
volume=111,
pages="315--321",
title="A New Determinant-based Full Configuration Interaction Method"
}
@article{Scemama_2013,
author = {{Scemama}, A. and {Giner}, E.},
title = "{An efficient implementation of Slater-Condon rules}",
journal = {ArXiv [physics.comp-ph]},
pages = {1311.6244},
year = 2013,
month = nov,
url = {https://arxiv.org/abs/1311.6244}
}
@article{Sharma_2017,
doi = {10.1021/acs.jctc.6b01028},
url = {https://doi.org/10.1021%2Facs.jctc.6b01028},
year = 2017,
month = {mar},
publisher = {American Chemical Society ({ACS})},
volume = {13},
number = {4},
pages = {1595--1604},
author = {Sandeep Sharma and Adam A. Holmes and Guillaume Jeanmairet and Ali Alavi and C. J. Umrigar},
title = {Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory},
journal = {Journal of Chemical Theory and Computation}
}
@article{Holmes_2016,
doi = {10.1021/acs.jctc.6b00407},
url = {https://doi.org/10.1021%2Facs.jctc.6b00407},
year = 2016,
month = {aug},
publisher = {American Chemical Society ({ACS})},
volume = {12},
number = {8},
pages = {3674--3680},
author = {Adam A. Holmes and Norm M. Tubman and C. J. Umrigar},
title = {Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling},
journal = {Journal of Chemical Theory and Computation}
}
@article{Evangelisti_1983,
doi = {10.1016/0301-0104(83)85011-3},
url = {https://doi.org/10.1016%2F0301-0104%2883%2985011-3},
year = 1983,
month = {feb},
publisher = {Elsevier {BV}},
volume = {75},
number = {1},
pages = {91--102},
author = {Stefano Evangelisti and Jean-Pierre Daudey and Jean-Paul Malrieu},
title = {Convergence of an improved {CIPSI} algorithm},
journal = {Chemical Physics}
}
@article{Booth_2009,
doi = {10.1063/1.3193710},
url = {https://doi.org/10.1063%2F1.3193710},
year = 2009,
publisher = {{AIP} Publishing},
volume = {131},
number = {5},
pages = {054106},
author = {George H. Booth and Alex J. W. Thom and Ali Alavi},
title = {Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space},
journal = {The Journal of Chemical Physics}
}
@article{Booth_2010,
doi = {10.1063/1.3407895},
url = {https://doi.org/10.1063%2F1.3407895},
year = 2010,
month = {may},
publisher = {{AIP} Publishing},
volume = {132},
number = {17},
pages = {174104},
author = {George H. Booth and Ali Alavi},
title = {Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: A study of ionization potentials},
journal = {The Journal of Chemical Physics}
}
@article{Cleland_2010,
doi = {10.1063/1.3302277},
url = {https://doi.org/10.1063%2F1.3302277},
year = 2010,
month = {jan},
publisher = {{AIP} Publishing},
volume = {132},
number = {4},
pages = {041103},
author = {Deidre Cleland and George H. Booth and Ali Alavi},
title = {Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017b,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}

View File

@ -99,6 +99,71 @@ EZFIO parameters
Default: 1.e-20
.. option:: my_grid_becke
if True, the number of angular and radial grid points are read from EZFIO
Default: False
.. option:: my_n_pt_r_grid
Number of radial grid points given from input
Default: 300
.. option:: my_n_pt_a_grid
Number of angular grid points given from input. Warning, this number cannot be any integer. See file list_angular_grid
Default: 1202
.. option:: n_points_extra_final_grid
Total number of extra_grid points
.. option:: extra_grid_type_sgn
Type of extra_grid used for the Becke's numerical extra_grid. Can be, by increasing accuracy: [ 0 | 1 | 2 | 3 ]
Default: 0
.. option:: thresh_extra_grid
threshold on the weight of a given extra_grid point
Default: 1.e-20
.. option:: my_extra_grid_becke
if True, the number of angular and radial extra_grid points are read from EZFIO
Default: False
.. option:: my_n_pt_r_extra_grid
Number of radial extra_grid points given from input
Default: 300
.. option:: my_n_pt_a_extra_grid
Number of angular extra_grid points given from input. Warning, this number cannot be any integer. See file list_angular_extra_grid
Default: 1202
.. option:: rad_grid_type
method used to sample the radial space. Possible choices are [KNOWLES | GILL]
Default: KNOWLES
.. option:: extra_rad_grid_type
method used to sample the radial space. Possible choices are [KNOWLES | GILL]
Default: KNOWLES
Providers
---------
@ -122,6 +187,8 @@ Providers
:columns: 3
* :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom`
@ -156,6 +223,66 @@ Providers
* :c:data:`grid_points_per_atom`
.. c:var:: angular_quadrature_points_extra
File : :file:`becke_numerical_grid/angular_extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: angular_quadrature_points_extra (n_points_extra_integration_angular,3)
double precision, allocatable :: weights_angular_points_extra (n_points_extra_integration_angular)
weights and grid points_extra for the integration on the angular variables on
the unit sphere centered on (0,0,0)
According to the LEBEDEV scheme
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: dr_radial_extra_integral
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_radial (n_points_extra_radial_grid)
double precision :: dr_radial_extra_integral
points_extra in [0,1] to map the radial integral [0,\infty]
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: dr_radial_integral
@ -223,6 +350,11 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array`
@ -241,11 +373,60 @@ Providers
* :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: final_grid_points_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: final_grid_points_per_atom
@ -272,12 +453,28 @@ Providers
* :c:data:`nucl_num`
* :c:data:`thresh_grid`
Needed by:
.. c:var:: final_grid_points_transp
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_transp (n_points_final_grid,3)
Transposed final_grid_points
Needs:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
* :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
.. c:var:: final_weight_at_r
@ -304,6 +501,8 @@ Providers
* :c:data:`m_knowles`
* :c:data:`n_points_radial_grid`
* :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`rad_grid_type`
* :c:data:`weight_at_r`
Needed by:
@ -317,6 +516,43 @@ Providers
* :c:data:`n_pts_per_atom`
.. c:var:: final_weight_at_r_extra
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: final_weight_at_r_extra (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
Needs:
.. hlist::
:columns: 3
* :c:data:`alpha_knowles`
* :c:data:`angular_quadrature_points_extra`
* :c:data:`extra_rad_grid_type`
* :c:data:`grid_atomic_number`
* :c:data:`grid_points_extra_radial`
* :c:data:`m_knowles`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`weight_at_r_extra`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_grid_points_extra`
* :c:data:`n_points_extra_final_grid`
.. c:var:: final_weight_at_r_vector
@ -355,6 +591,11 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array`
@ -373,11 +614,60 @@ Providers
* :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: final_weight_at_r_vector_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: final_weight_at_r_vector_per_atom
@ -404,12 +694,6 @@ Providers
* :c:data:`nucl_num`
* :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: grid_atomic_number
@ -438,9 +722,77 @@ Providers
:columns: 3
* :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom`
.. c:var:: grid_points_extra_per_atom
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_per_atom (3,n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
x,y,z coordinates of grid points_extra used for integration in 3d space
Needs:
.. hlist::
:columns: 3
* :c:data:`alpha_knowles`
* :c:data:`angular_quadrature_points_extra`
* :c:data:`extra_rad_grid_type`
* :c:data:`grid_atomic_number`
* :c:data:`grid_points_extra_radial`
* :c:data:`m_knowles`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_coord`
* :c:data:`nucl_num`
* :c:data:`r_gill`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_grid_points_extra`
* :c:data:`weight_at_r_extra`
.. c:var:: grid_points_extra_radial
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_radial (n_points_extra_radial_grid)
double precision :: dr_radial_extra_integral
points_extra in [0,1] to map the radial integral [0,\infty]
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: grid_points_per_atom
@ -466,6 +818,8 @@ Providers
* :c:data:`n_points_radial_grid`
* :c:data:`nucl_coord`
* :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`rad_grid_type`
Needed by:
@ -544,6 +898,11 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array`
@ -562,11 +921,101 @@ Providers
* :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: index_final_points_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: index_final_points_extra_reverse
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: index_final_points_per_atom
@ -593,12 +1042,6 @@ Providers
* :c:data:`nucl_num`
* :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: index_final_points_per_atom_reverse
@ -627,12 +1070,6 @@ Providers
* :c:data:`nucl_num`
* :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: index_final_points_reverse
@ -673,6 +1110,11 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array`
@ -691,8 +1133,16 @@ Providers
* :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
@ -714,9 +1164,148 @@ Providers
:columns: 3
* :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom`
.. c:var:: n_points_extra_final_grid
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
integer :: n_points_extra_final_grid
Number of points_extra which are non zero
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
* :c:data:`aos_in_r_array_extra_transp`
* :c:data:`final_grid_points_extra`
.. c:var:: n_points_extra_grid_per_atom
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_grid_per_atom
Number of grid points_extra per atom
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
.. c:var:: n_points_extra_integration_angular
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_radial_grid
integer :: n_points_extra_integration_angular
n_points_extra_radial_grid = number of radial grid points_extra per atom
n_points_extra_integration_angular = number of angular grid points_extra per atom
These numbers are automatically set by setting the grid_type_sgn parameter
Needs:
.. hlist::
:columns: 3
* :c:data:`extra_grid_type_sgn`
* :c:data:`my_extra_grid_becke`
* :c:data:`my_n_pt_a_extra_grid`
* :c:data:`my_n_pt_r_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`angular_quadrature_points_extra`
* :c:data:`final_grid_points_extra`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_extra_radial`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_grid_per_atom`
* :c:data:`weight_at_r_extra`
.. c:var:: n_points_extra_radial_grid
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_radial_grid
integer :: n_points_extra_integration_angular
n_points_extra_radial_grid = number of radial grid points_extra per atom
n_points_extra_integration_angular = number of angular grid points_extra per atom
These numbers are automatically set by setting the grid_type_sgn parameter
Needs:
.. hlist::
:columns: 3
* :c:data:`extra_grid_type_sgn`
* :c:data:`my_extra_grid_becke`
* :c:data:`my_n_pt_a_extra_grid`
* :c:data:`my_n_pt_r_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`angular_quadrature_points_extra`
* :c:data:`final_grid_points_extra`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_extra_radial`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_grid_per_atom`
* :c:data:`weight_at_r_extra`
.. c:var:: n_points_final_grid
@ -744,9 +1333,17 @@ Providers
.. hlist::
:columns: 3
* :c:data:`act_mos_in_r_array`
* :c:data:`alpha_dens_kin_in_r`
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array`
* :c:data:`aos_grad_in_r_array_transp`
* :c:data:`aos_grad_in_r_array_transp_3`
* :c:data:`aos_grad_in_r_array_transp_bis`
* :c:data:`aos_in_r_array`
* :c:data:`aos_in_r_array_transp`
* :c:data:`aos_lapl_in_r_array`
@ -759,6 +1356,14 @@ Providers
* :c:data:`aos_vxc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_pbe_w`
* :c:data:`aos_vxc_alpha_sr_pbe_w`
* :c:data:`basis_mos_in_r_array`
* :c:data:`core_density`
* :c:data:`core_inact_act_mos_grad_in_r_array`
* :c:data:`core_inact_act_mos_in_r_array`
* :c:data:`core_inact_act_v_kl_contracted`
* :c:data:`core_mos_in_r_array`
* :c:data:`effective_alpha_dm`
* :c:data:`effective_spin_dm`
* :c:data:`elec_beta_num_grid_becke`
* :c:data:`energy_c_lda`
* :c:data:`energy_c_sr_lda`
@ -766,14 +1371,39 @@ Providers
* :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_cas_ab_old`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points`
* :c:data:`final_grid_points_transp`
* :c:data:`full_occ_2_rdm_cntrctd`
* :c:data:`full_occ_2_rdm_cntrctd_trans`
* :c:data:`full_occ_v_kl_cntrctd`
* :c:data:`grad_total_cas_on_top_density`
* :c:data:`inact_density`
* :c:data:`inact_mos_in_r_array`
* :c:data:`kinetic_density_generalized`
* :c:data:`mo_grad_ints`
* :c:data:`mos_grad_in_r_array`
* :c:data:`mos_grad_in_r_array_tranp`
* :c:data:`mos_grad_in_r_array_transp_3`
* :c:data:`mos_grad_in_r_array_transp_bis`
* :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp`
* :c:data:`mos_in_r_array_transp`
* :c:data:`mos_lapl_in_r_array`
* :c:data:`mos_lapl_in_r_array_tranp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_of_r_hf`
* :c:data:`mu_of_r_prov`
* :c:data:`mu_of_r_psi_cas`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_act_density_alpha`
* :c:data:`one_e_act_density_beta`
* :c:data:`one_e_cas_total_density`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`pot_grad_x_alpha_ao_pbe`
* :c:data:`pot_grad_x_alpha_ao_sr_pbe`
@ -789,6 +1419,8 @@ Providers
* :c:data:`potential_x_alpha_ao_sr_lda`
* :c:data:`potential_xc_alpha_ao_lda`
* :c:data:`potential_xc_alpha_ao_sr_lda`
* :c:data:`total_cas_on_top_density`
* :c:data:`virt_mos_in_r_array`
.. c:var:: n_points_grid_per_atom
@ -928,7 +1560,6 @@ Providers
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
* :c:data:`final_grid_points_per_atom`
@ -960,10 +1591,31 @@ Providers
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
* :c:data:`final_grid_points_per_atom`
.. c:var:: r_gill
File : :file:`becke_numerical_grid/grid_becke.irp.f`
.. code:: fortran
double precision :: r_gill
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom`
.. c:var:: weight_at_r
@ -1001,6 +1653,43 @@ Providers
* :c:data:`final_weight_at_r`
.. c:var:: weight_at_r_extra
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: weight_at_r_extra (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
Weight function at grid points_extra : w_n(r) according to the equation (22)
of Becke original paper (JCP, 88, 1988)
The "n" discrete variable represents the nucleis which in this array is
represented by the last dimension and the points_extra are labelled by the
other dimensions.
Needs:
.. hlist::
:columns: 3
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_coord_transp`
* :c:data:`nucl_dist_inv`
* :c:data:`nucl_num`
* :c:data:`slater_bragg_type_inter_distance_ua`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
.. c:var:: weights_angular_points
@ -1032,6 +1721,37 @@ Providers
* :c:data:`grid_points_per_atom`
.. c:var:: weights_angular_points_extra
File : :file:`becke_numerical_grid/angular_extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: angular_quadrature_points_extra (n_points_extra_integration_angular,3)
double precision, allocatable :: weights_angular_points_extra (n_points_extra_integration_angular)
weights and grid points_extra for the integration on the angular variables on
the unit sphere centered on (0,0,0)
According to the LEBEDEV scheme
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
Subroutines / functions
-----------------------
@ -1043,7 +1763,7 @@ Subroutines / functions
.. code:: fortran
double precision function cell_function_becke(r,atom_number)
double precision function cell_function_becke(r, atom_number)
atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
@ -1067,7 +1787,7 @@ Subroutines / functions
.. code:: fortran
double precision function derivative_knowles_function(alpha,m,x)
double precision function derivative_knowles_function(alpha, m, x)
Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
@ -1118,7 +1838,7 @@ Subroutines / functions
.. code:: fortran
double precision function knowles_function(alpha,m,x)
double precision function knowles_function(alpha, m, x)
Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :

View File

@ -21,7 +21,7 @@ The :c:func:`run_cipsi` subroutine iteratively:
* If :option:`determinants s2_eig` is |true|, it adds all the necessary
determinants to allow the eigenstates of |H| to be eigenstates of |S^2|
* Diagonalizes |H| in the enlarged internal space
* Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017.2`
* Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017b`
or deterministically, depending on :option:`perturbation do_pt2`
* Extrapolates the variational energy by fitting
:math:`E=E_\text{FCI} - \alpha\, E_\text{PT2}`

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/local/tuto_plugins/tuto_I/tuto_I.rst

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/README.rst

847
docs/source/references.bib Normal file
View File

@ -0,0 +1,847 @@
@article{Ammar_2023,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Transcorrelated selected configuration interaction in a bi-orthonormal basis and with a cheap three-body correlation factor}},
journal = {J. Chem. Phys.},
volume = {159},
number = {11},
year = {2023},
month = sep,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0163831}
}
@article{Ammar_2023.2,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Biorthonormal Orbital Optimization with a Cheap Core-Electron-Free Three-Body Correlation Factor for Quantum Monte Carlo and Transcorrelation}},
journal = {J. Chem. Theory Comput.},
volume = {19},
number = {15},
pages = {4883--4896},
year = {2023},
month = aug,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.3c00257}
}
@article{Damour_2023,
author = {Damour, Yann and Quintero-Monsebaiz, Ra{\'{u}}l and Caffarel, Michel and Jacquemin, Denis and Kossoski, F{\'{a}}bris and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois},
title = {{Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality}},
journal = {J. Chem. Theory Comput.},
volume = {19},
number = {1},
pages = {221--234},
year = {2023},
month = jan,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.2c01111}
}
@article{Ammar_2022,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Extension of selected configuration interaction for transcorrelated methods}},
journal = {J. Chem. Phys.},
volume = {157},
number = {13},
year = {2022},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0115524}
}
@article{Ammar_2022.2,
author = {Ammar, Abdallah and Giner, Emmanuel and Scemama, Anthony},
title = {{Optimization of Large Determinant Expansions in Quantum Monte Carlo}},
journal = {J. Chem. Theory Comput.},
volume = {18},
number = {9},
pages = {5325--5336},
year = {2022},
month = sep,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.2c00556}
}
@article{Monino_2022,
author = {Monino, Enzo and Boggio-Pasqua, Martial and Scemama, Anthony and Jacquemin, Denis and Loos, Pierre-Fran{\c{c}}ois},
title = {{Reference Energies for Cyclobutadiene: Automerization and Excited States}},
journal = {J. Phys. Chem. A},
volume = {126},
number = {28},
pages = {4664--4679},
year = {2022},
month = jul,
issn = {1089-5639},
publisher = {American Chemical Society},
doi = {10.1021/acs.jpca.2c02480}
}
@article{Cuzzocrea_2022,
author = {Cuzzocrea, Alice and Moroni, Saverio and Scemama, Anthony and Filippi, Claudia},
title = {{Reference Excitation Energies of Increasingly Large Molecules: A QMC Study of Cyanine Dyes}},
journal = {J. Chem. Theory Comput.},
volume = {18},
number = {2},
pages = {1089--1095},
year = {2022},
month = feb,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c01162}
}
@article{Damour_2021,
author = {Damour, Yann and V{\'{e}}ril, Micka{\"{e}}l and Kossoski, F{\'{a}}bris and Caffarel, Michel and Jacquemin, Denis and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois},
title = {{Accurate full configuration interaction correlation energy estimates for five- and six-membered rings}},
journal = {J. Chem. Phys.},
volume = {155},
number = {13},
year = {2021},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0065314}
}
@article{Veril_2021,
author = {V{\'{e}}ril, Micka{\"{e}}l and Scemama, Anthony and Caffarel, Michel and Lipparini, Filippo and Boggio-Pasqua, Martial and Jacquemin, Denis and Loos, Pierre-Fran{\c{c}}ois},
title = {{QUESTDB: A database of highly accurate excitation energies for the electronic structure community}},
journal = {WIREs Comput. Mol. Sci.},
volume = {11},
number = {5},
pages = {e1517},
year = {2021},
month = sep,
issn = {1759-0876},
publisher = {John Wiley {\&} Sons, Ltd},
doi = {10.1002/wcms.1517}
}
@article{Kossoski_2021,
author = {Kossoski, F{\'{a}}bris and Marie, Antoine and Scemama, Anthony and Caffarel, Michel and Loos, Pierre-Fran{\c{c}}ois},
title = {{Excited States from State-Specific Orbital-Optimized Pair Coupled Cluster}},
journal = {J. Chem. Theory Comput.},
volume = {17},
number = {8},
pages = {4756--4768},
year = {2021},
month = aug,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c00348}
}
@article{Dash_2021,
author = {Dash, Monika and Moroni, Saverio and Filippi, Claudia and Scemama, Anthony},
title = {{Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene}},
journal = {J. Chem. Theory Comput.},
volume = {17},
number = {6},
pages = {3426--3434},
year = {2021},
month = jun,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c00212}
}
@article{Loos_2020,
author = {Loos, Pierre-Fran{\c{c}}ois and Lipparini, Filippo and Boggio-Pasqua, Martial and Scemama, Anthony and Jacquemin, Denis},
title = {{A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {3},
pages = {1711--1741},
year = {2020},
month = mar,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b01216}
}
@article{Loos_2020.2,
author = {Loos, Pierre-Fran{\c{c}}ois and Pradines, Barth{\'{e}}l{\'{e}}my and Scemama, Anthony and Giner, Emmanuel and Toulouse, Julien},
title = {{Density-Based Basis-Set Incompleteness Correction for GW Methods}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {2},
pages = {1018--1028},
year = {2020},
month = feb,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b01067}
}
@article{Loos_2020.3,
author = {Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Jacquemin, Denis},
title = {{The Quest for Highly Accurate Excitation Energies: A Computational Perspective}},
journal = {J. Phys. Chem. Lett.},
volume = {11},
number = {6},
pages = {2374--2383},
year = {2020},
month = mar,
publisher = {American Chemical Society},
doi = {10.1021/acs.jpclett.0c00014}
}
@article{Giner_2020,
author = {Giner, Emmanuel and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois and Toulouse, Julien},
title = {{A basis-set error correction based on density-functional theory for strongly correlated molecular systems}},
journal = {J. Chem. Phys.},
volume = {152},
number = {17},
year = {2020},
month = may,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0002892}
}
@article{Loos_2020.4,
author = {Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Boggio-Pasqua, Martial and Jacquemin, Denis},
title = {{Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {6},
pages = {3720--3736},
year = {2020},
month = jun,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.0c00227}
}
@article{Benali_2020,
author = {Benali, Anouar and Gasperich, Kevin and Jordan, Kenneth D. and Applencourt, Thomas and Luo, Ye and Bennett, M. Chandler and Krogel, Jaron T. and Shulenburger, Luke and Kent, Paul R. C. and Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Caffarel, Michel},
title = {{Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids{\textemdash}A case study in diamond}},
journal = {J. Chem. Phys.},
volume = {153},
number = {18},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0021036}
}
@article{Scemama_2020,
author = {Scemama, Anthony and Giner, Emmanuel and Benali, Anouar and Loos, Pierre-Fran{\c{c}}ois},
title = {{Taming the fixed-node error in diffusion Monte Carlo via range separation}},
journal = {J. Chem. Phys.},
volume = {153},
number = {17},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0026324}
}
@article{Loos_2020.5,
author = {Loos, Pierre-Fran{\c{c}}ois and Damour, Yann and Scemama, Anthony},
title = {{The performance of CIPSI on the ground state electronic energy of benzene}},
journal = {J. Chem. Phys.},
volume = {153},
number = {17},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0027617}
}
@article{Loos_2019,
author = {Loos, Pierre-Fran{\c{c}}ois and Pradines, Barth{\'{e}}l{\'{e}}my and Scemama, Anthony and Toulouse, Julien and Giner, Emmanuel},
title = {{A Density-Based Basis-Set Correction for Wave Function Theory}},
journal = {J. Phys. Chem. Lett.},
volume = {10},
number = {11},
pages = {2931--2937},
year = {2019},
month = jun,
publisher = {American Chemical Society},
doi = {10.1021/acs.jpclett.9b01176}
}
@article{Dash_2019,
author = {Dash, Monika and Feldt, Jonas and Moroni, Saverio and Scemama, Anthony and Filippi, Claudia},
title = {{Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries}},
journal = {J. Chem. Theory Comput.},
volume = {15},
number = {9},
pages = {4896--4906},
year = {2019},
month = sep,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b00476}
}
@article{Burton2019May,
author = {Burton, Hugh G. A. and Thom, Alex J. W.},
title = {{A General Approach for Multireference Ground and Excited States using Non-Orthogonal Configuration Interaction}},
journal = {arXiv},
year = {2019},
month = {May},
eprint = {1905.02626},
url = {https://arxiv.org/abs/1905.02626}
}
@article{Giner_2019,
author = {Giner, Emmanuel and Scemama, Anthony and Toulouse, Julien and Loos, Pierre-Fran{\c{c}}ois},
title = {{Chemically accurate excitation energies with small basis sets}},
journal = {J. Chem. Phys.},
volume = {151},
number = {14},
year = {2019},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/1.5122976}
}
@article{Garniron_2019,
doi = {10.1021/acs.jctc.9b00176},
url = {https://doi.org/10.1021%2Facs.jctc.9b00176},
year = 2019,
month = {may},
publisher = {American Chemical Society ({ACS})},
author = {Yann Garniron and Thomas Applencourt and Kevin Gasperich and Anouar Benali and Anthony Ferte and Julien Paquier and Bartélémy Pradines and Roland Assaraf and Peter Reinhardt and Julien Toulouse and Pierrette Barbaresco and Nicolas Renon and Gregoire David and Jean-Paul Malrieu and Mickael Veril and Michel Caffarel and Pierre-Francois Loos and Emmanuel Giner and Anthony Scemama},
title = {Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2019,
doi = {10.1016/j.rechem.2019.100002},
url = {https://doi.org/10.1016%2Fj.rechem.2019.100002},
year = 2019,
month = {may},
publisher = {Elsevier {BV}},
pages = {100002},
author = {Anthony Scemama and Michel Caffarel and Anouar Benali and Denis Jacquemin and Pierre-Fran{\c{c}}ois Loos},
title = {Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo},
journal = {Results in Chemistry}
}
@article{Applencourt2018Dec,
author = {Applencourt, Thomas and Gasperich, Kevin and Scemama, Anthony},
title = {{Spin adaptation with determinant-based selected configuration interaction}},
journal = {arXiv},
year = {2018},
month = {Dec},
eprint = {1812.06902},
url = {https://arxiv.org/abs/1812.06902}
}
@article{Loos2019Mar,
author = {Loos, Pierre-Fran\c{c}ois and Boggio-Pasqua, Martial and Scemama, Anthony and Caffarel, Michel and Jacquemin, Denis},
title = {{Reference Energies for Double Excitations}},
journal = {J. Chem. Theory Comput.},
volume = {15},
number = {3},
pages = {1939--1956},
year = {2019},
month = {Mar},
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.8b01205}
}
@article{PinedaFlores2019Feb,
author = {Pineda Flores, Sergio and Neuscamman, Eric},
title = {{Excited State Specific Multi-Slater Jastrow Wave Functions}},
journal = {J. Phys. Chem. A},
volume = {123},
number = {8},
pages = {1487--1497},
year = {2019},
month = {Feb},
issn = {1089-5639},
publisher = {American Chemical Society},
doi = {10.1021/acs.jpca.8b10671}
}
@phdthesis{yann_garniron_2019_2558127,
author = {Yann Garniron},
title = {{Development and parallel implementation of
selected configuration interaction methods}},
school = {Université de Toulouse},
year = 2019,
month = feb,
doi = {10.5281/zenodo.2558127},
url = {https://doi.org/10.5281/zenodo.2558127}
}
@article{Giner_2018,
doi = {10.1063/1.5052714},
url = {https://doi.org/10.1063%2F1.5052714},
year = 2018,
month = {nov},
publisher = {{AIP} Publishing},
volume = {149},
number = {19},
pages = {194301},
author = {Emmanuel Giner and Barth{\'{e}}lemy Pradines and Anthony Fert{\'{e}} and Roland Assaraf and Andreas Savin and Julien Toulouse},
title = {Curing basis-set convergence of wave-function theory using density-functional theory: A systematically improvable approach},
journal = {The Journal of Chemical Physics}
}
@article{Giner2018Oct,
author = {Giner, Emmanuel and Tew, David and Garniron, Yann and Alavi, Ali},
title = {{Interplay between electronic correlation and metal-ligand delocalization in the spectroscopy of transition metal compounds: case study on a series of planar Cu2+complexes.}},
journal = {J. Chem. Theory Comput.},
year = {2018},
month = {Oct},
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.8b00591}
}
@article{Loos_2018,
doi = {10.1021/acs.jctc.8b00406},
url = {https://doi.org/10.1021%2Facs.jctc.8b00406},
year = 2018,
month = {jul},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {8},
pages = {4360--4379},
author = {Pierre-Fran{\c{c}}ois Loos and Anthony Scemama and Aymeric Blondel and Yann Garniron and Michel Caffarel and Denis Jacquemin},
title = {A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2018,
doi = {10.1021/acs.jctc.7b01250},
url = {https://doi.org/10.1021%2Facs.jctc.7b01250},
year = 2018,
month = {jan},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {3},
pages = {1395--1402},
author = {Anthony Scemama and Yann Garniron and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Deterministic Construction of Nodal Surfaces within Quantum Monte Carlo: The Case of {FeS}},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2018.2,
doi = {10.1063/1.5041327},
url = {https://doi.org/10.1063%2F1.5041327},
year = 2018,
month = {jul},
publisher = {{AIP} Publishing},
volume = {149},
number = {3},
pages = {034108},
author = {Anthony Scemama and Anouar Benali and Denis Jacquemin and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes},
journal = {The Journal of Chemical Physics}
}
@article{Dash_2018,
doi = {10.1021/acs.jctc.8b00393},
url = {https://doi.org/10.1021%2Facs.jctc.8b00393},
year = 2018,
month = {jun},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {8},
pages = {4176--4182},
author = {Monika Dash and Saverio Moroni and Anthony Scemama and Claudia Filippi},
title = {Perturbatively Selected Configuration-Interaction Wave Functions for Efficient Geometry Optimization in Quantum Monte Carlo},
journal = {Journal of Chemical Theory and Computation}
}
@article{Garniron_2018,
doi = {10.1063/1.5044503},
url = {https://doi.org/10.1063%2F1.5044503},
year = 2018,
month = {aug},
publisher = {{AIP} Publishing},
volume = {149},
number = {6},
pages = {064103},
author = {Yann Garniron and Anthony Scemama and Emmanuel Giner and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Selected configuration interaction dressed by perturbation},
journal = {The Journal of Chemical Physics}
}
@article{Giner_2017,
doi = {10.1063/1.4984616},
url = {https://doi.org/10.1063%2F1.4984616},
year = 2017,
month = {jun},
publisher = {{AIP} Publishing},
volume = {146},
number = {22},
pages = {224108},
author = {Emmanuel Giner and Celestino Angeli and Yann Garniron and Anthony Scemama and Jean-Paul Malrieu},
title = {A Jeziorski-Monkhorst fully uncontracted multi-reference perturbative treatment. I. Principles, second-order versions, and tests on ground state potential energy curves},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017,
doi = {10.1063/1.4980034},
url = {https://doi.org/10.1063%2F1.4980034},
year = 2017,
month = {apr},
publisher = {{AIP} Publishing},
volume = {146},
number = {15},
pages = {154107},
author = {Yann Garniron and Emmanuel Giner and Jean-Paul Malrieu and Anthony Scemama},
title = {Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017.2,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}
@article{Giner_2017.2,
doi = {10.1016/j.comptc.2017.03.001},
url = {https://doi.org/10.1016%2Fj.comptc.2017.03.001},
year = 2017,
month = {sep},
publisher = {Elsevier {BV}},
volume = {1116},
pages = {134--140},
author = {E. Giner and C. Angeli and A. Scemama and J.-P. Malrieu},
title = {Orthogonal Valence Bond Hamiltonians incorporating dynamical correlation effects},
journal = {Computational and Theoretical Chemistry}
}
@article{Giner_2017.3,
author = {Giner, Emmanuel and Tenti, Lorenzo and Angeli, Celestino and Ferré, Nicolas},
title = {Computation of the Isotropic Hyperfine Coupling Constant: Efficiency and Insights from a New Approach Based on Wave Function Theory},
journal = {Journal of Chemical Theory and Computation},
volume = {13},
number = {2},
pages = {475-487},
year = {2017},
doi = {10.1021/acs.jctc.6b00827},
note ={PMID: 28094936},
URL = {https://doi.org/10.1021/acs.jctc.6b00827},
eprint = {https://doi.org/10.1021/acs.jctc.6b00827}
}
@article{Giner2016Mar,
author = {Giner, Emmanuel and Angeli, Celestino},
title = {{Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal}},
journal = {J. Chem. Phys.},
volume = {144},
number = {10},
pages = {104104},
year = {2016},
month = {Mar},
issn = {0021-9606},
publisher = {American Institute of Physics},
doi = {10.1063/1.4943187}
}
@article{Giner_2016,
doi = {10.1063/1.4940781},
url = {https://doi.org/10.1063%2F1.4940781},
year = 2016,
month = {feb},
publisher = {{AIP} Publishing},
volume = {144},
number = {6},
pages = {064101},
author = {E. Giner and G. David and A. Scemama and J. P. Malrieu},
title = {A simple approach to the state-specific {MR}-{CC} using the intermediate Hamiltonian formalism},
journal = {The Journal of Chemical Physics}
}
@article{Caffarel_2016,
doi = {10.1063/1.4947093},
url = {https://doi.org/10.1063%2F1.4947093},
year = 2016,
month = {apr},
publisher = {{AIP} Publishing},
volume = {144},
number = {15},
pages = {151103},
author = {Michel Caffarel and Thomas Applencourt and Emmanuel Giner and Anthony Scemama},
title = {Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule},
journal = {The Journal of Chemical Physics}
}
@incollection{Caffarel_2016.2,
doi = {10.1021/bk-2016-1234.ch002},
url = {https://doi.org/10.1021%2Fbk-2016-1234.ch002},
year = 2016,
month = {jan},
publisher = {American Chemical Society},
pages = {15--46},
author = {Michel Caffarel and Thomas Applencourt and Emmanuel Giner and Anthony Scemama},
title = {Using CIPSI Nodes in Diffusion Monte Carlo},
booktitle = {{ACS} Symposium Series}
}
@article{Giner_2015,
doi = {10.1063/1.4905528},
url = {https://doi.org/10.1063%2F1.4905528},
year = 2015,
month = {jan},
publisher = {{AIP} Publishing},
volume = {142},
number = {4},
pages = {044115},
author = {Emmanuel Giner and Anthony Scemama and Michel Caffarel},
title = {Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Giner2015Sep,
author = {Giner, Emmanuel and Angeli, Celestino},
title = {{Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4]2{-} molecules: Some insights from wave function theory}},
journal = {J. Chem. Phys.},
volume = {143},
number = {12},
pages = {124305},
year = {2015},
month = {Sep},
issn = {0021-9606},
publisher = {American Institute of Physics},
doi = {10.1063/1.4931639}
}
@article{Scemama_2014,
doi = {10.1063/1.4903985},
url = {https://doi.org/10.1063%2F1.4903985},
year = 2014,
month = {dec},
publisher = {{AIP} Publishing},
volume = {141},
number = {24},
pages = {244110},
author = {A. Scemama and T. Applencourt and E. Giner and M. Caffarel},
title = {Accurate nonrelativistic ground-state energies of 3d transition metal atoms},
journal = {The Journal of Chemical Physics}
}
@article{Caffarel_2014,
doi = {10.1021/ct5004252},
url = {https://doi.org/10.1021%2Fct5004252},
year = 2014,
month = {nov},
publisher = {American Chemical Society ({ACS})},
volume = {10},
number = {12},
pages = {5286--5296},
author = {Michel Caffarel and Emmanuel Giner and Anthony Scemama and Alejandro Ram{\'{\i}}rez-Sol{\'{\i}}s},
title = {Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule},
journal = {Journal of Chemical Theory and Computation}
}
@article{Giner_2013,
doi = {10.1139/cjc-2013-0017},
url = {https://doi.org/10.1139%2Fcjc-2013-0017},
year = 2013,
month = {sep},
publisher = {Canadian Science Publishing},
volume = {91},
number = {9},
pages = {879--885},
author = {Emmanuel Giner and Anthony Scemama and Michel Caffarel},
title = {Using perturbatively selected configuration interaction in quantum Monte Carlo calculations},
journal = {Canadian Journal of Chemistry}
}
@article{Scemama2013Nov,
author = {Scemama, Anthony and Giner, Emmanuel},
title = {{An efficient implementation of Slater-Condon rules}},
journal = {arXiv},
year = {2013},
month = {Nov},
eprint = {1311.6244},
url = {https://arxiv.org/abs/1311.6244}
}
@article{Bytautas_2009,
doi = {10.1016/j.chemphys.2008.11.021},
url = {https://doi.org/10.1016%2Fj.chemphys.2008.11.021},
year = 2009,
month = {feb},
publisher = {Elsevier {BV}},
volume = {356},
number = {1-3},
pages = {64--75},
author = {Laimutis Bytautas and Klaus Ruedenberg},
title = {A priori identification of configurational deadwood},
journal = {Chemical Physics}
}
@article{Anderson_2018,
doi = {10.1016/j.comptc.2018.08.017},
url = {https://doi.org/10.1016%2Fj.comptc.2018.08.017},
year = 2018,
month = {oct},
publisher = {Elsevier {BV}},
volume = {1142},
pages = {66--77},
author = {James S.M. Anderson and Farnaz Heidar-Zadeh and Paul W. Ayers},
title = {Breaking the curse of dimension for the electronic Schrodinger equation with functional analysis},
journal = {Computational and Theoretical Chemistry}
}
@article{Bender_1969,
doi = {10.1103/physrev.183.23},
url = {http://dx.doi.org/10.1103/PhysRev.183.23},
year = 1969,
month = {jul},
publisher = {American Physical Society ({APS})},
volume = {183},
number = {1},
pages = {23--30},
author = {Charles F. Bender and Ernest R. Davidson},
title = {Studies in Configuration Interaction: The First-Row Diatomic Hydrides},
journal = {Phys. Rev.}
}
@article{Whitten_1969,
doi = {10.1063/1.1671985},
url = {https://doi.org/10.1063%2F1.1671985},
year = 1969,
month = {dec},
publisher = {{AIP} Publishing},
volume = {51},
number = {12},
pages = {5584--5596},
author = {J. L. Whitten and Melvyn Hackmeyer},
title = {Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The {CI} Formulation and Studies of Formaldehyde},
journal = {The Journal of Chemical Physics}
}
@article{Huron_1973,
doi = {10.1063/1.1679199},
url = {https://doi.org/10.1063%2F1.1679199},
year = 1973,
month = {jun},
publisher = {{AIP} Publishing},
volume = {58},
number = {12},
pages = {5745--5759},
author = {B. Huron and J. P. Malrieu and P. Rancurel},
title = {Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Knowles_1984,
author="Peter J. Knowles and Nicholas C Handy",
year=1984,
journal={Chem. Phys. Letters},
volume=111,
pages="315--321",
title="A New Determinant-based Full Configuration Interaction Method"
}
@article{Sharma_2017,
doi = {10.1021/acs.jctc.6b01028},
url = {https://doi.org/10.1021%2Facs.jctc.6b01028},
year = 2017,
month = {mar},
publisher = {American Chemical Society ({ACS})},
volume = {13},
number = {4},
pages = {1595--1604},
author = {Sandeep Sharma and Adam A. Holmes and Guillaume Jeanmairet and Ali Alavi and C. J. Umrigar},
title = {Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory},
journal = {Journal of Chemical Theory and Computation}
}
@article{Holmes_2016,
doi = {10.1021/acs.jctc.6b00407},
url = {https://doi.org/10.1021%2Facs.jctc.6b00407},
year = 2016,
month = {aug},
publisher = {American Chemical Society ({ACS})},
volume = {12},
number = {8},
pages = {3674--3680},
author = {Adam A. Holmes and Norm M. Tubman and C. J. Umrigar},
title = {Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling},
journal = {Journal of Chemical Theory and Computation}
}
@article{Evangelisti_1983,
doi = {10.1016/0301-0104(83)85011-3},
url = {https://doi.org/10.1016%2F0301-0104%2883%2985011-3},
year = 1983,
month = {feb},
publisher = {Elsevier {BV}},
volume = {75},
number = {1},
pages = {91--102},
author = {Stefano Evangelisti and Jean-Pierre Daudey and Jean-Paul Malrieu},
title = {Convergence of an improved {CIPSI} algorithm},
journal = {Chemical Physics}
}
@article{Booth_2009,
doi = {10.1063/1.3193710},
url = {https://doi.org/10.1063%2F1.3193710},
year = 2009,
publisher = {{AIP} Publishing},
volume = {131},
number = {5},
pages = {054106},
author = {George H. Booth and Alex J. W. Thom and Ali Alavi},
title = {Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space},
journal = {The Journal of Chemical Physics}
}
@article{Booth_2010,
doi = {10.1063/1.3407895},
url = {https://doi.org/10.1063%2F1.3407895},
year = 2010,
month = {may},
publisher = {{AIP} Publishing},
volume = {132},
number = {17},
pages = {174104},
author = {George H. Booth and Ali Alavi},
title = {Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: A study of ionization potentials},
journal = {The Journal of Chemical Physics}
}
@article{Cleland_2010,
doi = {10.1063/1.3302277},
url = {https://doi.org/10.1063%2F1.3302277},
year = 2010,
month = {jan},
publisher = {{AIP} Publishing},
volume = {132},
number = {4},
pages = {041103},
author = {Deidre Cleland and George H. Booth and Ali Alavi},
title = {Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017b,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}

View File

@ -22,10 +22,15 @@ let of_string ~units s =
}
| [ name; x; y; z ] ->
let e = Element.of_string name in
{ element = e ;
charge = Element.to_charge e;
coord = Point3d.of_string ~units (String.concat " " [x; y; z])
}
begin
try
{ element = e ;
charge = Element.to_charge e;
coord = Point3d.of_string ~units (String.concat " " [x; y; z])
}
with
| err -> (Printf.eprintf "name = \"%s\"\nxyz = (%s,%s,%s)\n%!" name x y z ; raise err)
end
| _ -> raise (AtomError s)

View File

@ -142,13 +142,21 @@ let of_xyz_string
result
let regexp_r = Str.regexp {| |}
let regexp_t = Str.regexp {| |}
let of_xyz_file
?(charge=(Charge.of_int 0)) ?(multiplicity=(Multiplicity.of_int 1))
?(units=Units.Angstrom)
filename =
let lines =
match Io_ext.input_lines filename with
Io_ext.input_lines filename
|> List.map (fun s -> Str.global_replace regexp_r "" s)
|> List.map (fun s -> Str.global_replace regexp_t " " s)
in
let lines =
match lines with
| natoms :: title :: rest ->
let natoms =
try
@ -173,6 +181,8 @@ let of_zmt_file
?(units=Units.Angstrom)
filename =
Io_ext.read_all filename
|> Str.global_replace regexp_r ""
|> Str.global_replace regexp_t " "
|> Zmatrix.of_string
|> Zmatrix.to_xyz_string
|> of_xyz_string ~charge ~multiplicity ~units

View File

@ -24,7 +24,9 @@ let of_string ~units s =
let l = s
|> String_ext.split ~on:' '
|> List.filter (fun x -> x <> "")
|> list_map float_of_string
|> list_map (fun x ->
try float_of_string x with
| Failure msg -> (Printf.eprintf "Bad string: \"%s\"\n%!" x ; failwith msg) )
|> Array.of_list
in
{ x = l.(0) *. f ;

131
plugins/README.rst Normal file
View File

@ -0,0 +1,131 @@
==============================
Tutorial for creating a plugin
==============================
Introduction: what is a plugin, and what tutorial will be about ?
=================================================================
The |QP| is split into two kinds of routines/global variables (i.e. *providers*):
1) the **core modules** locatedin qp2/src/, which contains all the bulk of a quantum chemistry software (integrals, matrix elements between Slater determinants, linear algebra routines, DFT stuffs etc..)
2) the **plugins** which are external routines/*providers* connected to the qp2/src/ routines/*providers*.
More precisely, a **plugin** of the |QP| is a directory where you can create routines,
providers and executables that use all the global variables/functions/routines already created
in the modules of qp2/src or in other plugins.
Instead of giving a theoretical lecture on what is a plugin,
we will go through a series of examples that allow you to do the following thing:
1) print out **one- and two-electron integrals** on the AO/MO basis, creates two providers which manipulate these objects, print out these providers,
2) browse the **Slater determinants stored** in the |EZFIO| wave function and compute their matrix elements,
3) build the **Hamiltonian matrix** and **diagonalize** it either with **Lapack or Davidson**,
4) print out the **one- and two-electron rdms**,
5) obtain the **AOs** and **MOs** on the **DFT grid**, together with the **density**,
How the tutorial will be done
-----------------------------
This tuto is as follows:
1) you **READ THIS FILE UNTIL THE END** in order to get the big picture and vocabulary,
2) you go to the directory :file:`qp2/plugins/tuto_plugins/` and you will find detailed tutorials for each of the 5 examples.
Creating a plugin: the basic
----------------------------
The first thing to do is to be in the QPSH mode: you execute the qp2/bin/qpsh script that essentially loads all
the environement variables and allows for the completion of command lines in bash (that is an AMAZING feature :)
Then, you need to known **where** you want to create your plugin, and what is the **name** of the plugin.
.. important::
The plugins are **NECESSARILY** located in qp2/plugins/, and from there you can create any structures of directories.
Ex: If you want to create a plugin named "my_fancy_plugin" in the directory plugins/plugins_test/,
this goes with the command
.. code:: bash
qp plugins create -n my_fancy_plugin -r plugins_test/
Then, to create the plugin of your dreams, the two questions you need to answer are the following:
1) What do I **need** to compute what I want, which means what are the **objects** that I need ?
There are two kind of objects:
+ the *routines/functions*:
Ex: Linear algebra routines, integration routines etc ...
+ the global variables which are called the *providers*:
Ex: one-electron integrals, Slater determinants, density matrices etc ...
2) **Where do I find** these objects ?
The objects (routines/functions/providers) are necessarily created in other *modules/plugins*.
.. seealso::
The routine :c:func:`lapack_diagd` (which diagonalises a real hermitian matrix) is located in the file
:file:`qp2/src/utils/linear_algebra.irp.f`
therefore it "belongs" to the module :ref:`module_utils`
The routine :c:func:`ao_to_mo` (which converts a given matrix A from the AO basis to the MO basis) is located in the file
:file:`qp2/src/mo_one_e_ints/ao_to_mo.irp.f`
therefore it "belongs" to the module :ref:`module_mo_one_e_ints`
The provider :c:data:`ao_one_e_integrals` (which is the integrals of one-body part of H on the AO basis) is located in the file
:file:`qp2/src/ao_one_e_ints/ao_one_e_ints.irp.f`
therefore it belongs to the module :ref:`module_ao_one_e_ints`
The provider :c:data:`one_e_dm_mo_beta_average` (which is the state average beta density matrix on the MO basis) is located in the file
:file:`qp2/src/determinants/density_matrix.irp.f`
therefore it belongs to the module :ref:`module_determinants`
To import all the variables that you need, you just need to write the name of the plugins in the :file:`NEED` file .
To import all the variables/routines of the module :ref:`module_utils`, :ref:`module_determinants` and :ref:`module_mo_one_e_ints`, the :file:`NEED` file you will need is simply the following:
.. code:: bash
cat NEED
utils
determinants
mo_one_e_ints
.. important::
There are **many** routines/providers in the core modules of QP.
Nevertheless, as everything is coded with the |IRPF90|, you can use the following amazing tools: :command:`irpman`
:command:`irpman` can be used in command line in bash to obtain all the info on a routine or variable !
Example: execute the following command line :
.. code:: bash
irpman ao_one_e_integrals
Then all the information you need on :c:data:`ao_one_e_integrals` will appear on the screen.
This includes
- **where** the provider is created, (*i.e.* the actual file where the provider is designed)
- the **type** of the provider (*i.e.* a logical, integer etc ...)
- the **dimension** if it is an array,
- what other *providers* are **needed** to build this provider,
- what other *providers* **need** this provider.

View File

@ -37,14 +37,6 @@ function run_sd() {
eq $energy1 $1 $thresh
}
@test "O2 CAS" {
qp set_file o2_cas.gms.ezfio
qp set_mo_class -c "[1-2]" -a "[3-10]" -d "[11-46]"
run -149.72435425 3.e-4 10000
qp set_mo_class -c "[1-2]" -a "[3-10]" -v "[11-46]"
run_md -0.1160222327 1.e-6
}
@test "LiF RHF" {
qp set_file lif.ezfio

View File

@ -322,6 +322,12 @@ END_PROVIDER
BEGIN_PROVIDER [double precision, noL_0e]
BEGIN_DOC
!
! < Phi_left | L | Phi_right >
!
END_DOC
implicit none
integer :: i, j, k, ipoint
double precision :: t0, t1
@ -330,10 +336,6 @@ BEGIN_PROVIDER [double precision, noL_0e]
double precision, allocatable :: tmp_M(:,:), tmp_S(:), tmp_O(:), tmp_J(:,:)
double precision, allocatable :: tmp_M_priv(:,:), tmp_S_priv(:), tmp_O_priv(:), tmp_J_priv(:,:)
call wall_time(t0)
print*, " Providing noL_0e ..."
if(elec_alpha_num .eq. elec_beta_num) then
allocate(tmp(elec_beta_num))
@ -708,11 +710,6 @@ BEGIN_PROVIDER [double precision, noL_0e]
endif
call wall_time(t1)
print*, " Wall time for noL_0e (min) = ", (t1 - t0)/60.d0
print*, " noL_0e = ", noL_0e
END_PROVIDER
! ---

View File

@ -107,8 +107,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
integer :: i, j, ipoint
double precision :: wall0, wall1
print *, ' providing int2_grad1_u12_ao_transp ...'
call wall_time(wall0)
!print *, ' providing int2_grad1_u12_ao_transp ...'
!call wall_time(wall0)
if(test_cycle_tc) then
@ -142,15 +142,15 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
endif
call wall_time(wall1)
print *, ' wall time for int2_grad1_u12_ao_transp ', wall1 - wall0
call print_memory_usage()
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_transp (min) = ', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
implicit none
integer :: ipoint
@ -159,7 +159,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_ao_transp
!print *, ' providing int2_grad1_u12_bimo_transp'
!print *, ' providing int2_grad1_u12_bimo_transp ...'
!call wall_time(wall0)
!$OMP PARALLEL &
@ -167,33 +167,35 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,int2_grad1_u12_ao_transp,int2_grad1_u12_bimo_transp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
enddo
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
!FREE int2_grad1_u12_ao_transp
!call wall_time(wall1)
!print *, ' Wall time for providing int2_grad1_u12_bimo_transp',wall1 - wall0
!print *, ' wall time for int2_grad1_u12_bimo_transp (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' Providing int2_grad1_u12_bimo_t ...'
!print *, ' providing int2_grad1_u12_bimo_t ...'
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_transp
@ -211,17 +213,21 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid,
FREE int2_grad1_u12_bimo_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_t,', wall1 - wall0
!print *, ' wall time for int2_grad1_u12_bimo_t (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
implicit none
integer :: i, j, ipoint
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' providing int2_grad1_u12_ao_t ...'
PROVIDE int2_grad1_u12_ao
@ -235,6 +241,10 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3,
enddo
enddo
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_t (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
@ -275,8 +285,8 @@ BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid,
double precision :: xyz
double precision :: wall0, wall1
print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
call wall_time(wall0)
!print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -300,8 +310,8 @@ BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid,
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
call wall_time(wall1)
print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
!call wall_time(wall1)
!print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
END_PROVIDER
@ -323,8 +333,8 @@ BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_
double precision :: xyz
double precision :: wall0, wall1
print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
call wall_time(wall0)
!print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -343,8 +353,8 @@ BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
!call wall_time(wall1)
!print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
END_PROVIDER

View File

@ -123,7 +123,7 @@ subroutine give_integrals_3_body_bi_ort_spin( n, sigma_n, l, sigma_l, k, sigma_k
endif
return
end subroutine give_integrals_3_body_bi_ort_spin
end
! ---
@ -168,7 +168,7 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
integral = integral + tmp * final_weight_at_r_vector(ipoint)
enddo
end subroutine give_integrals_3_body_bi_ort
end
! ---

View File

@ -16,10 +16,10 @@ double precision function bi_ortho_mo_ints(l, k, j, i)
integer :: m, n, p, q
bi_ortho_mo_ints = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do q = 1, ao_num
do p = 1, ao_num
do m = 1, ao_num
do q = 1, ao_num
do n = 1, ao_num
! p1h1p2h2 l1 l2 r1 r2
bi_ortho_mo_ints += ao_two_e_tc_tot(n,q,m,p) * mo_l_coef(m,l) * mo_l_coef(n,k) * mo_r_coef(p,j) * mo_r_coef(q,i)
enddo
@ -27,7 +27,7 @@ double precision function bi_ortho_mo_ints(l, k, j, i)
enddo
enddo
end function bi_ortho_mo_ints
end
! ---
@ -40,38 +40,106 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num,
END_DOC
implicit none
integer :: i, j, k, l, m, n, p, q
integer :: i, j, k, l, m, n, p, q, s, r
double precision :: t1, t2, tt1, tt2
double precision, allocatable :: a1(:,:,:,:), a2(:,:,:,:)
double precision, allocatable :: a_jkp(:,:,:), a_kpq(:,:,:), ao_two_e_tc_tot_tmp(:,:,:)
print *, ' PROVIDING mo_bi_ortho_tc_two_e_chemist ...'
call wall_time(t1)
call print_memory_usage()
PROVIDE mo_r_coef mo_l_coef
allocate(a2(ao_num,ao_num,ao_num,mo_num))
if(ao_to_mo_tc_n3) then
call dgemm( 'T', 'N', ao_num*ao_num*ao_num, mo_num, ao_num, 1.d0 &
, ao_two_e_tc_tot(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0 , a2(1,1,1,1), ao_num*ao_num*ao_num)
print*, ' memory scale of TC ao -> mo: O(N3) '
allocate(a1(ao_num,ao_num,mo_num,mo_num))
if(.not.read_tc_integ) then
stop 'read_tc_integ needs to be set to true'
endif
call dgemm( 'T', 'N', ao_num*ao_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a1(1,1,1,1), ao_num*ao_num*mo_num)
allocate(a_jkp(ao_num,ao_num,mo_num))
allocate(a_kpq(ao_num,mo_num,mo_num))
allocate(ao_two_e_tc_tot_tmp(ao_num,ao_num,ao_num))
deallocate(a2)
allocate(a2(ao_num,mo_num,mo_num,mo_num))
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="read")
call dgemm( 'T', 'N', ao_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a1(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a2(1,1,1,1), ao_num*mo_num*mo_num)
call wall_time(tt1)
deallocate(a1)
mo_bi_ortho_tc_two_e_chemist(:,:,:,:) = 0.d0
do l = 1, ao_num
read(11) ao_two_e_tc_tot_tmp(:,:,:)
call dgemm( 'T', 'N', mo_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, mo_bi_ortho_tc_two_e_chemist(1,1,1,1), mo_num*mo_num*mo_num)
do s = 1, mo_num
deallocate(a2)
call dgemm( 'T', 'N', ao_num*ao_num, mo_num, ao_num, 1.d0 &
, ao_two_e_tc_tot_tmp(1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a_jkp(1,1,1), ao_num*ao_num)
call dgemm( 'T', 'N', ao_num*mo_num, mo_num, ao_num, 1.d0 &
, a_jkp(1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a_kpq(1,1,1), ao_num*mo_num)
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, ao_num, mo_r_coef(l,s) &
, a_kpq(1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 1.d0, mo_bi_ortho_tc_two_e_chemist(1,1,1,s), mo_num*mo_num)
enddo ! s
if(l == 2) then
call wall_time(tt2)
print*, ' 1 / mo_num done in (min)', (tt2-tt1)/60.d0
print*, ' estimated time required (min)', dble(mo_num-1)*(tt2-tt1)/60.d0
elseif(l == 11) then
call wall_time(tt2)
print*, ' 10 / mo_num done in (min)', (tt2-tt1)/60.d0
print*, ' estimated time required (min)', dble(mo_num-10)*(tt2-tt1)/(60.d0*10.d0)
elseif(l == 101) then
call wall_time(tt2)
print*, ' 100 / mo_num done in (min)', (tt2-tt1)/60.d0
print*, ' estimated time required (min)', dble(mo_num-100)*(tt2-tt1)/(60.d0*100.d0)
endif
enddo ! l
close(11)
deallocate(a_jkp, a_kpq, ao_two_e_tc_tot_tmp)
else
print*, ' memory scale of TC ao -> mo: O(N4) '
allocate(a2(ao_num,ao_num,ao_num,mo_num))
call dgemm( 'T', 'N', ao_num*ao_num*ao_num, mo_num, ao_num, 1.d0 &
, ao_two_e_tc_tot(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a2(1,1,1,1), ao_num*ao_num*ao_num)
FREE ao_two_e_tc_tot
allocate(a1(ao_num,ao_num,mo_num,mo_num))
call dgemm( 'T', 'N', ao_num*ao_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a1(1,1,1,1), ao_num*ao_num*mo_num)
deallocate(a2)
allocate(a2(ao_num,mo_num,mo_num,mo_num))
call dgemm( 'T', 'N', ao_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a1(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a2(1,1,1,1), ao_num*mo_num*mo_num)
deallocate(a1)
call dgemm( 'T', 'N', mo_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, mo_bi_ortho_tc_two_e_chemist(1,1,1,1), mo_num*mo_num*mo_num)
deallocate(a2)
endif
!allocate(a1(mo_num,ao_num,ao_num,ao_num))
!a1 = 0.d0
@ -135,6 +203,10 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num,
!enddo
!deallocate(a1)
call wall_time(t2)
print *, ' WALL TIME for PROVIDING mo_bi_ortho_tc_two_e_chemist (min)', (t2-t1)/60.d0
call print_memory_usage()
END_PROVIDER
! ---
@ -176,6 +248,34 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num,
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_transp, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
!
! mo_bi_ortho_tc_two_e_transp(i,j,k,l) = <k l| V(r_12) |i j> = transpose of mo_bi_ortho_tc_two_e
!
! the potential V(r_12) contains ALL TWO-E CONTRIBUTION OF THE TC-HAMILTONIAN
!
END_DOC
integer :: i,j,k,l
print*,'Providing mo_bi_ortho_tc_two_e_transp'
double precision :: t0,t1
call wall_time(t0)
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
mo_bi_ortho_tc_two_e_transp(i,j,k,l) = mo_bi_ortho_tc_two_e(k,l,i,j)
enddo
enddo
enddo
enddo
call wall_time(t1)
print *, ' WALL TIME for PROVIDING mo_bi_ortho_tc_two_e_transp (min)', (t1-t0)/60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)]
@ -232,3 +332,23 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals_transp , (mo_num,mo_num,mo_num)]
&BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals_transp, (mo_num,mo_num,mo_num)]
BEGIN_DOC
! tc_2e_3idx_coulomb_integrals_transp (j,k,i) = <jk|ji>
! tc_2e_3idx_exchange_integrals_transp(j,k,i) = <kj|ji>
END_DOC
implicit none
integer :: i, j, k
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals_transp(j, k,i) = mo_bi_ortho_tc_two_e_transp(j ,k ,j ,i )
tc_2e_3idx_exchange_integrals_transp(j,k,i) = mo_bi_ortho_tc_two_e_transp(k ,j ,j ,i )
enddo
enddo
enddo
END_PROVIDER

View File

@ -56,10 +56,10 @@
print*,'Average trace of overlap_bi_ortho is different from 1 by ', dabs(accu_d-1.d0)
print*,'And bi orthogonality is off by an average of ',accu_nd
print*,'****************'
print*,'Overlap matrix betwee mo_l_coef and mo_r_coef '
do i = 1, mo_num
write(*,'(100(F16.10,X))')overlap_bi_ortho(i,:)
enddo
!print*,'Overlap matrix betwee mo_l_coef and mo_r_coef '
!do i = 1, mo_num
! write(*,'(100(F16.10,X))')overlap_bi_ortho(i,:)
!enddo
endif
print*,'Average trace of overlap_bi_ortho (should be 1.)'
print*,'accu_d = ',accu_d

View File

@ -0,0 +1,108 @@
subroutine get_d0_transp(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
!todo: indices/conjg should be okay for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states,2)
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj, mm
double precision :: phase
double precision :: hij,hji
double precision, external :: get_phase_bi
logical :: ok
integer, parameter :: bant=1
double precision, allocatable :: hij_cache1(:), hij_cache2(:)
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
double precision, allocatable :: hji_cache1(:), hji_cache2(:)
allocate (hji_cache1(mo_num),hji_cache2(mo_num))
! print*,'in get_d0_new'
! call debug_det(gen,N_int)
! print*,'coefs',coefs(1,:)
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
! call get_mo_two_e_integrals_complex(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
do mm = 1, mo_num
hij_cache1(mm) = mo_bi_ortho_tc_two_e(mm,p1,h2,h1)
hji_cache1(mm) = mo_bi_ortho_tc_two_e_transp(mm,p1,h2,h1)
enddo
!!!!!!!!!! <alpha|H|psi>
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
! call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
! call i_h_j_complex(det, gen, N_int, hij)
call htilde_mu_mat_opt_bi_ortho_no_3e_both(det,gen,N_int, hij,hji)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij_cache1(p2) * phase
hji = hji_cache1(p2) * phase
end if
if (hij == 0.d0.or.hji == 0.d0) cycle
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,2) * hij ! HOTSPOT
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,1) * hji ! HOTSPOT
enddo
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
! call get_mo_two_e_integrals_complex(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache1(mm) = mo_bi_ortho_tc_two_e(mm,puti,p2,p1)
hij_cache2(mm) = mo_bi_ortho_tc_two_e(mm,puti,p1,p2)
hji_cache1(mm) = mo_bi_ortho_tc_two_e_transp(mm,puti,p2,p1)
hji_cache2(mm) = mo_bi_ortho_tc_two_e_transp(mm,puti,p1,p2)
enddo
!!!!!!!!!! <alpha|H|psi>
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
!call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
! call i_h_j_complex(det, gen, N_int, hij)
call htilde_mu_mat_opt_bi_ortho_no_3e_both(det,gen,N_int, hij,hji)
if (hij == 0.d0.or.hji == 0.d0) cycle
else
! hij = (mo_two_e_integral_complex(p1, p2, puti, putj) - mo_two_e_integral_complex(p2, p1, puti, putj))
! hij = (mo_bi_ortho_tc_two_e(p1, p2, puti, putj) - mo_bi_ortho_tc_two_e(p2, p1, puti, putj))
hij = (mo_bi_ortho_tc_two_e(puti, putj, p1, p2) - mo_bi_ortho_tc_two_e(puti, putj, p2, p1))
hji = (mo_bi_ortho_tc_two_e_transp(puti, putj, p1, p2) - mo_bi_ortho_tc_two_e_transp(puti, putj, p2, p1))
if (hij == 0.d0.or.hji == 0.d0) cycle
phase = get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
hij = (hij) * phase
hji = (hji) * phase
end if
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
enddo
end do
end do
end if
deallocate(hij_cache1,hij_cache2)
end

View File

@ -0,0 +1,350 @@
subroutine get_d1_transp(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
!todo: indices should be okay for complex?
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states,2)
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
double precision, external :: mo_two_e_integral_complex
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l, mm
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
double precision, allocatable :: hij_cache(:,:)
double precision :: hij, tmp_rowij(N_states, mo_num), tmp_rowij2(N_states, mo_num),phase
double precision, allocatable :: hji_cache(:,:)
double precision :: hji, tmp_rowji(N_states, mo_num), tmp_rowji2(N_states, mo_num)
! PROVIDE mo_integrals_map N_int
! print*,'in get_d1_new'
! call debug_det(gen,N_int)
! print*,'coefs',coefs(1,:)
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2))
allocate (hji_cache(mo_num,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p1,p2)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p2,p1)
enddo
!! <alpha|H|psi>
tmp_rowij = 0.d0
tmp_rowji = 0.d0
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
hji = hji_cache(putj,1) - hji_cache(putj,2)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
hji = hji_cache(putj,2) - hji_cache(putj,1)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
enddo
endif
end do
if(ma == 1) then
mat_r(1:N_states,1:mo_num,puti) = mat_r(1:N_states,1:mo_num,puti) + tmp_rowij(1:N_states,1:mo_num)
mat_l(1:N_states,1:mo_num,puti) = mat_l(1:N_states,1:mo_num,puti) + tmp_rowji(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,puti,l) = mat_r(k,puti,l) + tmp_rowij(k,l)
mat_l(k,puti,l) = mat_l(k,puti,l) + tmp_rowji(k,l)
enddo
enddo
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_rowij = 0.d0
tmp_rowij2 = 0.d0
tmp_rowji = 0.d0
tmp_rowji2 = 0.d0
! call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p1)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p2)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e_transp(mm,hfix,pfix,p1)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e_transp(mm,hfix,pfix,p2)
enddo
putj = p1
!! <alpha|H|psi>
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
hji = hji_cache(puti,2)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
enddo
endif
end if
!
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
hji = hji_cache(puti,1)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
hij = hij * phase
hji = hji * phase
do k=1,N_states
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
enddo
endif
end if
end do
if(mi == 1) then
mat_r(:,:,p1) = mat_r(:,:,p1) + tmp_rowij(:,:)
mat_r(:,:,p2) = mat_r(:,:,p2) + tmp_rowij2(:,:)
mat_l(:,:,p1) = mat_l(:,:,p1) + tmp_rowji(:,:)
mat_l(:,:,p2) = mat_l(:,:,p2) + tmp_rowji2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij(k,l)
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij2(k,l)
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji(k,l)
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji2(k,l)
enddo
enddo
end if
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p1,p2)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p2,p1)
enddo
!! <alpha|H|psi>
tmp_rowij = 0.d0
tmp_rowji = 0.d0
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
hji = hji_cache(putj,1) - hji_cache(putj,2)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
hij = hij * phase
hji = hji * phase
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
hji = hji_cache(putj,2) - hji_cache(putj,1)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
hij = hij * phase
hji = hji * phase
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
endif
end do
mat_r(:, :puti-1, puti) = mat_r(:, :puti-1, puti) + tmp_rowij(:,:puti-1)
mat_l(:, :puti-1, puti) = mat_l(:, :puti-1, puti) + tmp_rowji(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, l) = mat_r(k, puti,l) + tmp_rowij(k,l)
mat_l(k, puti, l) = mat_l(k, puti,l) + tmp_rowji(k,l)
enddo
enddo
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_rowij = 0.d0
tmp_rowij2 = 0.d0
tmp_rowji = 0.d0
tmp_rowji2 = 0.d0
! call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,pfix)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,pfix)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p1,pfix)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e_transp(mm,hfix,p2,pfix)
enddo
putj = p2
!! <alpha|H|psi>
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
hji = hji_cache(puti,1)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
hji = hji_cache(puti,2)
if (hij /= 0.d0.and.hji/=0.d0) then
phase = get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
hij = hij * phase
hji = hji * phase
do k=1,N_states
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
enddo
endif
end if
end do
mat_r(:,:p2-1,p2) = mat_r(:,:p2-1,p2) + tmp_rowij(:,:p2-1)
mat_l(:,:p2-1,p2) = mat_l(:,:p2-1,p2) + tmp_rowji(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij(k,l)
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji(k,l)
enddo
enddo
mat_r(:,:p1-1,p1) = mat_r(:,:p1-1,p1) + tmp_rowij2(:,:p1-1)
mat_l(:,:p1-1,p1) = mat_l(:,:p1-1,p1) + tmp_rowji2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij2(k,l)
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache, hji_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
! gen is a selector; mask is ionized generator; det is alpha
! hij is contribution to <psi|H|alpha>
! call i_h_j_complex(gen, det, N_int, hij)
call htilde_mu_mat_opt_bi_ortho_no_3e_both(det, gen, N_int, hij,hji)
! call htilde_mu_mat_opt_bi_ortho_no_3e(gen, det, N_int, hji)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * dconjg(hij)
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,2) * hij
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,1) * hji
enddo
end do
end do
end

View File

@ -25,9 +25,6 @@ subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h,
integer :: bant
bant = 1
! print*, 'in get_d2_new'
! call debug_det(gen,N_int)
! print*,'coefs',coefs(1,:)
tip = p(0,1) * p(0,2) ! number of alpha particles times number of beta particles

View File

@ -0,0 +1,235 @@
subroutine get_d2_new_transp(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
!todo: indices/conjg should be correct for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states,2)
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
integer :: i, j, k, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: phase
double precision :: hij,hji
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2) ! number of alpha particles times number of beta particles
ma = sp !1:(alpha,alpha); 2:(b,b); 3:(a,b)
if(p(0,1) > p(0,2)) ma = 1 ! more alpha particles than beta particles
if(p(0,1) < p(0,2)) ma = 2 ! fewer alpha particles than beta particles
mi = mod(ma, 2) + 1
if(sp == 3) then ! if one alpha and one beta xhole
!(where xholes refer to the ionizations from the generator, not the holes occupied in the ionized generator)
if(ma == 2) bant = 2 ! if more beta particles than alpha particles
if(tip == 3) then ! if 3 of one particle spin and 1 of the other particle spin
puti = p(1, mi)
if(bannedOrb(puti, mi)) return
h1 = h(1, ma)
h2 = h(2, ma)
!! <alpha|H|psi>
do i = 1, 3 ! loop over all 3 combinations of 2 particles with spin ma
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
! |G> = |psi_{gen,i}>
! |G'> = a_{x1} a_{x2} |G>
! |alpha> = a_{puti}^{\dagger} a_{putj}^{\dagger} |G'>
! |alpha> = t_{x1,x2}^{puti,putj} |G>
! hij = <psi_{selectors,i}|H|alpha>
! |alpha> = t_{p1,p2}^{h1,h2}|psi_{selectors,i}>
!todo: <i|H|j> = (<h1,h2|p1,p2> - <h1,h2|p2,p1>) * phase
! <psi|H|j> += dconjg(c_i) * <i|H|j>
! <j|H|i> = (<p1,p2|h1,h2> - <p2,p1|h1,h2>) * phase
! <j|H|psi> += <j|H|i> * c_i
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
! take the transpose of what's written above because later use the complex conjugate
! hij = mo_bi_ortho_tc_two_e(h1, h2, p1, p2) - mo_bi_ortho_tc_two_e( h1, h2, p2, p1)
! hji = mo_bi_ortho_tc_two_e_transp(h1, h2, p1, p2) - mo_bi_ortho_tc_two_e_transp( h1, h2, p2, p1)
hij = mo_bi_ortho_tc_two_e_transp(p1, p2,h1, h2) - mo_bi_ortho_tc_two_e_transp( p1, p2, h2, h1)
hji = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e( p1, p2, h2, h1)
if (hij == 0.d0.or.hji==0.d0) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
phase = get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
hij = hij * phase
hji = hji * phase
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,2) * hij
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,1) * hji
enddo
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
enddo
end if
end do
else ! if 2 alpha and 2 beta particles
h1 = h(1,1)
h2 = h(1,2)
!! <alpha|H|psi>
do j = 1,2 ! loop over all 4 combinations of one alpha and one beta particle
putj = p(j, 2)
if(bannedOrb(putj, 2)) cycle
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
p1 = p(turn2(i), 1)
! hij = <psi_{selectors,i}|H|alpha>
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2)
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
! take the transpose of what's written above because later use the complex conjugate
! hij = mo_bi_ortho_tc_two_e(h1, h2, p1, p2 )
! hji = mo_bi_ortho_tc_two_e_transp(h1, h2, p1, p2 )
hij = mo_bi_ortho_tc_two_e_transp(p1, p2 ,h1, h2 )
hji = mo_bi_ortho_tc_two_e( p1, p2, h1, h2)
if (hij /= 0.d0.or.hji==0.d0) then
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! hij = dconjg(hij) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
enddo
endif
end do
end do
end if
else ! if holes are (a,a) or (b,b)
if(tip == 0) then ! if particles are (a,a,a,a) or (b,b,b,b)
h1 = h(1, ma)
h2 = h(2, ma)
!! <alpha|H|psi>
do i=1,3
puti = p(i, ma)
if(bannedOrb(puti,ma)) cycle
do j=i+1,4
putj = p(j, ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2,p1, h1, h2)
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
! take the transpose of what's written above because later use the complex conjugate
hij = mo_bi_ortho_tc_two_e_transp(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e_transp(p1, p2, h2,h1 )
hji = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p1, p2, h2,h1 )
if (hij == 0.d0.or.hji == 0.d0) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
phase = get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
hij = hij * phase
hji = hji * phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) +coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) +coefs(k,1) * hji
enddo
end do
end do
else if(tip == 3) then ! if particles are (a,a,a,b) (ma=1,mi=2) or (a,b,b,b) (ma=2,mi=1)
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
!! <alpha|H|psi>
do i=1,3
puti = p(turn3(1,i), ma)
if(bannedOrb(puti,ma)) cycle
putj = p(turn3(2,i), ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2)
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
! take the transpose of what's written above because later use the complex conjugate
hij = mo_bi_ortho_tc_two_e_transp(p1, p2 ,h1, h2)
hji = mo_bi_ortho_tc_two_e(p1, p2,h1, h2 )
if (hij == 0.d0) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! hij = dconjg(hij) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
phase = get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
hij = hij * phase
hji = hji * phase
if (puti < putj) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,2) * hij
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,1) * hji
enddo
endif
end do
else ! tip == 4 (a,a,b,b)
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
!! <alpha|H|psi>
! hij = (mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2,p1, h1, h2))
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
! take the transpose of what's written above because later use the complex conjugate
hij = (mo_bi_ortho_tc_two_e_transp(p1, p2,h1, h2) - mo_bi_ortho_tc_two_e_transp(p2,p1,h1, h2))
hji = (mo_bi_ortho_tc_two_e(p1, p2,h1, h2) - mo_bi_ortho_tc_two_e(p2,p1,h1, h2))
if (hij /= 0.d0.or.hji==0.d0) then
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! hij = dconjg(hij) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
phase = get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
hij = hij * phase
hji = hji* phase
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,2) * hij
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,1) * hji
enddo
end if
end if
end if
end if
end

View File

@ -67,6 +67,7 @@ subroutine tc_pt2
call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
end

View File

@ -636,10 +636,7 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
negMask(i,2) = not(mask(i,2))
end do
! print*,'in selection '
do i = 1, N_sel
! call debug_det(det(1,1,i),N_int)
! print*,i,dabs(psi_selectors_coef_transp_tc(1,2,i) * psi_selectors_coef_transp_tc(1,1,i))
if(interesting(i) < 0) then
stop 'prefetch interesting(i) and det(i)'
endif
@ -691,11 +688,23 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
call get_mask_phase(psi_det_sorted_tc(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
call get_d2_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
if(transpose_two_e_int)then
call get_d2_new_transp(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
else
call get_d2_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
endif
elseif(nt == 3) then
call get_d1_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
if(transpose_two_e_int)then
call get_d1_transp(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
else
call get_d1_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
endif
else
if(transpose_two_e_int)then
call get_d0_transp (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
else
call get_d0_new (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
endif
endif
elseif(nt == 4) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
@ -795,6 +804,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_ormas) then
logical, external :: det_allowed_ormas
if (.not.det_allowed_ormas(det)) cycle
endif
if(do_only_cas) then
if( number_of_particles(det) > 0 ) cycle
if( number_of_holes(det) > 0 ) cycle
@ -882,80 +896,12 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
call diag_htilde_mu_mat_fock_bi_ortho(N_int, det, hmono, htwoe, hthree, hii)
do istate = 1,N_states
delta_E = E0(istate) - Hii + E_shift
double precision :: alpha_h_psi_tmp, psi_h_alpha_tmp, error
if(debug_tc_pt2 == 1)then !! Using the old version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det_selectors
call htilde_mu_mat_bi_ortho_tot_slow(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_bi_ortho_tot_slow(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int)
if(degree == 0)then
print*,'problem !!!'
print*,'a determinant is already in the wave function !!'
print*,'it corresponds to the selector number ',iii
call debug_det(det,N_int)
stop
endif
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function
alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function
enddo
else if(debug_tc_pt2 == 2)then !! debugging the new version
! psi_h_alpha_tmp = 0.d0
! alpha_h_psi_tmp = 0.d0
! do iii = 1, N_det_selectors ! old version
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
! psi_h_alpha_tmp += i_h_alpha * psi_selectors_coef_tc(iii,1,1) ! left function
! alpha_h_psi_tmp += alpha_h_i * psi_selectors_coef_tc(iii,2,1) ! right function
! enddo
psi_h_alpha_tmp = mat_l(istate, p1, p2) ! new version
alpha_h_psi_tmp = mat_r(istate, p1, p2) ! new version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det ! old version
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_det(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_det(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_l_coef_bi_ortho(iii,1) ! left function
alpha_h_psi += alpha_h_i * psi_r_coef_bi_ortho(iii,1) ! right function
enddo
if(dabs(psi_h_alpha*alpha_h_psi/delta_E).gt.1.d-10)then
error = dabs(psi_h_alpha * alpha_h_psi - psi_h_alpha_tmp * alpha_h_psi_tmp)/dabs(psi_h_alpha * alpha_h_psi)
if(error.gt.1.d-2)then
call debug_det(det, N_int)
print*,'error =',error,psi_h_alpha * alpha_h_psi/delta_E,psi_h_alpha_tmp * alpha_h_psi_tmp/delta_E
print*,psi_h_alpha , alpha_h_psi
print*,psi_h_alpha_tmp , alpha_h_psi_tmp
print*,'selectors '
do iii = 1, N_det_selectors ! old version
print*,'iii',iii,psi_selectors_coef_tc(iii,1,1),psi_selectors_coef_tc(iii,2,1)
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
print*,i_h_alpha,alpha_h_i
call debug_det(psi_selectors(1,1,iii),N_int)
enddo
! print*,'psi_det '
! do iii = 1, N_det! old version
! print*,'iii',iii,psi_l_coef_bi_ortho(iii,1),psi_r_coef_bi_ortho(iii,1)
! call debug_det(psi_det(1,1,iii),N_int)
! enddo
stop
endif
endif
else
psi_h_alpha = mat_l(istate, p1, p2)
alpha_h_psi = mat_r(istate, p1, p2)
endif
psi_h_alpha = mat_l(istate, p1, p2)
alpha_h_psi = mat_r(istate, p1, p2)
val = 4.d0 * psi_h_alpha * alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val)
! if (delta_E < 0.d0) then
! tmp = -tmp
! endif
e_pert(istate) = 0.25 * val / delta_E
! e_pert(istate) = 0.5d0 * (tmp - delta_E)
if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then
if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
coef(istate) = e_pert(istate) / psi_h_alpha
else
coef(istate) = alpha_h_psi / delta_E
@ -971,15 +917,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if(e_pert(istate).gt.0.d0)e_pert(istate)=0.d0
endif
! if(selection_tc == 1 )then
! if(e_pert(istate).lt.0.d0)then
! e_pert(istate) = 0.d0
! endif
! else if(selection_tc == -1)then
! if(e_pert(istate).gt.0.d0)then
! e_pert(istate) = 0.d0
! endif
! endif
enddo

View File

@ -88,6 +88,9 @@ subroutine run_stochastic_cipsi
call pt2_dealloc(pt2_data_err)
call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
if(transpose_two_e_int)then
provide mo_bi_ortho_tc_two_e_transp
endif
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
! stop

View File

@ -13,6 +13,8 @@ program tc_pt2_prog
pruning = -1.d0
touch pruning
read_wf = .True.
touch read_wf
! pt2_relative_error = 0.01d0
! touch pt2_relative_error

View File

@ -0,0 +1,85 @@
#!/bin/bash
source ~/qp2/quantum_package.rc
## Define the system/basis/charge/mult and genric keywords
system=H2O
xyz=${system}.xyz
basis=6-31g
mult=1
charge=0
j2e_type="Boys_Handy"
thresh_tcscf=1e-10
io_tc_integ="Write"
nstates=4
##################### Function to create the EZFIO
function create_ezfio (){
qp create_ezfio -b $basis -m $mult -c $charge $xyz -o $ezfio
qp run scf | tee ${EZFIO_FILE}.scf.out
}
##################### Function to set parameters for BH9 jastrow
function BH_9 (){
j2e_type="Boys_Handy" # type of correlation factor: Boys Handy type
env_type="None" # Boys Handy J does not use our envelopes
j1e_type="None" # Boys Handy J does not use our J1body
tc_integ_type="numeric" # Boys Handy requires numerical integrals
jBH_size=9 # Number of parameters for the BH
######## All parameters for the H2O and Boys Handy Jastrow
jBH_c=[[0.50000,-0.57070,0.49861,-0.78663,0.01990,0.13386,-0.60446,-1.67160,1.36590],[0.0,0.0,0.0,0.0,0.12063,-0.18527,0.12324,-0.11187,-0.06558],[0.0,0.0,0.0,0.0,0.12063,-0.18527,0.12324,-0.11187,-0.06558]]
jBH_m=[[0,0,0,0,2,3,4,2,2],[0,0,0,0,2,3,4,2,2],[0,0,0,0,2,3,4,2,2]]
jBH_n=[[0,0,0,0,0,0,0,2,0],[0,0,0,0,0,0,0,2,0],[0,0,0,0,0,0,0,2,0]]
jBH_o=[[1,2,3,4,0,0,0,0,2],[1,2,3,4,0,0,0,0,2],[1,2,3,4,0,0,0,0,2]]
jBH_ee=[1.0,1.0,1.0]
jBH_en=[1.0,1.0,1.0]
set_BH_J_keywords
}
function set_BH_J_keywords (){
qp set jastrow j2e_type $j2e_type # set the jastrow two-e type
qp set jastrow env_type $env_type
qp set jastrow j1e_type $j1e_type
qp set jastrow jBH_size $jBH_size # set the number of parameters in Boys-Handy jastrow
qp set jastrow jBH_c "$jBH_c" # set the parameters which are lists for Boys-Handy
qp set jastrow jBH_m "$jBH_m" #
qp set jastrow jBH_n "$jBH_n" #
qp set jastrow jBH_o "$jBH_o" #
qp set jastrow jBH_ee $jBH_ee #
qp set jastrow jBH_en $jBH_en #
qp set tc_keywords tc_integ_type $tc_integ_type # set the analytical or numerical integrals
qp set tc_keywords thresh_tcscf $thresh_tcscf
qp set tc_keywords io_tc_integ $io_tc_integ # set the io
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
}
function run_ground_state (){
qp set tc_keywords minimize_lr_angles True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
qp set_frozen_core
qp set determinants n_det_max 1e6
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi.out
}
function run_excited_state (){
qp set determinants n_states $nstates
qp run cis | tee ${EZFIO_FILE}.cis.out
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
qp run tc_bi_ortho | tee ${EZFIO_FILE}.tc_cis_nst_${nstates}.out
qp set determinants read_wf True
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi_nst_${nstates}.out
}
## BH9 calculations
ezfio=${system}_${charge}_${basis}_${j2e_type}
create_ezfio
BH_9
run_ground_state
run_excited_state

View File

@ -0,0 +1,84 @@
#!/bin/bash
source ~/qp2/quantum_package.rc
## Define the system/basis/charge/mult and genric keywords
system=H2O
xyz=${system}.xyz
basis=6-31g
mult=1
charge=0
j2e_type=Mu
thresh_tcscf=1e-10
io_tc_integ="Write"
nstates=4
nol_standard=False
tc_integ_type=numeric # can be changed for semi-analytic
if (( $nol_standard == "False" ))
then
three_body_h_tc=True
else
three_body_h_tc=False
fi
##################### Function to create the EZFIO
function create_ezfio (){
qp create_ezfio -b $basis -m $mult -c $charge $xyz -o $ezfio
qp run scf | tee ${EZFIO_FILE}.scf.out
}
function set_env_j_keywords (){
qp set hamiltonian mu_erf 0.87
qp set jastrow env_type Sum_Gauss
qp set jastrow env_coef "${coef}"
qp set tc_keywords tc_integ_type $tc_integ_type
qp set jastrow j1e_type $j1e_type
qp set jastrow j2e_type $j2e_type
qp set jastrow env_expo "${alpha}"
}
function run_ground_state (){
qp set tc_keywords minimize_lr_angles True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
qp set_frozen_core
qp set determinants n_det_max 1e6
qp set perturbation pt2_max 0.001
qp set tc_keywords nol_standard $nol_standard
qp set tc_keywords three_body_h_tc $three_body_h_tc
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi.out
}
function run_excited_state (){
qp set determinants n_states $nstates
qp run cis | tee ${EZFIO_FILE}.cis.out
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
qp run tc_bi_ortho | tee ${EZFIO_FILE}.tc_cis_nst_${nstates}.out
qp set determinants read_wf True
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi_nst_${nstates}.out
}
# Define J(mu) with envelope and without j1e
j2e_type=Mu
j1e_type=None
ezfio=${system}_${charge}_${basis}_${j2e_type}_${j1e_type}
create_ezfio
alpha=[2.0,1000.,1000.] # parameters for H2O
coef=[1.,1.,1.] # parameters for H2O
set_env_j_keywords
run_ground_state
run_excited_state
# Define J(mu) with envelope and with a charge Harmonizer for J1e
j2e_type=Mu
j1e_type=Charge_Harmonizer
ezfio=${system}_${charge}_${basis}_${j2e_type}_${j1e_type}
create_ezfio
alpha=[2.5,1000.,1000.] # parameters for H2O
coef=[1.,1.,1.] # parameters for H2O
set_env_j_keywords
run_ground_state
run_excited_state

View File

@ -3,7 +3,7 @@ To localize the MOs:
```
qp run localization
```
By default, the different otbital classes are automatically set by splitting
By default, the different orbital classes are automatically set by splitting
the orbitales in the following classes:
- Core -> Core
- Active, doubly occupied -> Inactive

View File

@ -3,3 +3,4 @@ hamiltonian
jastrow
ao_tc_eff_map
bi_ortho_mos
trexio

View File

@ -31,24 +31,63 @@ subroutine print_aos()
integer :: i, ipoint
double precision :: r(3)
double precision :: ao_val, ao_der(3), ao_lap
double precision :: mo_val, mo_der(3), mo_lap
PROVIDE final_grid_points aos_in_r_array aos_grad_in_r_array aos_lapl_in_r_array
do ipoint = 1, n_points_final_grid
r(:) = final_grid_points(:,ipoint)
print*, r
write(1000, '(3(f15.7, 3X))') r
enddo
double precision :: accu_vgl(5)
double precision :: accu_vgl_nrm(5)
do ipoint = 1, n_points_final_grid
r(:) = final_grid_points(:,ipoint)
do i = 1, ao_num
ao_val = aos_in_r_array (i,ipoint)
ao_der(:) = aos_grad_in_r_array(i,ipoint,:)
ao_lap = aos_lapl_in_r_array(1,i,ipoint) + aos_lapl_in_r_array(2,i,ipoint) + aos_lapl_in_r_array(3,i,ipoint)
write(*, '(5(f15.7, 3X))') ao_val, ao_der, ao_lap
write(111, '(5(f15.7, 3X))') ao_val, ao_der, ao_lap
enddo
enddo
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
ao_val = aos_in_r_array_qmckl (i,ipoint)
ao_der(:) = aos_grad_in_r_array_qmckl(i,ipoint,:)
ao_lap = aos_lapl_in_r_array_qmckl(i,ipoint)
write(222, '(5(f15.7, 3X))') ao_val, ao_der, ao_lap
enddo
enddo
accu_vgl = 0.d0
accu_vgl_nrm = 0.d0
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
ao_val = aos_in_r_array (i,ipoint)
ao_der(:) = aos_grad_in_r_array(i,ipoint,:)
ao_lap = aos_lapl_in_r_array(1,i,ipoint) + aos_lapl_in_r_array(2,i,ipoint) + aos_lapl_in_r_array(3,i,ipoint)
accu_vgl_nrm(1) += dabs(ao_val)
accu_vgl_nrm(2) += dabs(ao_der(1))
accu_vgl_nrm(3) += dabs(ao_der(2))
accu_vgl_nrm(4) += dabs(ao_der(3))
accu_vgl_nrm(5) += dabs(ao_lap)
ao_val -= aos_in_r_array_qmckl (i,ipoint)
ao_der(:) -= aos_grad_in_r_array_qmckl(i,ipoint,:)
ao_lap -= aos_lapl_in_r_array_qmckl(i,ipoint)
accu_vgl(1) += dabs(ao_val)
accu_vgl(2) += dabs(ao_der(1))
accu_vgl(3) += dabs(ao_der(2))
accu_vgl(4) += dabs(ao_der(3))
accu_vgl(5) += dabs(ao_lap)
enddo
enddo
accu_vgl(:) *= 1.d0 / accu_vgl_nrm(:)
print *, accu_vgl
return
end

View File

@ -132,6 +132,7 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
double precision, allocatable :: A(:,:,:,:), b(:), A_tmp(:,:,:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:), tmp(:,:,:)
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:)
@ -176,26 +177,27 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
! --- --- ---
! get A
allocate(tmp(n_points_final_grid,ao_num,ao_num))
allocate(tmp1(n_points_final_grid,ao_num,ao_num), tmp2(n_points_final_grid,ao_num,ao_num))
allocate(A(ao_num,ao_num,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp1, tmp2)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(ipoint,i,j) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp1(ipoint,i,j) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp2(ipoint,i,j) = aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), n_points_final_grid, tmp(1,1,1), n_points_final_grid &
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp1(1,1,1), n_points_final_grid, tmp2(1,1,1), n_points_final_grid &
, 0.d0, A(1,1,1,1), ao_num*ao_num)
allocate(A_tmp(ao_num,ao_num,ao_num,ao_num))
@ -207,13 +209,13 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
allocate(b(ao_num*ao_num))
do ipoint = 1, n_points_final_grid
u1e_tmp(ipoint) = dsqrt(final_weight_at_r_vector(ipoint)) * u1e_tmp(ipoint)
u1e_tmp(ipoint) = u1e_tmp(ipoint)
enddo
call dgemv("T", n_points_final_grid, ao_num*ao_num, 1.d0, tmp(1,1,1), n_points_final_grid, u1e_tmp(1), 1, 0.d0, b(1), 1)
call dgemv("T", n_points_final_grid, ao_num*ao_num, 1.d0, tmp1(1,1,1), n_points_final_grid, u1e_tmp(1), 1, 0.d0, b(1), 1)
deallocate(u1e_tmp)
deallocate(tmp)
deallocate(tmp1, tmp2)
! --- --- ---
! solve Ax = b

View File

@ -169,7 +169,7 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp
double precision :: mu_val, mu_tmp, mu_der(3)
double precision :: rn(3), f1A, gard1_f1A(3), f2A, gard2_f2A(3), g12, gard1_g12(3)
double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3)
double precision :: tmp1, tmp2
@ -281,6 +281,27 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
elseif(j2e_type .eq. "Boys_Handy") then
integer :: powmax1, powmax, powmax2
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
powmax1 = max(maxval(jBH_m), maxval(jBH_n))
powmax2 = maxval(jBH_o)
powmax = max(powmax1, powmax2)
allocate(f1A_power(-1:powmax), f2A_power(-1:powmax), g12_power(-1:powmax), double_p(0:powmax))
do p = 0, powmax
double_p(p) = dble(p)
enddo
f1A_power(-1) = 0.d0
f2A_power(-1) = 0.d0
g12_power(-1) = 0.d0
f1A_power(0) = 1.d0
f2A_power(0) = 1.d0
g12_power(0) = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
@ -296,9 +317,18 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
rn(2) = nucl_coord(i_nucl,2)
rn(3) = nucl_coord(i_nucl,3)
call jBH_elem_fct_grad(jBH_en(i_nucl), r1, rn, f1A, gard1_f1A)
call jBH_elem_fct_grad(jBH_en(i_nucl), r2, rn, f2A, gard2_f2A)
call jBH_elem_fct_grad(jBH_ee(i_nucl), r1, r2, g12, gard1_g12)
call jBH_elem_fct_grad(jBH_en(i_nucl), r1, rn, f1A, grad1_f1A)
call jBH_elem_fct_grad(jBH_en(i_nucl), r2, rn, f2A, grad2_f2A)
call jBH_elem_fct_grad(jBH_ee(i_nucl), r1, r2, g12, grad1_g12)
! Compute powers of f1A and f2A
do p = 1, powmax1
f1A_power(p) = f1A_power(p-1) * f1A
f2A_power(p) = f2A_power(p-1) * f2A
enddo
do p = 1, powmax2
g12_power(p) = g12_power(p-1) * g12
enddo
do p = 1, jBH_size
mpA = jBH_m(p,i_nucl)
@ -309,23 +339,26 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
tmp = tmp * 0.5d0
endif
tmp1 = 0.d0
if(mpA .gt. 0) then
tmp1 = tmp1 + dble(mpA) * f1A**dble(mpA-1) * f2A**dble(npA)
endif
if(npA .gt. 0) then
tmp1 = tmp1 + dble(npA) * f1A**dble(npA-1) * f2A**dble(mpA)
endif
tmp1 = tmp1 * g12**dble(opA)
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
tmp1 = tmp1 * g12_power(opA)
tmp2 = double_p(opA) * g12_power(opA-1) * (f1A_power(mpA) * f2A_power(npA) + f1A_power(npA) * f2A_power(mpA))
tmp2 = 0.d0
if(opA .gt. 0) then
tmp2 = tmp2 + dble(opA) * g12**dble(opA-1) * (f1A**dble(mpA) * f2A**dble(npA) + f1A**dble(npA) * f2A**dble(mpA))
endif
!tmp1 = 0.d0
!if(mpA .gt. 0) then
! tmp1 = tmp1 + dble(mpA) * f1A**dble(mpA-1) * f2A**dble(npA)
!endif
!if(npA .gt. 0) then
! tmp1 = tmp1 + dble(npA) * f1A**dble(npA-1) * f2A**dble(mpA)
!endif
!tmp1 = tmp1 * g12**dble(opA)
!tmp2 = 0.d0
!if(opA .gt. 0) then
! tmp2 = tmp2 + dble(opA) * g12**dble(opA-1) * (f1A**dble(mpA) * f2A**dble(npA) + f1A**dble(npA) * f2A**dble(mpA))
!endif
gradx(jpoint) = gradx(jpoint) + tmp * (tmp1 * gard1_f1A(1) + tmp2 * gard1_g12(1))
grady(jpoint) = grady(jpoint) + tmp * (tmp1 * gard1_f1A(2) + tmp2 * gard1_g12(2))
gradz(jpoint) = gradz(jpoint) + tmp * (tmp1 * gard1_f1A(3) + tmp2 * gard1_g12(3))
gradx(jpoint) = gradx(jpoint) + tmp * (tmp1 * grad1_f1A(1) + tmp2 * grad1_g12(1))
grady(jpoint) = grady(jpoint) + tmp * (tmp1 * grad1_f1A(2) + tmp2 * grad1_g12(2))
gradz(jpoint) = gradz(jpoint) + tmp * (tmp1 * grad1_f1A(3) + tmp2 * grad1_g12(3))
enddo ! p
enddo ! i_nucl
enddo ! jpoint
@ -820,11 +853,11 @@ end
! ---
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, gard1_fct)
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, grad1_fct)
implicit none
double precision, intent(in) :: alpha, r1(3), r2(3)
double precision, intent(out) :: fct, gard1_fct(3)
double precision, intent(out) :: fct, grad1_fct(3)
double precision :: dist, tmp1, tmp2
dist = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
@ -836,14 +869,14 @@ subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, gard1_fct)
fct = alpha * dist * tmp1
if(dist .lt. 1d-10) then
gard1_fct(1) = 0.d0
gard1_fct(2) = 0.d0
gard1_fct(3) = 0.d0
grad1_fct(1) = 0.d0
grad1_fct(2) = 0.d0
grad1_fct(3) = 0.d0
else
tmp2 = alpha * tmp1 * tmp1 / dist
gard1_fct(1) = tmp2 * (r1(1) - r2(1))
gard1_fct(2) = tmp2 * (r1(2) - r2(2))
gard1_fct(3) = tmp2 * (r1(3) - r2(3))
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
endif
return

View File

@ -179,7 +179,7 @@ double precision function num_v_ij_erf_rk_cst_mu_env(i, j, ipoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt( dx * dx + dy * dy + dz * dz )
r12 = dsqrt(dx*dx + dy*dy + dz*dz)
if(r12 .lt. 1d-10) cycle
tmp1 = (derf(mu_erf * r12) - 1.d0) / r12
@ -228,7 +228,7 @@ subroutine num_x_v_ij_erf_rk_cst_mu_env(i, j, ipoint, integ)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt( dx * dx + dy * dy + dz * dz )
r12 = dsqrt(dx*dx + dy*dy + dz*dz)
if(r12 .lt. 1d-10) cycle
tmp1 = (derf(mu_erf * r12) - 1.d0) / r12
@ -530,7 +530,7 @@ subroutine num_int2_u_grad1u_total_env2(i, j, ipoint, integ)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt( dx * dx + dy * dy + dz * dz )
r12 = dsqrt(dx*dx + dy*dy + dz*dz)
if(r12 .lt. 1d-10) cycle
tmp0 = env_nucl(r2)

View File

@ -75,3 +75,107 @@ BEGIN_PROVIDER [ integer*8, qmckl_ctx_jastrow ]
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, aos_in_r_array_qmckl, (ao_num,n_points_final_grid)]
&BEGIN_PROVIDER [ double precision, aos_grad_in_r_array_qmckl, (ao_num,n_points_final_grid,3)]
&BEGIN_PROVIDER [ double precision, aos_lapl_in_r_array_qmckl, (ao_num, n_points_final_grid)]
implicit none
BEGIN_DOC
! AOS computed with qmckl
END_DOC
use qmckl
integer*8 :: qmckl_ctx
integer(qmckl_exit_code) :: rc
qmckl_ctx = qmckl_context_create()
rc = qmckl_trexio_read(qmckl_ctx, trexio_file, 1_8*len(trim(trexio_filename)))
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in read_trexio'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
rc = qmckl_set_point(qmckl_ctx, 'N', n_points_final_grid*1_8, final_grid_points, n_points_final_grid*3_8)
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in set_electron_point'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
double precision, allocatable :: vgl(:,:,:)
allocate( vgl(ao_num,5,n_points_final_grid))
rc = qmckl_get_ao_basis_ao_vgl_inplace(qmckl_ctx, vgl, n_points_final_grid*ao_num*5_8)
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in get_ao_vgl'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
integer :: i,k
do k=1,n_points_final_grid
do i=1,ao_num
aos_in_r_array_qmckl(i,k) = vgl(i,1,k)
aos_grad_in_r_array_qmckl(i,k,1) = vgl(i,2,k)
aos_grad_in_r_array_qmckl(i,k,2) = vgl(i,3,k)
aos_grad_in_r_array_qmckl(i,k,3) = vgl(i,4,k)
aos_lapl_in_r_array_qmckl(i,k) = vgl(i,5,k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mos_in_r_array_qmckl, (mo_num,n_points_final_grid)]
&BEGIN_PROVIDER [ double precision, mos_grad_in_r_array_qmckl, (mo_num,n_points_final_grid,3)]
&BEGIN_PROVIDER [ double precision, mos_lapl_in_r_array_qmckl, (mo_num, n_points_final_grid)]
implicit none
BEGIN_DOC
! moS computed with qmckl
END_DOC
use qmckl
integer*8 :: qmckl_ctx
integer(qmckl_exit_code) :: rc
qmckl_ctx = qmckl_context_create()
rc = qmckl_trexio_read(qmckl_ctx, trexio_file, 1_8*len(trim(trexio_filename)))
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in read_trexio'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
rc = qmckl_set_point(qmckl_ctx, 'N', n_points_final_grid*1_8, final_grid_points, n_points_final_grid*3_8)
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in set_electron_point'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
double precision, allocatable :: vgl(:,:,:)
allocate( vgl(mo_num,5,n_points_final_grid))
rc = qmckl_get_mo_basis_mo_vgl_inplace(qmckl_ctx, vgl, n_points_final_grid*mo_num*5_8)
if (rc /= QMCKL_SUCCESS) then
print *, irp_here, 'qmckl error in get_mo_vgl'
rc = qmckl_check(qmckl_ctx, rc)
stop -1
endif
integer :: i,k
do k=1,n_points_final_grid
do i=1,mo_num
mos_in_r_array_qmckl(i,k) = vgl(i,1,k)
mos_grad_in_r_array_qmckl(i,k,1) = vgl(i,2,k)
mos_grad_in_r_array_qmckl(i,k,2) = vgl(i,3,k)
mos_grad_in_r_array_qmckl(i,k,3) = vgl(i,4,k)
mos_lapl_in_r_array_qmckl(i,k) = vgl(i,5,k)
enddo
enddo
END_PROVIDER

View File

@ -44,14 +44,92 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
elseif(tc_integ_type .eq. "numeric") then
print *, ' Numerical integration over r1 and r2 will be performed'
! TODO combine 1shot & int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num
int2_grad1_u12_ao = int2_grad1_u12_ao_num
if(tc_save_mem) then
!PROVIDE int2_grad1_u12_ao_num_1shot
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
integer :: n_blocks, n_rest, n_pass
integer :: i_blocks, i_rest, i_pass, ii
double precision :: mem, n_double
double precision, allocatable :: tmp(:,:,:), xx(:)
double precision, allocatable :: tmp_grad1_u12(:,:,:)
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num), xx(n_points_extra_final_grid))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks))
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
call write_int(6, n_pass, 'Number of passes')
call write_int(6, n_blocks, 'Size of the blocks')
call write_int(6, n_rest, 'Size of the last block')
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_blocks,3))
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, xx, tmp_grad1_u12)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1), tmp_grad1_u12(1,i_blocks,2), tmp_grad1_u12(1,i_blocks,3), xx(1))
enddo
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
enddo
enddo
deallocate(tmp_grad1_u12)
if(n_rest .gt. 0) then
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_rest,3))
ii = n_pass*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, xx, tmp_grad1_u12)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1), tmp_grad1_u12(1,i_rest,2), tmp_grad1_u12(1,i_rest,3), xx(1))
enddo
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
enddo
deallocate(tmp_grad1_u12)
endif
deallocate(tmp,xx)
else
! TODO combine 1shot & int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num
int2_grad1_u12_ao = int2_grad1_u12_ao_num
!PROVIDE int2_grad1_u12_ao_num_1shot
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
endif
elseif(tc_integ_type .eq. "semi-analytic") then
@ -177,13 +255,88 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
print *, ' Numerical integration over r1 and r2 will be performed'
! TODO combine 1shot & int2_grad1_u12_square_ao_num
if(tc_save_mem) then
PROVIDE int2_grad1_u12_square_ao_num
int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num
integer :: n_blocks, n_rest, n_pass
integer :: i_blocks, i_rest, i_pass, ii
double precision :: mem, n_double
double precision, allocatable :: tmp(:,:,:), xx(:,:,:)
double precision, allocatable :: tmp_grad1_u12_squared(:,:)
!PROVIDE int2_grad1_u12_square_ao_num_1shot
!int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num_1shot
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks))
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
call write_int(6, n_pass, 'Number of passes')
call write_int(6, n_blocks, 'Size of the blocks')
call write_int(6, n_rest, 'Size of the last block')
allocate(tmp_grad1_u12_squared(n_points_extra_final_grid,n_blocks), xx(n_points_extra_final_grid,n_blocks,3))
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, xx, final_grid_points, tmp_grad1_u12_squared)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, xx(1,i_blocks,1), xx(1,i_blocks,2), xx(1,i_blocks,3), tmp_grad1_u12_squared(1,i_blocks))
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, -0.5d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12_squared(1,1), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_square_ao(1,1,ii), ao_num*ao_num)
enddo
deallocate(tmp_grad1_u12_squared, xx)
if(n_rest .gt. 0) then
ii = n_pass*n_blocks + 1
allocate(tmp_grad1_u12_squared(n_points_extra_final_grid,n_rest), xx(n_points_extra_final_grid,n_rest,3))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, xx, final_grid_points, tmp_grad1_u12_squared)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, xx(1,i_rest,1), xx(1,i_rest,2), xx(1,i_rest,3), tmp_grad1_u12_squared(1,i_rest))
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, -0.5d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12_squared(1,1), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_square_ao(1,1,ii), ao_num*ao_num)
deallocate(tmp_grad1_u12_squared, xx)
endif
deallocate(tmp)
else
! TODO combine 1shot & int2_grad1_u12_square_ao_num
PROVIDE int2_grad1_u12_square_ao_num
int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num
!PROVIDE int2_grad1_u12_square_ao_num_1shot
!int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num_1shot
endif
elseif(tc_integ_type .eq. "semi-analytic") then

View File

@ -63,12 +63,10 @@
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_grad1_u12, &
!$OMP tmp_grad1_u12_squared)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12, tmp_grad1_u12_squared)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
@ -99,12 +97,10 @@
ii = n_pass*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_grad1_u12, &
!$OMP tmp_grad1_u12_squared)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12, tmp_grad1_u12_squared)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
@ -131,7 +127,7 @@
deallocate(tmp)
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao_num & int2_grad1_u12_square_ao_num =', time1-time0
print*, ' wall time for int2_grad1_u12_ao_num & int2_grad1_u12_square_ao_num = (min)', (time1-time0) / 60.d0
call print_memory_usage()
END_PROVIDER

View File

@ -1125,6 +1125,7 @@ subroutine test_fit_coef_A1()
double precision :: accu, norm, diff
double precision, allocatable :: A1(:,:)
double precision, allocatable :: A2(:,:,:,:), tmp(:,:,:)
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
! ---
@ -1165,16 +1166,17 @@ subroutine test_fit_coef_A1()
call wall_time(t1)
allocate(tmp(ao_num,ao_num,n_points_final_grid))
allocate(tmp1(ao_num,ao_num,n_points_final_grid), tmp2(ao_num,ao_num,n_points_final_grid))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp1, tmp2)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(i,j,ipoint) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp1(i,j,ipoint) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp2(i,j,ipoint) = aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
@ -1184,9 +1186,9 @@ subroutine test_fit_coef_A1()
allocate(A2(ao_num,ao_num,ao_num,ao_num))
call dgemm( "N", "T", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), ao_num*ao_num, tmp(1,1,1), ao_num*ao_num &
, tmp1(1,1,1), ao_num*ao_num, tmp2(1,1,1), ao_num*ao_num &
, 0.d0, A2(1,1,1,1), ao_num*ao_num)
deallocate(tmp)
deallocate(tmp1, tmp2)
call wall_time(t2)
print*, ' WALL TIME FOR A2 (min) =', (t2-t1)/60.d0
@ -1238,6 +1240,7 @@ subroutine test_fit_coef_inv()
double precision, allocatable :: A1(:,:), A1_inv(:,:), A1_tmp(:,:)
double precision, allocatable :: A2(:,:,:,:), tmp(:,:,:), A2_inv(:,:,:,:)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A2_tmp(:,:,:,:)
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
cutoff_svd = 5d-8
@ -1286,16 +1289,17 @@ subroutine test_fit_coef_inv()
call wall_time(t1)
allocate(tmp(n_points_final_grid,ao_num,ao_num))
allocate(tmp1(n_points_final_grid,ao_num,ao_num), tmp2(n_points_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp1, tmp2)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(ipoint,i,j) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp1(ipoint,i,j) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
tmp2(ipoint,i,j) = aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
@ -1304,11 +1308,11 @@ subroutine test_fit_coef_inv()
allocate(A2(ao_num,ao_num,ao_num,ao_num))
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), n_points_final_grid, tmp(1,1,1), n_points_final_grid &
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp1(1,1,1), n_points_final_grid, tmp2(1,1,1), n_points_final_grid &
, 0.d0, A2(1,1,1,1), ao_num*ao_num)
deallocate(tmp)
deallocate(tmp1, tmp2)
call wall_time(t2)
print*, ' WALL TIME FOR A2 (min) =', (t2-t1)/60.d0

View File

@ -33,8 +33,10 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:,:), c_mat(:,:,:)
double precision, allocatable :: c_mat(:,:,:)
logical, external :: ao_two_e_integral_zero
double precision, external :: get_ao_two_e_integral
double precision, external :: ao_two_e_integral
PROVIDe tc_integ_type
PROVIDE env_type
@ -53,7 +55,9 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
print*, ' Reading ao_two_e_tc_tot from ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="read")
read(11) ao_two_e_tc_tot
do i = 1, ao_num
read(11) ao_two_e_tc_tot(:,:,:,i)
enddo
close(11)
else
@ -65,27 +69,59 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
PROVIDE int2_grad1_u12_square_ao
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
if(tc_save_mem_loops) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
print*, ' LOOPS are used to evaluate Hermitian part of ao_two_e_tc_tot ...'
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ipoint, ao_i_r, ao_k_r, weight1) &
!$OMP SHARED (ao_num, n_points_final_grid, ao_two_e_tc_tot, &
!$OMP aos_in_r_array_transp, final_weight_at_r_vector, int2_grad1_u12_square_ao)
!$OMP DO COLLAPSE(4)
do i = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
do j = 1, ao_num
ao_two_e_tc_tot(j,l,k,i) = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
ao_two_e_tc_tot(j,l,k,i) = ao_two_e_tc_tot(j,l,k,i) + int2_grad1_u12_square_ao(j,l,ipoint) * weight1 * ao_i_r * ao_k_r
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, ao_two_e_tc_tot, ao_num*ao_num)
else
print*, ' DGEMM are used to evaluate Hermitian part of ao_two_e_tc_tot ...'
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, ao_two_e_tc_tot, ao_num*ao_num)
deallocate(c_mat)
endif
FREE int2_grad1_u12_square_ao
if( (tc_integ_type .eq. "semi-analytic") .and. &
@ -96,6 +132,7 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
! an additional term is added here directly instead of
! being added in int2_grad1_u12_square_ao for performance
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
PROVIDE int2_u2_env2
!$OMP PARALLEL &
@ -127,10 +164,13 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
, int2_u2_env2(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
deallocate(c_mat)
FREE int2_u2_env2
endif ! use_ipp
deallocate(c_mat)
call wall_time(time1)
print*, ' done with Hermitian part after (min) ', (time1 - time0) / 60.d0
call print_memory_usage()
! ---
@ -138,39 +178,71 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
PROVIDE int2_grad1_u12_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num,3))
if(tc_save_mem_loops) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, b_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
print*, ' LOOPS are used to evaluate non-Hermitian part of ao_two_e_tc_tot ...'
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i,1) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1))
b_mat(ipoint,k,i,2) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2))
b_mat(ipoint,k,i,3) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ipoint, ao_i_r, ao_k_r, weight1) &
!$OMP SHARED (ao_num, n_points_final_grid, ao_two_e_tc_tot, &
!$OMP aos_in_r_array_transp, final_weight_at_r_vector, &
!$OMP int2_grad1_u12_ao, aos_grad_in_r_array_transp_bis)
!$OMP DO COLLAPSE(4)
do i = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
do j = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
ao_two_e_tc_tot(j,l,k,i) = ao_two_e_tc_tot(j,l,k,i) &
- weight1 * int2_grad1_u12_ao(j,l,ipoint,1) * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) &
- weight1 * int2_grad1_u12_ao(j,l,ipoint,2) * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) &
- weight1 * int2_grad1_u12_ao(j,l,ipoint,3) * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3))
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, b_mat(1,1,1,m), n_points_final_grid &
, 1.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
enddo
deallocate(b_mat)
else
FREE int2_grad1_u12_ao
print*, ' DGEMM are used to evaluate non-Hermitian part of ao_two_e_tc_tot ...'
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
do m = 1, 3
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
enddo
deallocate(c_mat)
end if
if(tc_integ_type .eq. "semi-analytic") then
FREE int2_grad1_u2e_ao
@ -178,30 +250,67 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
endif ! var_tc
call wall_time(time1)
print*, ' done with non-Hermitian part after (min) ', (time1 - time0) / 60.d0
call print_memory_usage()
! ---
call sum_A_At(ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
PROVIDE ao_integrals_map
! ---
logical :: integ_zero
double precision :: integ_val
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_two_e_tc_tot, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:i, 2:j | 1:k, 2:l >
ao_two_e_tc_tot(k,i,l,j) = ao_two_e_tc_tot(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
print*, ' adding ERI to ao_two_e_tc_tot ...'
if(tc_save_mem) then
print*, ' ao_integrals_map will not be used'
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i, j, k, l, integ_zero, integ_val) &
!$OMP SHARED(ao_num, ao_two_e_tc_tot)
!$OMP DO COLLAPSE(4)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
integ_zero = ao_two_e_integral_zero(i,j,k,l)
if(.not. integ_zero) then
! i,k : r1 j,l : r2
integ_val = ao_two_e_integral(i,k,j,l)
ao_two_e_tc_tot(k,i,l,j) = ao_two_e_tc_tot(k,i,l,j) + integ_val
endif
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
else
print*, ' ao_integrals_map will be used'
PROVIDE ao_integrals_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_two_e_tc_tot, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO COLLAPSE(4)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:i, 2:j | 1:k, 2:l >
ao_two_e_tc_tot(k,i,l,j) = ao_two_e_tc_tot(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!call clear_ao_map()
FREE ao_integrals_map
endif
if(tc_integ_type .eq. "numeric") then
if((tc_integ_type .eq. "numeric") .and. (.not. tc_save_mem)) then
FREE int2_grad1_u12_ao_num int2_grad1_u12_square_ao_num
endif
@ -211,7 +320,9 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
print*, ' Saving ao_two_e_tc_tot in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
call ezfio_set_work_empty(.False.)
write(11) ao_two_e_tc_tot
do i = 1, ao_num
write(11) ao_two_e_tc_tot(:,:,:,i)
enddo
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif

File diff suppressed because it is too large Load Diff

View File

@ -273,60 +273,6 @@ end
! ---
subroutine lapack_diag_non_sym_right(n, A, WR, WI, VR)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
double precision, intent(out) :: WR(n), WI(n), VR(n,n)
integer :: i, lda, ldvl, ldvr, LWORK, INFO
double precision, allocatable :: Atmp(:,:), WORK(:), VL(:,:)
lda = n
ldvl = 1
ldvr = n
allocate( Atmp(n,n), VL(1,1) )
Atmp(1:n,1:n) = A(1:n,1:n)
allocate(WORK(1))
LWORK = -1
call dgeev('N', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO)
if(INFO.gt.0)then
print*,'dgeev failed !!',INFO
stop
endif
LWORK = max(int(WORK(1)), 1) ! this is the optimal size of WORK
deallocate(WORK)
allocate(WORK(LWORK))
! Actual diagonalization
call dgeev('N', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO)
if(INFO.ne.0) then
print*,'dgeev failed !!', INFO
stop
endif
deallocate(Atmp, WORK, VL)
! print *, ' JOBL = F'
! print *, ' eigenvalues'
! do i = 1, n
! write(*, '(1000(F16.10,X))') WR(i), WI(i)
! enddo
! print *, ' right eigenvect'
! do i = 1, n
! write(*, '(1000(F16.10,X))') VR(:,i)
! enddo
end
! ---
subroutine non_hrmt_real_diag(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
@ -1780,70 +1726,6 @@ end
! ---
subroutine check_weighted_biorthog(n, m, W, Vl, Vr, thr_d, thr_nd, accu_d, accu_nd, S, stop_ifnot)
implicit none
integer, intent(in) :: n, m
double precision, intent(in) :: Vl(n,m), Vr(n,m), W(n,n)
double precision, intent(in) :: thr_d, thr_nd
logical, intent(in) :: stop_ifnot
double precision, intent(out) :: accu_d, accu_nd, S(m,m)
integer :: i, j
double precision, allocatable :: SS(:,:), tmp(:,:)
print *, ' check weighted bi-orthogonality'
! ---
allocate(tmp(m,n))
call dgemm( 'T', 'N', m, n, n, 1.d0 &
, Vl, size(Vl, 1), W, size(W, 1) &
, 0.d0, tmp, size(tmp, 1) )
call dgemm( 'N', 'N', m, m, n, 1.d0 &
, tmp, size(tmp, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
deallocate(tmp)
!print *, ' overlap matrix:'
!do i = 1, m
! write(*,'(1000(F16.10,X))') S(i,:)
!enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + dabs(S(i,i))
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd)
print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
! ---
if( stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d) ) then
print *, ' non bi-orthogonal vectors !'
print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
!print *, ' overlap matrix:'
!do i = 1, m
! write(*,'(1000(F16.10,X))') S(i,:)
!enddo
stop
endif
end
! ---
subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_ifnot)
implicit none
@ -2144,6 +2026,7 @@ subroutine impose_biorthog_degen_eigvec(n, deg_num, e0, L0, R0)
enddo
!print*,' accu_nd after = ', accu_nd
if(accu_nd .gt. 1d-12) then
print*, ' accu_nd =', accu_nd
print*, ' your strategy for degenerates orbitals failed !'
print*, m, 'deg on', i
stop

View File

@ -1,670 +0,0 @@
subroutine non_hrmt_diag_split_degen_bi_orthog(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
double precision, allocatable :: S_nh_inv_half(:,:)
allocate(S_nh_inv_half(n,n))
logical :: complex_root
deallocate(S_nh_inv_half)
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp)
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_diag_split_degen_s_inv_half(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1.d0
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
if(complex_root) then
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp) ! orthogonalization of reigvec
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp) ! orthogonalization of leigvec
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ', accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half, complex_root)
if(complex_root)then
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
else ! the matrix S^{-1/2} exists
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_fock_mat(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine returning the eigenvalues and left/right eigenvectors of the TC fock matrix
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
double precision :: thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' Using impose_unique_biorthog_degen_eigvec'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, leigvec_tmp, reigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print*,'accu_nd = ',accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half,complex_root)
if(complex_root)then
print*,'S^{-1/2} does not exits, using QR bi-orthogonalization'
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end

View File

@ -0,0 +1 @@
tc_scf

View File

@ -0,0 +1,4 @@
================
normal_order_old
================

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,4 @@
================
old_delta_tc_qmc
================

View File

@ -27,7 +27,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
i = 1
j = 1
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_opt_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call hmat_bi_ortho (psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta = 0.d0
@ -39,7 +39,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
do j = 1, ndet
! < I |Htilde | J >
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_opt_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
! < I |H | J >
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
@ -78,7 +78,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
i = 1
j = 1
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_opt_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
@ -88,7 +88,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
do j = 1, ndet
! < I |Htilde | J >
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call htilde_mu_mat_opt_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta(i) = delta(i) + psicoef(j) * htc_tot
enddo

View File

@ -1,4 +1,4 @@
program tc_keywords
program old_delta_tc_qmc
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here

View File

@ -183,11 +183,3 @@ BEGIN_PROVIDER [ double precision, x_W_ij_erf_rk, ( n_points_final_grid,3,mo_num
END_PROVIDER
BEGIN_PROVIDER [ double precision, sqrt_weight_at_r, (n_points_final_grid)]
implicit none
integer :: ipoint
do ipoint = 1, n_points_final_grid
sqrt_weight_at_r(ipoint) = dsqrt(final_weight_at_r_vector(ipoint))
enddo
END_PROVIDER

View File

@ -0,0 +1,8 @@
determinants
normal_order_old
bi_ort_ints
bi_ortho_mos
tc_keywords
non_hermit_dav
dav_general_mat
tc_scf

View File

@ -1,196 +1,3 @@
subroutine get_excitation_general(key_i,key_j, Nint,degree_array,holes_array, particles_array,phase)
use bitmasks
BEGIN_DOC
! returns the array, for each spin, of holes/particles between key_i and key_j
!
! with the following convention: a^+_{particle} a_{hole}|key_i> = |key_j>
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2),particles_array(100,2),degree_array(2)
double precision, intent(out) :: phase
integer :: ispin,k,i,pos
integer(bit_kind) :: key_hole, key_particle
integer(bit_kind) :: xorvec(N_int_max,2)
holes_array = -1
particles_array = -1
degree_array = 0
do i = 1, N_int
xorvec(i,1) = xor( key_i(i,1), key_j(i,1))
xorvec(i,2) = xor( key_i(i,2), key_j(i,2))
degree_array(1) += popcnt(xorvec(i,1))
degree_array(2) += popcnt(xorvec(i,2))
enddo
degree_array(1) = shiftr(degree_array(1),1)
degree_array(2) = shiftr(degree_array(2),1)
do ispin = 1, 2
k = 1
!!! GETTING THE HOLES
do i = 1, N_int
key_hole = iand(xorvec(i,ispin),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
do ispin = 1, 2
k = 1
!!! GETTING THE PARTICLES
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general '
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
integer :: h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree_array(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine get_holes_general(key_i, key_j,Nint, holes_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of holes between key_i and key_j
!
! with the following convention: a_{hole}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2)
integer(bit_kind) :: key_hole
integer :: ispin,k,i,pos
holes_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_hole = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_particles_general(key_i, key_j,Nint,particles_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of particles between key_i and key_j
!
! with the following convention: a^dagger_{particle}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: particles_array(100,2)
integer(bit_kind) :: key_particle
integer :: ispin,k,i,pos
particles_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'Those are the two determinants'
call debug_det(key_i, N_int)
call debug_det(key_j, N_int)
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_phase_general(key_i,Nint,degree, holes_array, particles_array,phase)
implicit none
integer, intent(in) :: degree(2), Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
integer, intent(in) :: holes_array(100,2),particles_array(100,2)
double precision, intent(out) :: phase
integer :: i,ispin,h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine H_tc_s2_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS

View File

@ -181,3 +181,48 @@ end
! ---
subroutine htilde_mu_mat_opt_bi_ortho_no_3e_both(key_j, key_i, Nint, hji,hij)
BEGIN_DOC
!
! <key_j |H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
! Returns the detail of the matrix element WITHOUT ANY CONTRIBUTION FROM THE THREE ELECTRON TERMS
!! WARNING !!
!
! Non hermitian !!
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hji,hij
integer :: degree
hji = 0.d0
hij = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0) then
call diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_i,hji)
hij = hji
else if (degree == 1) then
call single_htilde_mu_mat_fock_bi_ortho_no_3e_both(Nint,key_j, key_i , hji,hij)
else if(degree == 2) then
call double_htilde_mu_mat_fock_bi_ortho_no_3e_both(Nint, key_j, key_i, hji,hij)
endif
if(degree==0) then
hji += nuclear_repulsion
hij += nuclear_repulsion
endif
end
! ---

View File

@ -19,13 +19,13 @@
PROVIDE HF_bitmask
PROVIDE mo_l_coef mo_r_coef
call diag_htilde_mu_mat_bi_ortho_slow(N_int, HF_bitmask, hmono, htwoe, htot)
call diag_htc_bi_orth_2e_brute(N_int, HF_bitmask, hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc) then
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
call diag_htc_bi_orth_3e_brute(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
@ -524,3 +524,310 @@ end
! ---
subroutine diag_htc_bi_orth_2e_brute(Nint, key_i, hmono, htwoe, htot)
BEGIN_DOC
!
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2)
PROVIDE mo_bi_ortho_tc_two_e
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
do ispin = 1, 2
do i = 1, Ne(ispin)
ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii)
enddo
enddo
! alpha/beta two-body
ispin = 1
jspin = 2
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
ii = occ(i,ispin)
do j = 1, Ne(jspin) ! electron 2
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
enddo
enddo
! alpha/alpha two-body
do i = 1, Ne(ispin)
ii = occ(i,ispin)
do j = i+1, Ne(ispin)
jj = occ(j,ispin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
! beta/beta two-body
do i = 1, Ne(jspin)
ii = occ(i,jspin)
do j = i+1, Ne(jspin)
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
htot = hmono + htwoe
end
! ---
subroutine diag_htc_bi_orth_3e_brute(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int, ref
double precision, external :: sym_3_e_int_from_6_idx_tensor
double precision, external :: three_e_diag_parrallel_spin
PROVIDE mo_l_coef mo_r_coef
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
hthree = 0.d0
if((Ne(1)+Ne(2)) .ge. 3) then
! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
hthree += direct_int - exchange_int
enddo
enddo
enddo
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
endif
end
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
!
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
three_e_diag_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
three_e_single_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
integral = three_e_single_parrallel_spin(1,1,1,1)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
three_e_double_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
call wall_time(wall0)
integral = three_e_double_parrallel_spin(1,1,1,1,1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
END_PROVIDER

View File

@ -505,3 +505,63 @@ subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
end
subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e_both(Nint, key_j, key_i, hji,hij)
BEGIN_DOC
! <key_j |H_tilde | key_i> and <key_i |H_tilde | key_j> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hji,hij
double precision :: hmono, htwoe_ji, htwoe_ij
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe_ji = 0.d0
htwoe_ij = 0.d0
hji = 0.d0
hij = 0.d0
if(degree.ne.2)then
return
endif
integer :: degree_i,degree_j
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
htwoe_ji = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
htwoe_ij = mo_bi_ortho_tc_two_e_transp(p2,p1,h2,h1)
else
! same spin two-body
! direct terms
htwoe_ji = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
htwoe_ij = mo_bi_ortho_tc_two_e_transp(p2,p1,h2,h1)
! exchange terms
htwoe_ji -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
htwoe_ij -= mo_bi_ortho_tc_two_e_transp(p1,p2,h2,h1)
endif
htwoe_ji *= phase
hji = htwoe_ji
htwoe_ij *= phase
hij = htwoe_ij
end

View File

@ -618,3 +618,145 @@ subroutine get_single_excitation_from_fock_tc_no_3e(Nint, key_i, key_j, h, p, sp
end
subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e_both(Nint, key_j, key_i, hji,hij)
BEGIN_DOC
! <key_j |H_tilde | key_i> and <key_i |H_tilde | key_j> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hji,hij
double precision :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int, phase
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
other_spin(1) = 2
other_spin(2) = 1
hmono = 0.d0
htwoe = 0.d0
hji = 0.d0
hij = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.ne.1)then
return
endif
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
call get_single_excitation_from_fock_tc_no_3e_both(Nint, key_i, key_j, h1, p1, s1, phase, hji,hij)
end
! ---
subroutine get_single_excitation_from_fock_tc_no_3e_both(Nint, key_i, key_j, h, p, spin, phase, hji,hij)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: h, p, spin
double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hji,hij
double precision :: hmono_ji,htwoe_ji
double precision :: hmono_ij,htwoe_ij
integer(bit_kind) :: differences(Nint,2)
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: partcl(Nint,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer :: occ_partcl(Nint*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i
double precision :: buffer_c_ji(mo_num), buffer_x_ji(mo_num)
double precision :: buffer_c_ij(mo_num), buffer_x_ij(mo_num)
do i = 1, mo_num
buffer_c_ji(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
buffer_x_ji(i) = tc_2e_3idx_exchange_integrals(i,p,h)
buffer_c_ij(i) = tc_2e_3idx_coulomb_integrals_transp(i,p,h)
buffer_x_ij(i) = tc_2e_3idx_exchange_integrals_transp(i,p,h)
enddo
do i = 1, Nint
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
partcl(i,1) = iand(differences(i,1),key_i(i,1))
partcl(i,2) = iand(differences(i,2),key_i(i,2))
enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, Nint)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, Nint)
hmono_ji = mo_bi_ortho_tc_one_e(p,h)
htwoe_ji = fock_op_2_e_tc_closed_shell(p,h)
hmono_ij = mo_bi_ortho_tc_one_e(h,p)
htwoe_ij = fock_op_2_e_tc_closed_shell(h,p)
! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1)
htwoe_ji -= buffer_c_ji(i)
htwoe_ij -= buffer_c_ij(i)
enddo
do i0 = 1, n_occ_ab_hole(2)
i = occ_hole(i0,2)
htwoe_ji -= buffer_c_ji(i)
htwoe_ij -= buffer_c_ij(i)
enddo
! holes :: exchange terms
do i0 = 1, n_occ_ab_hole(spin)
i = occ_hole(i0,spin)
htwoe_ji += buffer_x_ji(i)
htwoe_ij += buffer_x_ij(i)
enddo
! particles :: direct terms
do i0 = 1, n_occ_ab_partcl(1)
i = occ_partcl(i0,1)
htwoe_ji += buffer_c_ji(i)
htwoe_ij += buffer_c_ij(i)
enddo
do i0 = 1, n_occ_ab_partcl(2)
i = occ_partcl(i0,2)
htwoe_ji += buffer_c_ji(i)
htwoe_ij += buffer_c_ij(i)
enddo
! particles :: exchange terms
do i0 = 1, n_occ_ab_partcl(spin)
i = occ_partcl(i0,spin)
htwoe_ji -= buffer_x_ji(i)
htwoe_ij -= buffer_x_ij(i)
enddo
htwoe_ji = htwoe_ji * phase
hmono_ji = hmono_ji * phase
hji = htwoe_ji + hmono_ji
htwoe_ij = htwoe_ij * phase
hmono_ij = hmono_ij * phase
hij = htwoe_ij + hmono_ij
end

View File

@ -22,6 +22,7 @@ BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho, (N_det,N_det)]
if(noL_standard) then
PROVIDE noL_0e
print*, "noL_0e =", noL_0e
PROVIDE noL_1e
PROVIDE noL_2e
endif

View File

@ -0,0 +1,59 @@
IRPF90_temp/
IRPF90_man/
build.ninja
irpf90.make
ezfio_interface.irp.f
irpf90_entities
tags
Makefile
ao_basis
ao_one_e_ints
ao_two_e_erf_ints
ao_two_e_ints
aux_quantities
becke_numerical_grid
bitmask
cis
cisd
cipsi
davidson
davidson_dressed
davidson_undressed
density_for_dft
determinants
dft_keywords
dft_utils_in_r
dft_utils_one_e
dft_utils_two_body
dressing
dummy
electrons
ezfio_files
fci
generators_cas
generators_full
hartree_fock
iterations
kohn_sham
kohn_sham_rs
mo_basis
mo_guess
mo_one_e_ints
mo_two_e_erf_ints
mo_two_e_ints
mpi
mrpt_utils
nuclei
perturbation
pseudo
psiref_cas
psiref_utils
scf_utils
selectors_cassd
selectors_full
selectors_utils
single_ref_method
slave
tools
utils
zmq

View File

@ -0,0 +1,8 @@
determinants
normal_order_old
bi_ort_ints
bi_ortho_mos
tc_keywords
non_hermit_dav
dav_general_mat
tc_scf

View File

@ -0,0 +1,4 @@
================
slater_tc_no_opt
================

View File

@ -1,7 +1,7 @@
! ---
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
subroutine diag_htc_bi_orth_3e_brute(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS

View File

@ -0,0 +1,7 @@
program slater_tc_no_opt
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
end

View File

@ -61,7 +61,7 @@ subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree,
if(degree.gt.2) return
if(degree == 0) then
call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
call diag_htc_bi_orth_2e_brute(Nint, key_i, hmono, htwoe, htot)
else if (degree == 1) then
call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
else if(degree == 2) then
@ -76,7 +76,7 @@ subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree,
else if((degree == 1) .and. (elec_num .gt. 2) .and. three_e_4_idx_term) then
call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
else if((degree == 0) .and. (elec_num .gt. 2) .and. three_e_3_idx_term) then
call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
call diag_htc_bi_orth_3e_brute(Nint, key_i, hthree)
endif
endif
@ -95,75 +95,6 @@ end
! ---
subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
BEGIN_DOC
!
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2)
PROVIDE mo_bi_ortho_tc_two_e
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
do ispin = 1, 2
do i = 1, Ne(ispin)
ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii)
enddo
enddo
! alpha/beta two-body
ispin = 1
jspin = 2
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
ii = occ(i,ispin)
do j = 1, Ne(jspin) ! electron 2
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
enddo
enddo
! alpha/alpha two-body
do i = 1, Ne(ispin)
ii = occ(i,ispin)
do j = i+1, Ne(ispin)
jj = occ(j,ispin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
! beta/beta two-body
do i = 1, Ne(jspin)
ii = occ(i,jspin)
do j = i+1, Ne(jspin)
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
htot = hmono + htwoe
end
! ---
subroutine double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
BEGIN_DOC

View File

@ -88,7 +88,7 @@ subroutine test_slater_tc_opt
i_count = 0.d0
do i = 1, N_det
do j = 1,N_det
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hnewmono, hnewtwoe, hnewthree, hnewtot)
if(dabs(htot).gt.1.d-15)then
i_count += 1.D0
@ -124,7 +124,7 @@ subroutine timing_tot
do j = 1, N_det
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
i_count += 1.d0
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
@ -171,7 +171,7 @@ subroutine timing_diag
do i = 1, N_det
do j = i,i
i_count += 1.d0
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
@ -208,7 +208,7 @@ subroutine timing_single
if(degree.ne.1)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
@ -250,7 +250,7 @@ subroutine timing_double
if(degree.ne.2)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo

59
plugins/local/spher_harm/.gitignore vendored Normal file
View File

@ -0,0 +1,59 @@
IRPF90_temp/
IRPF90_man/
build.ninja
irpf90.make
ezfio_interface.irp.f
irpf90_entities
tags
Makefile
ao_basis
ao_one_e_ints
ao_two_e_erf_ints
ao_two_e_ints
aux_quantities
becke_numerical_grid
bitmask
cis
cisd
cipsi
davidson
davidson_dressed
davidson_undressed
density_for_dft
determinants
dft_keywords
dft_utils_in_r
dft_utils_one_e
dft_utils_two_body
dressing
dummy
electrons
ezfio_files
fci
generators_cas
generators_full
hartree_fock
iterations
kohn_sham
kohn_sham_rs
mo_basis
mo_guess
mo_one_e_ints
mo_two_e_erf_ints
mo_two_e_ints
mpi
mrpt_utils
nuclei
perturbation
pseudo
psiref_cas
psiref_utils
scf_utils
selectors_cassd
selectors_full
selectors_utils
single_ref_method
slave
tools
utils
zmq

View File

@ -0,0 +1 @@
dft_utils_in_r

View File

@ -0,0 +1,7 @@
==========
spher_harm
==========
Routines for spherical Harmonics evaluation in real space.
The main routine is "spher_harm_func_r3(r,l,m,re_ylm, im_ylm)".
The test routine is "test_spher_harm" where everything is explained in details.

View File

@ -0,0 +1,50 @@
double precision function plgndr(l,m,x)
integer, intent(in) :: l,m
double precision, intent(in) :: x
BEGIN_DOC
! associated Legenre polynom P_l,m(x). Used for the Y_lm(theta,phi)
! Taken from https://iate.oac.uncor.edu/~mario/materia/nr/numrec/f6-8.pdf
END_DOC
integer :: i,ll
double precision :: fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.dabs(x).gt.1.d0)then
print*,'bad arguments in plgndr'
pause
endif
pmm=1.d0
if(m.gt.0) then
somx2=dsqrt((1.d0-x)*(1.d0+x))
fact=1.d0
do i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.d0
enddo
endif ! m > 0
if(l.eq.m) then
plgndr=pmm
else
pmmp1=x*(2*m+1)*pmm ! Compute P_m+1^m
if(l.eq.m+1) then
plgndr=pmmp1
else ! Compute P_l^m, l> m+1
do ll=m+2,l
pll=(x*dble(2*ll-1)*pmmp1-dble(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll
enddo
plgndr=pll
endif ! l.eq.m+1
endif ! l.eq.m
return
end
double precision function ortho_assoc_gaus_pol(l1,m1,l2)
implicit none
integer, intent(in) :: l1,m1,l2
double precision :: fact
if(l1.ne.l2)then
ortho_assoc_gaus_pol= 0.d0
else
ortho_assoc_gaus_pol = 2.d0*fact(l1+m1) / (dble(2*l1+1)*fact(l1-m1))
endif
end

View File

@ -0,0 +1,231 @@
subroutine test_spher_harm
implicit none
BEGIN_DOC
! routine to test the generic spherical harmonics routine "spher_harm_func_r3" from R^3 --> C
!
! We test <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2
!
! The test is done through the integration on a sphere with the Lebedev grid.
END_DOC
include 'constants.include.F'
integer :: l1,m1,i,l2,m2,lmax
double precision :: r(3),weight,accu_re, accu_im,accu
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
double precision :: theta,phi,r_abs
lmax = 5 ! Maximum angular momentum until which we are going to test orthogonality conditions
do l1 = 0,lmax
do m1 = -l1 ,l1
do l2 = 0,lmax
do m2 = -l2 ,l2
accu_re = 0.d0 ! accumulator for the REAL part of <Y_l1,m1|Y_l2,m2>
accu_im = 0.d0 ! accumulator for the IMAGINARY part of <Y_l1,m1|Y_l2,m2>
accu = 0.d0 ! accumulator for the weights ==> should be \int dOmega == 4 pi
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
! \approx \sum_i W_i Y_l1,m1^*(r_i) Y_l2,m2(r_i) WITH r_i being on the spher of radius 1
do i = 1, n_points_integration_angular
r(1:3) = angular_quadrature_points(i,1:3) ! ith Lebedev point (x,y,z) on the sphere of radius 1
weight = weights_angular_points(i) ! associated Lebdev weight not necessarily positive
!!!!!!!!!!! Test of the Cartesian --> Spherical coordinates
! theta MUST belong to [0,pi] and phi to [0,2pi]
! gets the cartesian to spherical change of coordinates
call cartesian_to_spherical(r,theta,phi,r_abs)
if(theta.gt.pi.or.theta.lt.0.d0)then
print*,'pb with theta, it should be in [0,pi]',theta
print*,r
endif
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
print*,'pb with phi, it should be in [0,2 pi]',phi/pi
print*,r
endif
!!!!!!!!!!! Routines returning the Spherical harmonics on the grid point
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
!!!!!!!!!!! Integration of Y_l1,m1^*(r) Y_l2,m2(r)
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
enddo
! Test that the sum of the weights is 4 pi
if(dabs(accu - dfour_pi).gt.1.d-6)then
print*,'Problem !! The sum of the Lebedev weight is not 4 pi ..'
print*,accu
stop
endif
! Test for the delta l1,l2 and delta m1,m2
!
! Test for the off-diagonal part of the Kronecker delta
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
! Test for the diagonal part of the Kronecker delta
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_cart
implicit none
BEGIN_DOC
! test for the cartesian --> spherical change of coordinates
!
! test the routine "cartesian_to_spherical" such that the polar angle theta ranges in [0,pi]
!
! and the asymuthal angle phi ranges in [0,2pi]
END_DOC
include 'constants.include.F'
double precision :: r(3),theta,phi,r_abs
print*,''
r = 0.d0
r(1) = 1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) = 1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
end
subroutine test_brutal_spheric
implicit none
include 'constants.include.F'
BEGIN_DOC
! Test for the <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2 using the following two dimentional integration
!
! \int_0^2pi d Phi \int_-1^+1 d(cos(Theta)) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
!
!= \int_0^2pi d Phi \int_0^pi dTheta sin(Theta) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
!
! Allows to test for the general functions "spher_harm_func_m_pos" with "spher_harm_func_expl"
END_DOC
integer :: itheta, iphi,ntheta,nphi
double precision :: theta_min, theta_max, dtheta,theta
double precision :: phi_min, phi_max, dphi,phi
double precision :: accu_re, accu_im,weight
double precision :: re_ylm_1, im_ylm_1 ,re_ylm_2, im_ylm_2,accu
integer :: l1,m1,i,l2,m2,lmax
phi_min = 0.d0
phi_max = 2.D0 * pi
theta_min = 0.d0
theta_max = 1.D0 * pi
ntheta = 1000
nphi = 1000
dphi = (phi_max - phi_min)/dble(nphi)
dtheta = (theta_max - theta_min)/dble(ntheta)
lmax = 2
do l1 = 0,lmax
do m1 = 0 ,l1
do l2 = 0,lmax
do m2 = 0 ,l2
accu_re = 0.d0
accu_im = 0.d0
accu = 0.d0
theta = theta_min
do itheta = 1, ntheta
phi = phi_min
do iphi = 1, nphi
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
weight = dtheta * dphi * dsin(theta)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
phi += dphi
enddo
theta += dtheta
enddo
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
print*,'accu = ',accu
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
endif
endif
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_assoc_leg_pol
implicit none
BEGIN_DOC
! Test for the associated Legendre Polynoms. The test is done through the orthogonality condition.
END_DOC
print *, 'Hello world'
integer :: l1,m1,ngrid,i,l2,m2
l1 = 0
m1 = 0
l2 = 2
m2 = 0
double precision :: x, dx,xmax,accu,xmin
double precision :: plgndr,func_1,func_2,ortho_assoc_gaus_pol
ngrid = 100000
xmax = 1.d0
xmin = -1.d0
dx = (xmax-xmin)/dble(ngrid)
do l2 = 0,10
x = xmin
accu = 0.d0
do i = 1, ngrid
func_1 = plgndr(l1,m1,x)
func_2 = plgndr(l2,m2,x)
write(33,*)x, func_1,func_2
accu += func_1 * func_2 * dx
x += dx
enddo
print*,'l2 = ',l2
print*,'accu = ',accu
print*,ortho_assoc_gaus_pol(l1,m1,l2)
enddo
end

View File

@ -0,0 +1,7 @@
program spher_harm
implicit none
! call test_spher_harm
! call test_cart
call test_brutal_spheric
end

View File

@ -0,0 +1,151 @@
subroutine spher_harm_func_r3(r,l,m,re_ylm, im_ylm)
implicit none
integer, intent(in) :: l,m
double precision, intent(in) :: r(3)
double precision, intent(out) :: re_ylm, im_ylm
double precision :: theta, phi,r_abs
call cartesian_to_spherical(r,theta,phi,r_abs)
call spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
end
subroutine spher_harm_func_m_pos(l,m,theta,phi,re_ylm, im_ylm)
include 'constants.include.F'
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with m >0
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: prefact,fact,cos_theta,plgndr,p_lm
double precision :: tmp
prefact = dble(2*l+1)*fact(l-m)/(dfour_pi * fact(l+m))
prefact = dsqrt(prefact)
cos_theta = dcos(theta)
p_lm = plgndr(l,m,cos_theta)
tmp = prefact * p_lm
re_ylm = dcos(dble(m)*phi) * tmp
im_ylm = dsin(dble(m)*phi) * tmp
end
subroutine spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: re_ylm_pos,im_ylm_pos,tmp
integer :: minus_m
if(abs(m).gt.l)then
print*,'|m| > l in spher_harm_func !! stopping ...'
stop
endif
if(m.ge.0)then
call spher_harm_func_m_pos(l,m,theta,phi,re_ylm_pos, im_ylm_pos)
re_ylm = re_ylm_pos
im_ylm = im_ylm_pos
else
minus_m = -m !> 0
call spher_harm_func_m_pos(l,minus_m,theta,phi,re_ylm_pos, im_ylm_pos)
tmp = (-1)**minus_m
re_ylm = tmp * re_ylm_pos
im_ylm = -tmp * im_ylm_pos ! complex conjugate
endif
end
subroutine cartesian_to_spherical(r,theta,phi,r_abs)
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out):: theta, phi,r_abs
double precision :: r_2,x_2_y_2,tmp
include 'constants.include.F'
x_2_y_2 = r(1)*r(1) + r(2)*r(2)
r_2 = x_2_y_2 + r(3)*r(3)
r_abs = dsqrt(r_2)
if(r_abs.gt.1.d-20)then
theta = dacos(r(3)/r_abs)
else
theta = 0.d0
endif
if(.true.)then
if(dabs(r(1)).gt.0.d0)then
tmp = datan(r(2)/r(1))
! phi = datan2(r(2),r(1))
endif
! From Wikipedia on Spherical Harmonics
if(r(1).gt.0.d0)then
phi = tmp
else if(r(1).lt.0.d0.and.r(2).ge.0.d0)then
phi = tmp + pi
else if(r(1).lt.0.d0.and.r(2).lt.0.d0)then
phi = tmp - pi
else if(r(1)==0.d0.and.r(2).gt.0.d0)then
phi = 0.5d0*pi
else if(r(1)==0.d0.and.r(2).lt.0.d0)then
phi =-0.5d0*pi
else if(r(1)==0.d0.and.r(2)==0.d0)then
phi = 0.d0
endif
if(r(2).lt.0.d0.and.r(1).le.0.d0)then
tmp = pi - dabs(phi)
phi = pi + tmp
else if(r(2).lt.0.d0.and.r(1).gt.0.d0)then
phi = dtwo_pi + phi
endif
endif
if(.false.)then
x_2_y_2 = dsqrt(x_2_y_2)
if(dabs(x_2_y_2).gt.1.d-20.and.dabs(r(2)).gt.1.d-20)then
phi = dabs(r(2))/r(2) * dacos(r(1)/x_2_y_2)
else
phi = 0.d0
endif
endif
end
subroutine spher_harm_func_expl(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l and 0<= l <=2
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: tmp
include 'constants.include.F'
if(l==0.and.m==0)then
re_ylm = 0.5d0 * inv_sq_pi
im_ylm = 0.d0
else if(l==1.and.m==1)then
tmp = - inv_sq_pi * dsqrt(3.d0/8.d0) * dsin(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==1.and.m==0)then
tmp = inv_sq_pi * dsqrt(3.d0/4.d0) * dcos(theta)
re_ylm = tmp
im_ylm = 0.d0
else if(l==2.and.m==2)then
tmp = 0.25d0 * inv_sq_pi * dsqrt(0.5d0*15.d0) * dsin(theta)*dsin(theta)
re_ylm = tmp * dcos(2.d0*phi)
im_ylm = tmp * dsin(2.d0*phi)
else if(l==2.and.m==1)then
tmp = - inv_sq_pi * dsqrt(15.d0/8.d0) * dsin(theta) * dcos(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==2.and.m==0)then
tmp = dsqrt(5.d0/4.d0) * inv_sq_pi* (1.5d0*dcos(theta)*dcos(theta)-0.5d0)
re_ylm = tmp
im_ylm = 0.d0
endif
end

View File

@ -9,3 +9,14 @@ interface: ezfio
doc: Coefficients for the right wave function
type: double precision
size: (determinants.n_det,determinants.n_states)
[tc_gs_energy]
type: Threshold
doc: TC GS Energy
interface: ezfio
[tc_gs_var]
type: Threshold
doc: TC GS VAR
interface: ezfio

View File

@ -1,6 +1,2 @@
bi_ort_ints
bi_ortho_mos
tc_keywords
non_hermit_dav
dav_general_mat
tc_scf
slater_tc

View File

@ -0,0 +1,2 @@
S^2 !!
Bi orthonormalize the eigenvectors of H_tc after Davidson or lapack

View File

@ -2,7 +2,7 @@
BEGIN_PROVIDER [ double precision, e_tilde_00]
implicit none
double precision :: hmono,htwoe,hthree,htot
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
call htilde_mu_mat_opt_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
e_tilde_00 = htot
END_PROVIDER
@ -18,16 +18,15 @@
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_opt_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_pt2_tc_bi_orth += coef_pt1 * htilde_ij
if(degree == 1)then
e_pt2_tc_bi_orth_single += coef_pt1 * htilde_ij
else
! print*,'coef_pt1, e_pt2',coef_pt1,coef_pt1 * htilde_ij
e_pt2_tc_bi_orth_double += coef_pt1 * htilde_ij
endif
endif
@ -37,7 +36,7 @@
BEGIN_PROVIDER [ double precision, e_tilde_bi_orth_00]
implicit none
double precision :: hmono,htwoe,hthree,htilde_ij
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
call htilde_mu_mat_opt_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
e_tilde_bi_orth_00 += nuclear_repulsion
END_PROVIDER
@ -57,7 +56,7 @@
e_corr_double_bi_orth = 0.d0
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_opt_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
if(degree == 1)then
e_corr_single_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
e_corr_single_bi_orth_abs += dabs(reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1))
@ -80,7 +79,7 @@
do i = 1, N_det
accu += reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(i,1)
do j = 1, N_det
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_tc_left_right += htilde_ij * reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(j,1)
enddo
enddo
@ -99,8 +98,8 @@ BEGIN_PROVIDER [ double precision, coef_pt1_bi_ortho, (N_det)]
if(degree==0)then
coef_pt1_bi_ortho(i) = 1.d0
else
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
coef_pt1_bi_ortho(i)= coef_pt1

View File

@ -1,32 +0,0 @@
program print_tc_energy
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
PROVIDE j2e_type
PROVIDE j1e_type
PROVIDE env_type
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
call write_tc_energy()
end

View File

@ -1,129 +0,0 @@
program pt2_tc_cisd
BEGIN_DOC
!
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together
! with the energy. Saves the left-right wave functions at the end.
!
END_DOC
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
print*, ' nb of states = ', N_states
print*, ' nb of det = ', N_det
call routine_diag()
call routine
end
subroutine routine
implicit none
integer :: i,h1,p1,h2,p2,s1,s2,degree
double precision :: h0i,hi0,e00,ei,delta_e
double precision :: norm,e_corr,coef,e_corr_pos,e_corr_neg,e_corr_abs
integer :: exc(0:2,2,2)
double precision :: phase
double precision :: eh1,ep1,eh2,ep2
norm = 0.d0
e_corr = 0.d0
e_corr_abs = 0.d0
e_corr_pos = 0.d0
e_corr_neg = 0.d0
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,1), N_int, e00)
do i = 2, N_det
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,1), N_int, hi0)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,i), N_int, h0i)
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, ei)
call get_excitation_degree(psi_det(1,1,1), psi_det(1,1,i),degree,N_int)
call get_excitation(psi_det(1,1,1), psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
eh1 = Fock_matrix_tc_diag_mo_tot(h1)
ep1 = Fock_matrix_tc_diag_mo_tot(p1)
delta_e = eh1 - ep1
if (degree==2)then
eh2 = Fock_matrix_tc_diag_mo_tot(h2)
ep2 = Fock_matrix_tc_diag_mo_tot(p2)
delta_e += eh2 - ep2
endif
! delta_e = e00 - ei
coef = hi0/delta_e
norm += coef*coef
e_corr = coef* h0i
if(e_corr.lt.0.d0)then
e_corr_neg += e_corr
elseif(e_corr.gt.0.d0)then
e_corr_pos += e_corr
endif
e_corr_abs += dabs(e_corr)
enddo
print*,'e_corr_abs = ',e_corr_abs
print*,'e_corr_pos = ',e_corr_pos
print*,'e_corr_neg = ',e_corr_neg
print*,'norm = ',dsqrt(norm)
end
subroutine routine_diag()
implicit none
integer :: i, j, k
double precision :: dE
! provide eigval_right_tc_bi_orth
! provide overlap_bi_ortho
! provide htilde_matrix_elmt_bi_ortho
if(N_states .eq. 1) then
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)
print*,'e_tc_left_right = ',e_tc_left_right
print*,'e_tilde_bi_orth_00 = ',e_tilde_bi_orth_00
print*,'e_pt2_tc_bi_orth = ',e_pt2_tc_bi_orth
print*,'e_pt2_tc_bi_orth_single = ',e_pt2_tc_bi_orth_single
print*,'e_pt2_tc_bi_orth_double = ',e_pt2_tc_bi_orth_double
print*,'***'
print*,'e_corr_bi_orth = ',e_corr_bi_orth
print*,'e_corr_bi_orth_proj = ',e_corr_bi_orth_proj
print*,'e_corr_bi_orth_proj_abs = ',e_corr_bi_orth_proj_abs
print*,'e_corr_single_bi_orth = ',e_corr_single_bi_orth
print*,'e_corr_double_bi_orth = ',e_corr_double_bi_orth
print*,'e_corr_single_bi_orth_abs = ',e_corr_single_bi_orth_abs
print*,'e_corr_double_bi_orth_abs = ',e_corr_double_bi_orth_abs
print*,'Left/right eigenvectors'
do i = 1,N_det
write(*,'(I5,X,(100(F12.7,X)))')i,leigvec_tc_bi_orth(i,1),reigvec_tc_bi_orth(i,1),leigvec_tc_bi_orth(i,1)*reigvec_tc_bi_orth(i,1)
enddo
else
print*,'eigval_right_tc_bi_orth : '
do i = 1, N_states
print*, i, eigval_right_tc_bi_orth(i)
enddo
print*,''
print*,'******************************************************'
print*,'TC Excitation energies (au) (eV)'
do i = 2, N_states
dE = eigval_right_tc_bi_orth(i) - eigval_right_tc_bi_orth(1)
print*, i, dE, dE/0.0367502d0
enddo
print*,''
endif
end

View File

@ -1,140 +0,0 @@
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
!
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
three_e_diag_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
three_e_single_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
integral = three_e_single_parrallel_spin(1,1,1,1)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
three_e_double_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
call wall_time(wall0)
integral = three_e_double_parrallel_spin(1,1,1,1,1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
END_PROVIDER

Some files were not shown because too many files have changed in this diff Show More