mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 18:16:04 +01:00
Merge branch 'dev-stable-tc-scf' into dev-stable-tc-scf
This commit is contained in:
commit
fb99d995e1
@ -12,32 +12,27 @@
|
||||
double precision :: accu_d, accu_nd
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
! TODO : re do the DEGEMM
|
||||
! overlap_bi_ortho = 0.d0
|
||||
! do i = 1, mo_num
|
||||
! do k = 1, mo_num
|
||||
! do m = 1, ao_num
|
||||
! do n = 1, ao_num
|
||||
! overlap_bi_ortho(k,i) += ao_overlap(n,m) * mo_l_coef(n,k) * mo_r_coef(m,i)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
overlap_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do m = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
overlap_bi_ortho(k,i) += ao_overlap(n,m) * mo_l_coef(n,k) * mo_r_coef(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! allocate( tmp(mo_num,ao_num) )
|
||||
!
|
||||
! ! tmp <-- L.T x S_ao
|
||||
! call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
! , mo_l_coef, size(mo_l_coef, 1), ao_overlap, size(ao_overlap, 1) &
|
||||
! , 0.d0, tmp, size(tmp, 1) )
|
||||
!
|
||||
! ! S <-- tmp x R
|
||||
! call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
! , tmp, size(tmp, 1), mo_r_coef, size(mo_r_coef, 1) &
|
||||
! , 0.d0, overlap_bi_ortho, size(overlap_bi_ortho, 1) )
|
||||
!
|
||||
! deallocate( tmp )
|
||||
allocate( tmp(mo_num,ao_num) )
|
||||
! tmp <-- L.T x S_ao
|
||||
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
, mo_l_coef(1,1), size(mo_l_coef, 1), ao_overlap(1,1), size(ao_overlap, 1) &
|
||||
, 0.d0, tmp(1,1), size(tmp, 1) )
|
||||
! S <-- tmp x R
|
||||
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
, tmp(1,1), size(tmp, 1), mo_r_coef(1,1), size(mo_r_coef, 1) &
|
||||
, 0.d0, overlap_bi_ortho(1,1), size(overlap_bi_ortho, 1) )
|
||||
deallocate(tmp)
|
||||
|
||||
do i = 1, mo_num
|
||||
overlap_diag_bi_ortho(i) = overlap_bi_ortho(i,i)
|
||||
@ -84,20 +79,41 @@ END_PROVIDER
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, p, q
|
||||
integer :: i, j, p, q
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
overlap_mo_r = 0.d0
|
||||
overlap_mo_l = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do p = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
overlap_mo_r(j,i) += mo_r_coef(q,i) * mo_r_coef(p,j) * ao_overlap(q,p)
|
||||
overlap_mo_l(j,i) += mo_l_coef(q,i) * mo_l_coef(p,j) * ao_overlap(q,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!overlap_mo_r = 0.d0
|
||||
!overlap_mo_l = 0.d0
|
||||
!do i = 1, mo_num
|
||||
! do j = 1, mo_num
|
||||
! do p = 1, ao_num
|
||||
! do q = 1, ao_num
|
||||
! overlap_mo_r(j,i) += mo_r_coef(q,i) * mo_r_coef(p,j) * ao_overlap(q,p)
|
||||
! overlap_mo_l(j,i) += mo_l_coef(q,i) * mo_l_coef(p,j) * ao_overlap(q,p)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
allocate( tmp(mo_num,ao_num) )
|
||||
|
||||
tmp = 0.d0
|
||||
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
, mo_r_coef(1,1), size(mo_r_coef, 1), ao_overlap(1,1), size(ao_overlap, 1) &
|
||||
, 0.d0, tmp(1,1), size(tmp, 1) )
|
||||
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
, tmp(1,1), size(tmp, 1), mo_r_coef(1,1), size(mo_r_coef, 1) &
|
||||
, 0.d0, overlap_mo_r(1,1), size(overlap_mo_r, 1) )
|
||||
|
||||
tmp = 0.d0
|
||||
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
, mo_l_coef(1,1), size(mo_l_coef, 1), ao_overlap(1,1), size(ao_overlap, 1) &
|
||||
, 0.d0, tmp(1,1), size(tmp, 1) )
|
||||
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
, tmp(1,1), size(tmp, 1), mo_l_coef(1,1), size(mo_l_coef, 1) &
|
||||
, 0.d0, overlap_mo_l(1,1), size(overlap_mo_l, 1) )
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,71 +1,18 @@
|
||||
[threshold_davidson]
|
||||
type: Threshold
|
||||
doc: Thresholds of Davidson's algorithm if threshold_davidson_from_pt2 is false.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[threshold_nonsym_davidson]
|
||||
type: Threshold
|
||||
doc: Thresholds of non-symetric Davidson's algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[threshold_davidson_from_pt2]
|
||||
type: logical
|
||||
doc: Thresholds of Davidson's algorithm is set to E(rPT2)*threshold_davidson_from_pt2
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[n_states_diag]
|
||||
type: States_number
|
||||
doc: Controls the number of states to consider during the Davdison diagonalization. The number of states is n_states * n_states_diag
|
||||
default: 4
|
||||
interface: ezfio,ocaml
|
||||
|
||||
[davidson_sze_max]
|
||||
type: Strictly_positive_int
|
||||
doc: Number of micro-iterations before re-contracting
|
||||
default: 15
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[state_following]
|
||||
type: logical
|
||||
doc: If |true|, the states are re-ordered to match the input states
|
||||
default: False
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[disk_based_davidson]
|
||||
type: logical
|
||||
doc: If |true|, a memory-mapped file may be used to store the W and S2 vectors if not enough RAM is available
|
||||
default: True
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[csf_based]
|
||||
type: logical
|
||||
doc: If |true|, use the CSF-based algorithm
|
||||
default: False
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[distributed_davidson]
|
||||
type: logical
|
||||
doc: If |true|, use the distributed algorithm
|
||||
default: True
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[only_expected_s2]
|
||||
type: logical
|
||||
doc: If |true|, use filter out all vectors with bad |S^2| values
|
||||
default: True
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[n_det_max_full]
|
||||
type: Det_number_max
|
||||
doc: Maximum number of determinants where |H| is fully diagonalized
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1000
|
||||
|
||||
[without_diagonal]
|
||||
type: logical
|
||||
doc: If |true|, don't use denominator
|
||||
default: False
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
|
@ -1 +1,2 @@
|
||||
csf
|
||||
davidson_keywords
|
||||
|
@ -546,21 +546,6 @@ end
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, nthreads_davidson ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of threads for Davidson
|
||||
END_DOC
|
||||
nthreads_davidson = nproc
|
||||
character*(32) :: env
|
||||
call getenv('QP_NTHREADS_DAVIDSON',env)
|
||||
if (trim(env) /= '') then
|
||||
read(env,*) nthreads_davidson
|
||||
call write_int(6,nthreads_davidson,'Target number of threads for <Psi|H|Psi>')
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
integer function zmq_put_N_states_diag(zmq_to_qp_run_socket,worker_id)
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
@ -14,15 +14,6 @@ BEGIN_PROVIDER [ character*(64), diag_algorithm ]
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, threshold_davidson_pt2 ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Threshold of Davidson's algorithm, using PT2 as a guide
|
||||
END_DOC
|
||||
threshold_davidson_pt2 = threshold_davidson
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, dressed_column_idx, (N_states) ]
|
||||
@ -66,7 +57,7 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
integer :: i,k
|
||||
integer :: i,k,l
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
@ -87,9 +78,14 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
|
||||
|
||||
if (dressing_state > 0) then
|
||||
do k=1,N_st
|
||||
|
||||
do i=1,sze
|
||||
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
||||
enddo
|
||||
|
||||
!l = dressed_column_idx(k)
|
||||
!H_jj(l) += u_in(l,k) * dressing_column_h(l,k)
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
@ -467,7 +463,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
|
||||
|
||||
y = h
|
||||
! y = h_p
|
||||
!y = h_p
|
||||
lwork = -1
|
||||
allocate(work(1))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
|
541
src/davidson/diagonalization_nonsym_h_dressed.irp.f
Normal file
541
src/davidson/diagonalization_nonsym_h_dressed.irp.f
Normal file
@ -0,0 +1,541 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_diag_nonsym_h(dets_in, u_in, dim_in, energies, sze, N_st, N_st_diag, Nint, dressing_state, converged)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! non-sym Davidson diagonalization.
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
|
||||
integer, intent(in) :: dressing_state
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
logical, intent(out) :: converged
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
|
||||
integer :: i, k, l
|
||||
double precision :: f
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision, external :: diag_H_mat_elem
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
allocate(H_jj(sze))
|
||||
|
||||
H_jj(1) = diag_H_mat_elem(dets_in(1,1,1), Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze, H_jj, dets_in, Nint) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i = 2, sze
|
||||
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i), Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if(dressing_state > 0) then
|
||||
do k = 1, N_st
|
||||
do l = 1, N_st
|
||||
f = overlap_states_inv(k,l)
|
||||
|
||||
!do i = 1, N_det
|
||||
! H_jj(i) += f * dressing_delta(i,k) * psi_coef(i,l)
|
||||
do i = 1, dim_in
|
||||
H_jj(i) += f * dressing_delta(i,k) * u_in(i,l)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
call davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag, Nint, dressing_state, converged)
|
||||
|
||||
deallocate(H_jj)
|
||||
|
||||
end subroutine davidson_diag_nonsym_h
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag_in, Nint, dressing_state, converged)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! non-sym Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
use bitmasks
|
||||
use mmap_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in, Nint
|
||||
integer, intent(in) :: dressing_state
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
double precision, intent(out) :: energies(N_st_diag_in)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
||||
|
||||
logical :: disk_based
|
||||
character*(16384) :: write_buffer
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter, N_st_diag, itertot, shift, shift2, itermax, istate
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
integer :: maxab
|
||||
double precision :: rss
|
||||
double precision :: cmax
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: r1, r2
|
||||
double precision :: f
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:), u_tmp(:,:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
double precision, allocatable :: U(:,:), overlap(:,:)
|
||||
double precision, pointer :: W(:,:)
|
||||
|
||||
double precision, external :: u_dot_u
|
||||
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
itertot = 0
|
||||
|
||||
if(state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
|
||||
PROVIDE threshold_nonsym_davidson
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique) + 1
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if(m==1 .and. disk_based_davidson) then
|
||||
m = 0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of determinants')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6, '(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
if(disk_based) then
|
||||
! Create memory-mapped files for W and S
|
||||
type(c_ptr) :: ptr_w, ptr_s
|
||||
integer :: fd_s, fd_w
|
||||
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
8, fd_w, .False., ptr_w)
|
||||
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
|
||||
else
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
endif
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
u_tmp(N_st,N_st_diag))
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
do k = N_st+1, N_st_diag
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
||||
enddo
|
||||
u_in(k,k) = u_in(k,k) + 10.d0
|
||||
enddo
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
! if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
if( (sze > 100000) .and. distributed_davidson ) then
|
||||
call H_u_0_nstates_zmq (W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
else
|
||||
call H_u_0_nstates_openmp(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
endif
|
||||
! else
|
||||
! ! Already computed in update below
|
||||
! continue
|
||||
! endif
|
||||
|
||||
if(dressing_state > 0) then
|
||||
|
||||
call dgemm( 'T', 'N', N_st, N_st_diag, sze, 1.d0 &
|
||||
, psi_coef, size(psi_coef, 1), U(1, shift+1), size(U, 1) &
|
||||
, 0.d0, u_tmp, size(u_tmp, 1))
|
||||
|
||||
do istate = 1, N_st_diag
|
||||
do k = 1, N_st
|
||||
do l = 1, N_st
|
||||
f = overlap_states_inv(k,l)
|
||||
do i = 1, sze
|
||||
W(i,shift+istate) += f * dressing_delta(i,k) * u_tmp(l,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k = 1, shift2
|
||||
do i = 1, shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k = 1, N_st
|
||||
cmax = -1.d0
|
||||
do i = 1, N_st
|
||||
if(overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i = 1, N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k = 1, N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k = 1, N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1))
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
|
||||
if(k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
if((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
if(threshold_davidson_from_pt2) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
|
||||
else
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1))
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1), 0.d0 &
|
||||
, u_in, size(u_in, 1))
|
||||
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze, N_st_diag, U, size(U, 1), threshold_davidson_pt2)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k = 1, N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
if(disk_based) then
|
||||
! Remove temp files
|
||||
integer, external :: getUnitAndOpen
|
||||
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
||||
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
||||
close(fd_w,status='delete')
|
||||
else
|
||||
deallocate(W)
|
||||
endif
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda, &
|
||||
u_tmp &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_diag_nonsym_hjj
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
40
src/davidson/overlap_states.irp.f
Normal file
40
src/davidson/overlap_states.irp.f
Normal file
@ -0,0 +1,40 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, overlap_states, (N_states,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_states_inv, (N_states,N_states) ]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! S_kl = ck.T x cl
|
||||
! = psi_coef(:,k).T x psi_coef(:,l)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: o_tmp
|
||||
|
||||
if(N_states == 1) then
|
||||
|
||||
o_tmp = 0.d0
|
||||
do i = 1, N_det
|
||||
o_tmp = o_tmp + psi_coef(i,1) * psi_coef(i,1)
|
||||
enddo
|
||||
overlap_states (1,1) = o_tmp
|
||||
overlap_states_inv(1,1) = 1.d0 / o_tmp
|
||||
|
||||
else
|
||||
|
||||
call dgemm( 'T', 'N', N_states, N_states, N_det, 1.d0 &
|
||||
, psi_coef, size(psi_coef, 1), psi_coef, size(psi_coef, 1) &
|
||||
, 0.d0, overlap_states, size(overlap_states, 1) )
|
||||
|
||||
call get_inverse(overlap_states, N_states, N_states, overlap_states_inv, N_states)
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
188
src/davidson_dressed/nonsym_diagonalize_ci.irp.f
Normal file
188
src/davidson_dressed/nonsym_diagonalize_ci.irp.f
Normal file
@ -0,0 +1,188 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy_nonsym_dressed, (N_states_diag) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! N_states lowest eigenvalues of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
|
||||
call write_time(6)
|
||||
do j = 1, min(N_det, N_states_diag)
|
||||
CI_energy_nonsym_dressed(j) = CI_electronic_energy_nonsym_dressed(j) + nuclear_repulsion
|
||||
enddo
|
||||
|
||||
do j = 1, min(N_det, N_states)
|
||||
write(st, '(I4)') j
|
||||
call write_double(6, CI_energy_nonsym_dressed(j), 'Energy of state '//trim(st))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_nonsym_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_nonsym_dressed, (N_det,N_states_diag) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
logical :: converged
|
||||
integer :: i, j, k
|
||||
integer :: i_other_state
|
||||
integer :: i_state
|
||||
logical, allocatable :: good_state_array(:)
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
|
||||
PROVIDE threshold_nonsym_davidson nthreads_davidson
|
||||
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_nonsym_dressed
|
||||
do j = 1, min(N_states, N_det)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = min(N_states, N_det)+1, N_states_diag
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
if(diag_algorithm == "Davidson") then
|
||||
|
||||
ASSERT(n_states_diag .lt. n_states)
|
||||
|
||||
do j = 1, min(N_states, N_det)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
converged = .False.
|
||||
call davidson_diag_nonsym_h( psi_det, CI_eigenvectors_nonsym_dressed &
|
||||
, size(CI_eigenvectors_nonsym_dressed, 1) &
|
||||
, CI_electronic_energy_nonsym_dressed &
|
||||
, N_det, min(N_det, N_states), min(N_det, N_states_diag), N_int, 1, converged )
|
||||
|
||||
else if(diag_algorithm == "Lapack") then
|
||||
|
||||
allocate(eigenvectors(size(H_matrix_nonsym_dressed, 1),N_det))
|
||||
allocate(eigenvalues(N_det))
|
||||
|
||||
call diag_nonsym_right( N_det, H_matrix_nonsym_dressed, size(H_matrix_nonsym_dressed, 1) &
|
||||
, eigenvectors, size(eigenvectors, 1), eigenvalues, size(eigenvalues, 1) )
|
||||
|
||||
CI_electronic_energy_nonsym_dressed(:) = 0.d0
|
||||
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j = 1, min(N_det, N_states_diag)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors_nonsym_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_nonsym_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
|
||||
deallocate(eigenvectors, eigenvalues)
|
||||
|
||||
! --- ---
|
||||
|
||||
endif
|
||||
|
||||
! ---
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diagonalize_CI_nonsym_dressed()
|
||||
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
PROVIDE dressing_delta
|
||||
|
||||
do j = 1, N_states
|
||||
do i = 1, N_det
|
||||
psi_coef(i,j) = CI_eigenvectors_nonsym_dressed(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
SOFT_TOUCH psi_coef
|
||||
|
||||
end subroutine diagonalize_CI_nonsym_dressed
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, H_matrix_nonsym_dressed, (N_det,N_det) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Dressed H with Delta_ij
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, l, k
|
||||
double precision :: f
|
||||
|
||||
H_matrix_nonsym_dressed(1:N_det,1:N_det) = h_matrix_all_dets(1:N_det,1:N_det)
|
||||
|
||||
if(N_states == 1) then
|
||||
|
||||
! !symmetric formula
|
||||
! l = dressed_column_idx(1)
|
||||
! f = 1.0d0/psi_coef(l,1)
|
||||
! do i=1,N_det
|
||||
! h_matrix_nonsym_dressed(i,l) += dressing_column_h(i,1) *f
|
||||
! h_matrix_nonsym_dressed(l,i) += dressing_column_h(i,1) *f
|
||||
! enddo
|
||||
|
||||
! l = dressed_column_idx(1)
|
||||
! f = 1.0d0 / psi_coef(l,1)
|
||||
! do j = 1, N_det
|
||||
! H_matrix_nonsym_dressed(j,l) += f * dressing_delta(j,1)
|
||||
! enddo
|
||||
|
||||
k = 1
|
||||
l = 1
|
||||
f = overlap_states_inv(k,l)
|
||||
do j = 1, N_det
|
||||
do i = 1, N_det
|
||||
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do k = 1, N_states
|
||||
do l = 1, N_states
|
||||
f = overlap_states_inv(k,l)
|
||||
|
||||
do j = 1, N_det
|
||||
do i = 1, N_det
|
||||
H_matrix_nonsym_dressed(i,j) = H_matrix_nonsym_dressed(i,j) + f * dressing_delta(i,k) * psi_coef(j,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
54
src/davidson_keywords/EZFIO.cfg
Normal file
54
src/davidson_keywords/EZFIO.cfg
Normal file
@ -0,0 +1,54 @@
|
||||
[threshold_davidson]
|
||||
type: Threshold
|
||||
doc: Thresholds of Davidson's algorithm if threshold_davidson_from_pt2 is false.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[threshold_nonsym_davidson]
|
||||
type: Threshold
|
||||
doc: Thresholds of non-symetric Davidson's algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[davidson_sze_max]
|
||||
type: Strictly_positive_int
|
||||
doc: Number of micro-iterations before re-contracting
|
||||
default: 15
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[state_following]
|
||||
type: logical
|
||||
doc: If |true|, the states are re-ordered to match the input states
|
||||
default: False
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[disk_based_davidson]
|
||||
type: logical
|
||||
doc: If |true|, a memory-mapped file may be used to store the W and S2 vectors if not enough RAM is availabl
|
||||
default: True
|
||||
interface: ezfio,provider,ocaml
|
||||
|
||||
[n_states_diag]
|
||||
type: States_number
|
||||
doc: Controls the number of states to consider during the Davdison diagonalization. The number of states is n_states * n_states_diag
|
||||
default: 4
|
||||
interface: ezfio,ocaml
|
||||
|
||||
[n_det_max_full]
|
||||
type: Det_number_max
|
||||
doc: Maximum number of determinants where |H| is fully diagonalized
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1000
|
||||
|
||||
[threshold_davidson_from_pt2]
|
||||
type: logical
|
||||
doc: Thresholds of Davidson's algorithm is set to E(rPT2)*threshold_davidson_from_pt2
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
[distributed_davidson]
|
||||
type: logical
|
||||
doc: If |true|, use the distributed algorithm
|
||||
default: True
|
||||
interface: ezfio,provider,ocaml
|
||||
|
1
src/davidson_keywords/NEED
Normal file
1
src/davidson_keywords/NEED
Normal file
@ -0,0 +1 @@
|
||||
ezfio_files
|
5
src/davidson_keywords/README.rst
Normal file
5
src/davidson_keywords/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
=================
|
||||
davidson_keywords
|
||||
=================
|
||||
|
||||
Keywords used for Davidson algorithms.
|
@ -1,3 +1,6 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_states_diag ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -8,11 +11,11 @@ BEGIN_PROVIDER [ integer, n_states_diag ]
|
||||
PROVIDE ezfio_filename
|
||||
if (mpi_master) then
|
||||
|
||||
call ezfio_has_davidson_n_states_diag(has)
|
||||
call ezfio_has_davidson_keywords_n_states_diag(has)
|
||||
if (has) then
|
||||
call ezfio_get_davidson_n_states_diag(n_states_diag)
|
||||
call ezfio_get_davidson_keywords_n_states_diag(n_states_diag)
|
||||
else
|
||||
print *, 'davidson/n_states_diag not found in EZFIO file'
|
||||
print *, 'davidson_keywords/n_states_diag not found in EZFIO file'
|
||||
stop 1
|
||||
endif
|
||||
n_states_diag = max(2,N_states * N_states_diag)
|
||||
@ -32,3 +35,4 @@ BEGIN_PROVIDER [ integer, n_states_diag ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
33
src/davidson_keywords/usef.irp.f
Normal file
33
src/davidson_keywords/usef.irp.f
Normal file
@ -0,0 +1,33 @@
|
||||
use bitmasks
|
||||
use f77_zmq
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ integer, nthreads_davidson ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of threads for Davidson
|
||||
END_DOC
|
||||
nthreads_davidson = nproc
|
||||
character*(32) :: env
|
||||
call getenv('QP_NTHREADS_DAVIDSON',env)
|
||||
if (trim(env) /= '') then
|
||||
read(env,*) nthreads_davidson
|
||||
call write_int(6,nthreads_davidson,'Target number of threads for <Psi|H|Psi>')
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, threshold_davidson_pt2 ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Threshold of Davidson's algorithm, using PT2 as a guide
|
||||
END_DOC
|
||||
threshold_davidson_pt2 = threshold_davidson
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -1,10 +1,12 @@
|
||||
BEGIN_PROVIDER [ double precision, dressing_column_h, (N_det,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, dressing_column_s, (N_det,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, dressing_delta , (N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Null dressing vectors
|
||||
END_DOC
|
||||
dressing_column_h(:,:) = 0.d0
|
||||
dressing_column_s(:,:) = 0.d0
|
||||
dressing_delta (:,:) = 0.d0
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -9,8 +9,11 @@ spindeterminants
|
||||
psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta)
|
||||
psi_coef_matrix_rows integer (spindeterminants_n_det)
|
||||
psi_coef_matrix_columns integer (spindeterminants_n_det)
|
||||
psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states)
|
||||
psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states)
|
||||
psi_left_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states)
|
||||
n_svd_coefs integer
|
||||
n_svd_alpha integer
|
||||
n_svd_beta integer
|
||||
psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states)
|
||||
psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states)
|
||||
psi_svd_coefs double precision (spindeterminants_n_svd_coefs,spindeterminants_n_states)
|
||||
|
@ -305,16 +305,8 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num,
|
||||
|
||||
if(read_tc_integ) then
|
||||
|
||||
open(unit=11, form="unformatted", file='tc_grad_and_lapl_ao', action="read")
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
read(11) tc_grad_and_lapl_ao(l,k,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_and_lapl_ao', action="read")
|
||||
read(11) tc_grad_and_lapl_ao
|
||||
close(11)
|
||||
|
||||
else
|
||||
@ -374,18 +366,12 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num,
|
||||
|
||||
endif
|
||||
|
||||
if(write_tc_integ) then
|
||||
open(unit=11, form="unformatted", file='tc_grad_and_lapl_ao', action="write")
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
write(11) tc_grad_and_lapl_ao(l,k,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
if(write_tc_integ.and.mpi_master) then
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_and_lapl_ao', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) tc_grad_and_lapl_ao
|
||||
close(11)
|
||||
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
||||
endif
|
||||
|
||||
call wall_time(time1)
|
||||
|
@ -1,4 +1,4 @@
|
||||
program tc_bi_ortho
|
||||
program print_tc_energy
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
@ -10,6 +10,6 @@ program tc_bi_ortho
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine_save_left_right_bi_ortho
|
||||
! call test
|
||||
call write_tc_energy
|
||||
end
|
||||
|
@ -17,6 +17,8 @@ BEGIN_PROVIDER [ double precision, psi_bitcleft_bilinear_matrix_values, (N_det,
|
||||
implicit none
|
||||
integer :: k, l
|
||||
|
||||
!print *, ' providing psi_bitcleft_bilinear_matrix_values'
|
||||
|
||||
if(N_det .eq. 1) then
|
||||
|
||||
do l = 1, N_states
|
||||
@ -38,6 +40,8 @@ BEGIN_PROVIDER [ double precision, psi_bitcleft_bilinear_matrix_values, (N_det,
|
||||
|
||||
endif
|
||||
|
||||
!print *, ' psi_bitcleft_bilinear_matrix_values OK'
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -136,7 +136,7 @@ BEGIN_PROVIDER [ double precision, psi_r_coef_bi_ortho, (psi_det_size,N_states)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine save_tc_wavefunction_general(ndet,nstates,psidet,sze,dim_psicoef,psilcoef,psircoef)
|
||||
subroutine save_tc_wavefunction_general(ndet, nstates, psidet, sze, dim_psicoef, psilcoef, psircoef)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save the wave function into the |EZFIO| file
|
||||
@ -192,37 +192,78 @@ subroutine save_tc_wavefunction_general(ndet,nstates,psidet,sze,dim_psicoef,psil
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine save_tc_bi_ortho_wavefunction
|
||||
implicit none
|
||||
if(save_sorted_tc_wf)then
|
||||
call save_tc_wavefunction_general(N_det,N_states,psi_det_sorted_tc,size(psi_det_sorted_tc, 3),size(psi_l_coef_sorted_bi_ortho, 1),psi_l_coef_sorted_bi_ortho,psi_r_coef_sorted_bi_ortho)
|
||||
else
|
||||
call save_tc_wavefunction_general(N_det,N_states,psi_det,size(psi_det, 3), size(psi_l_coef_bi_ortho, 1),psi_l_coef_bi_ortho,psi_r_coef_bi_ortho)
|
||||
endif
|
||||
call routine_save_right_bi_ortho
|
||||
! ---
|
||||
|
||||
subroutine save_tc_bi_ortho_wavefunction()
|
||||
|
||||
implicit none
|
||||
|
||||
if(save_sorted_tc_wf) then
|
||||
|
||||
call save_tc_wavefunction_general( N_det, N_states, psi_det_sorted_tc, size(psi_det_sorted_tc, 3) &
|
||||
, size(psi_l_coef_sorted_bi_ortho, 1), psi_l_coef_sorted_bi_ortho, psi_r_coef_sorted_bi_ortho)
|
||||
call routine_save_right_sorted_bi_ortho()
|
||||
|
||||
else
|
||||
|
||||
call save_tc_wavefunction_general( N_det, N_states, psi_det, size(psi_det, 3) &
|
||||
, size(psi_l_coef_bi_ortho, 1), psi_l_coef_bi_ortho, psi_r_coef_bi_ortho )
|
||||
call routine_save_right_bi_ortho()
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_save_right_bi_ortho
|
||||
implicit none
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
integer :: i
|
||||
allocate(coef_tmp(N_det, N_states))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1:N_states) = psi_r_coef_sorted_bi_ortho(i,1:N_states)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det,N_states,psi_det_sorted_tc,size(coef_tmp,1),coef_tmp(1,1))
|
||||
end
|
||||
! ---
|
||||
|
||||
subroutine routine_save_right_sorted_bi_ortho()
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
|
||||
allocate(coef_tmp(N_det, N_states))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1:N_states) = psi_r_coef_sorted_bi_ortho(i,1:N_states)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det, N_states, psi_det_sorted_tc, size(coef_tmp, 1), coef_tmp(1,1))
|
||||
deallocate(coef_tmp)
|
||||
|
||||
subroutine routine_save_left_right_bi_ortho
|
||||
implicit none
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
integer :: i,n_states_tmp
|
||||
n_states_tmp = 2
|
||||
allocate(coef_tmp(N_det, n_states_tmp))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
coef_tmp(i,2) = psi_l_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det,n_states_tmp,psi_det,size(coef_tmp,1),coef_tmp(1,1))
|
||||
end
|
||||
|
||||
subroutine routine_save_left_right_sorted_bi_ortho()
|
||||
|
||||
implicit none
|
||||
integer :: i, n_states_tmp
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
|
||||
n_states_tmp = 2
|
||||
allocate(coef_tmp(N_det, n_states_tmp))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
coef_tmp(i,2) = psi_l_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det, n_states_tmp, psi_det, size(coef_tmp, 1), coef_tmp(1,1))
|
||||
deallocate(coef_tmp)
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine routine_save_right_bi_ortho()
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
|
||||
allocate(coef_tmp(N_det, N_states))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1:N_states) = psi_r_coef_bi_ortho(i,1:N_states)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det, N_states, psi_det, size(coef_tmp, 1), coef_tmp(1,1))
|
||||
deallocate(coef_tmp)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
@ -1,5 +1,18 @@
|
||||
program save_bitcpsileft_for_qmcchem
|
||||
|
||||
implicit none
|
||||
|
||||
read_wf = .True.
|
||||
TOUCH read_wf
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
integer :: iunit
|
||||
logical :: exists
|
||||
double precision :: e_ref
|
||||
@ -46,7 +59,7 @@ program save_bitcpsileft_for_qmcchem
|
||||
|
||||
close(iunit)
|
||||
|
||||
end
|
||||
end subroutine main
|
||||
|
||||
! --
|
||||
|
||||
@ -61,12 +74,18 @@ subroutine write_lr_spindeterminants()
|
||||
|
||||
PROVIDE psi_bitcleft_bilinear_matrix_values
|
||||
|
||||
print *, ' saving left determinants'
|
||||
print *, ' assuming save_for_qmc called before to save right determinants'
|
||||
print *, ' N_det = ', N_det
|
||||
print *, ' N_states = ', N_states
|
||||
|
||||
allocate(buffer(N_det,N_states))
|
||||
do l = 1, N_states
|
||||
do k = 1, N_det
|
||||
buffer(k,l) = psi_bitcleft_bilinear_matrix_values(k,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ezfio_set_spindeterminants_psi_left_coef_matrix_values(buffer)
|
||||
deallocate(buffer)
|
||||
|
@ -1,16 +1,25 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
|
||||
!
|
||||
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together
|
||||
! with the energy. Saves the left-right wave functions at the end.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine_diag
|
||||
call save_tc_bi_ortho_wavefunction
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
print*, ' nb of states = ', N_states
|
||||
print*, ' nb of det = ', N_det
|
||||
|
||||
call routine_diag()
|
||||
call write_tc_energy()
|
||||
call save_tc_bi_ortho_wavefunction()
|
||||
end
|
||||
|
||||
subroutine test
|
||||
@ -27,26 +36,53 @@ subroutine test
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_diag
|
||||
implicit none
|
||||
! provide eigval_right_tc_bi_orth
|
||||
! provide overlap_bi_ortho
|
||||
! provide htilde_matrix_elmt_bi_ortho
|
||||
integer ::i,j
|
||||
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)
|
||||
print*,'e_tc_left_right = ',e_tc_left_right
|
||||
print*,'e_tilde_bi_orth_00 = ',e_tilde_bi_orth_00
|
||||
print*,'e_pt2_tc_bi_orth = ',e_pt2_tc_bi_orth
|
||||
print*,'e_pt2_tc_bi_orth_single = ',e_pt2_tc_bi_orth_single
|
||||
print*,'e_pt2_tc_bi_orth_double = ',e_pt2_tc_bi_orth_double
|
||||
print*,'***'
|
||||
print*,'e_corr_bi_orth = ',e_corr_bi_orth
|
||||
print*,'e_corr_bi_orth_proj = ',e_corr_bi_orth_proj
|
||||
print*,'e_corr_single_bi_orth = ',e_corr_single_bi_orth
|
||||
print*,'e_corr_double_bi_orth = ',e_corr_double_bi_orth
|
||||
print*,'Left/right eigenvectors'
|
||||
do i = 1,N_det
|
||||
write(*,'(I5,X,(100(F12.7,X)))')i,leigvec_tc_bi_orth(i,1),reigvec_tc_bi_orth(i,1),leigvec_tc_bi_orth(i,1)*reigvec_tc_bi_orth(i,1)
|
||||
enddo
|
||||
subroutine routine_diag()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
double precision :: dE
|
||||
|
||||
! provide eigval_right_tc_bi_orth
|
||||
! provide overlap_bi_ortho
|
||||
! provide htilde_matrix_elmt_bi_ortho
|
||||
|
||||
if(N_states .eq. 1) then
|
||||
|
||||
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)
|
||||
print*,'e_tc_left_right = ',e_tc_left_right
|
||||
print*,'e_tilde_bi_orth_00 = ',e_tilde_bi_orth_00
|
||||
print*,'e_pt2_tc_bi_orth = ',e_pt2_tc_bi_orth
|
||||
print*,'e_pt2_tc_bi_orth_single = ',e_pt2_tc_bi_orth_single
|
||||
print*,'e_pt2_tc_bi_orth_double = ',e_pt2_tc_bi_orth_double
|
||||
print*,'***'
|
||||
print*,'e_corr_bi_orth = ',e_corr_bi_orth
|
||||
print*,'e_corr_bi_orth_proj = ',e_corr_bi_orth_proj
|
||||
print*,'e_corr_single_bi_orth = ',e_corr_single_bi_orth
|
||||
print*,'e_corr_double_bi_orth = ',e_corr_double_bi_orth
|
||||
print*,'Left/right eigenvectors'
|
||||
do i = 1,N_det
|
||||
write(*,'(I5,X,(100(F12.7,X)))')i,leigvec_tc_bi_orth(i,1),reigvec_tc_bi_orth(i,1),leigvec_tc_bi_orth(i,1)*reigvec_tc_bi_orth(i,1)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print*,'eigval_right_tc_bi_orth : '
|
||||
do i = 1, N_states
|
||||
print*, i, eigval_right_tc_bi_orth(i)
|
||||
enddo
|
||||
|
||||
print*,''
|
||||
print*,'******************************************************'
|
||||
print*,'TC Excitation energies (au) (eV)'
|
||||
do i = 2, N_states
|
||||
dE = eigval_right_tc_bi_orth(i) - eigval_right_tc_bi_orth(1)
|
||||
print*, i, dE, dE/0.0367502d0
|
||||
enddo
|
||||
print*,''
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@ -43,7 +43,7 @@ end
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, idx_dress, j, istate
|
||||
integer :: i, idx_dress, j, istate, k
|
||||
logical :: converged, dagger
|
||||
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l
|
||||
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
|
||||
@ -52,116 +52,123 @@ end
|
||||
integer :: i_good_state,i_other_state, i_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
|
||||
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
|
||||
double precision, allocatable :: Stmp(:,:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
PROVIDE N_det N_int
|
||||
|
||||
if(n_det.le.N_det_max_full)then
|
||||
if(n_det .le. N_det_max_full) then
|
||||
|
||||
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det),expect_e(N_det))
|
||||
allocate (H_prime(N_det,N_det),s2_values_tmp(N_det))
|
||||
|
||||
H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det)
|
||||
if(s2_eig)then
|
||||
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
|
||||
do j=1,N_det
|
||||
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
|
||||
enddo
|
||||
if(s2_eig) then
|
||||
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
|
||||
do j=1,N_det
|
||||
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
|
||||
enddo
|
||||
endif
|
||||
call non_hrmt_real_diag(N_det,H_prime,&
|
||||
leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
|
||||
n_real_tc_bi_orth_eigval_right,eigval_right_tmp)
|
||||
|
||||
call non_hrmt_real_diag(N_det, H_prime, leigvec_tc_bi_orth_tmp, reigvec_tc_bi_orth_tmp, n_real_tc_bi_orth_eigval_right, eigval_right_tmp)
|
||||
! do i = 1, N_det
|
||||
! call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp(1,i),reigvec_tc_bi_orth_tmp(1,i),1,N_det,expect_e(i), s2_values_tmp(i))
|
||||
! enddo
|
||||
call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,N_det,N_det,expect_e, s2_values_tmp)
|
||||
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
i_state = 0
|
||||
good_state_array = .False.
|
||||
if(s2_eig)then
|
||||
if (only_expected_s2) then
|
||||
do j=1,N_det
|
||||
|
||||
if(s2_eig) then
|
||||
|
||||
if(only_expected_s2) then
|
||||
do j = 1, N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
! print*,'s2_values_tmp(j) = ',s2_values_tmp(j),eigval_right_tmp(j),expect_e(j)
|
||||
if(dabs(s2_values_tmp(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
else
|
||||
do j=1,N_det
|
||||
index_good_state_array(j) = j
|
||||
good_state_array(j) = .True.
|
||||
enddo
|
||||
endif
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
||||
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
||||
eigval_left_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
||||
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
reigvec_tc_bi_orth(i,i_state+i_other_state) = reigvec_tc_bi_orth_tmp(i,j)
|
||||
leigvec_tc_bi_orth(i,i_state+i_other_state) = leigvec_tc_bi_orth_tmp(i,j)
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(i_state+i_other_state) = eigval_right_tmp(j)
|
||||
eigval_left_tc_bi_orth (i_state+i_other_state) = eigval_right_tmp(j)
|
||||
s2_eigvec_tc_bi_orth(i_state+i_other_state) = s2_values_tmp(i_state+i_other_state)
|
||||
enddo
|
||||
else ! istate == 0
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find only states with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,j)
|
||||
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,j)
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(j) = eigval_right_tmp(j)
|
||||
eigval_left_tc_bi_orth (j) = eigval_right_tmp(j)
|
||||
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(j)
|
||||
enddo
|
||||
endif ! istate .ne. 0
|
||||
if(dabs(s2_values_tmp(j) - expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
else
|
||||
do j = 1, N_det
|
||||
index_good_state_array(j) = j
|
||||
good_state_array(j) = .True.
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(i_state .ne. 0) then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i = 1, N_det
|
||||
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
||||
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
||||
eigval_left_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
||||
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states)then
|
||||
exit
|
||||
endif
|
||||
do i = 1, N_det
|
||||
reigvec_tc_bi_orth(i,i_state+i_other_state) = reigvec_tc_bi_orth_tmp(i,j)
|
||||
leigvec_tc_bi_orth(i,i_state+i_other_state) = leigvec_tc_bi_orth_tmp(i,j)
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(i_state+i_other_state) = eigval_right_tmp(j)
|
||||
eigval_left_tc_bi_orth (i_state+i_other_state) = eigval_right_tmp(j)
|
||||
s2_eigvec_tc_bi_orth(i_state+i_other_state) = s2_values_tmp(i_state+i_other_state)
|
||||
enddo
|
||||
else ! istate == 0
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find only states with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j = 1, min(N_states_diag, N_det)
|
||||
do i = 1, N_det
|
||||
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,j)
|
||||
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,j)
|
||||
enddo
|
||||
eigval_right_tc_bi_orth(j) = eigval_right_tmp(j)
|
||||
eigval_left_tc_bi_orth (j) = eigval_right_tmp(j)
|
||||
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(j)
|
||||
enddo
|
||||
endif ! istate .ne. 0
|
||||
|
||||
else ! s2_eig
|
||||
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
|
||||
do i = 1,N_det
|
||||
|
||||
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
|
||||
do i = 1,N_det
|
||||
iorder(i) = i
|
||||
coef_hf_r(i) = -dabs(reigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
||||
enddo
|
||||
call dsort(coef_hf_r,iorder,N_det)
|
||||
igood_r = iorder(1)
|
||||
print*,'igood_r, coef_hf_r = ',igood_r,coef_hf_r(1)
|
||||
do i = 1,N_det
|
||||
enddo
|
||||
call dsort(coef_hf_r,iorder,N_det)
|
||||
igood_r = iorder(1)
|
||||
print*,'igood_r, coef_hf_r = ',igood_r,coef_hf_r(1)
|
||||
do i = 1,N_det
|
||||
iorder(i) = i
|
||||
coef_hf_l(i) = -dabs(leigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
||||
enddo
|
||||
call dsort(coef_hf_l,iorder,N_det)
|
||||
igood_l = iorder(1)
|
||||
print*,'igood_l, coef_hf_l = ',igood_l,coef_hf_l(1)
|
||||
enddo
|
||||
call dsort(coef_hf_l,iorder,N_det)
|
||||
igood_l = iorder(1)
|
||||
print*,'igood_l, coef_hf_l = ',igood_l,coef_hf_l(1)
|
||||
|
||||
if(igood_r.ne.igood_l.and.igood_r.ne.1)then
|
||||
if(igood_r.ne.igood_l .and. igood_r.ne.1) then
|
||||
print *,''
|
||||
print *,'Warning, the left and right eigenvectors are "not the same" '
|
||||
print *,'Warning, the ground state is not dominated by HF...'
|
||||
@ -169,22 +176,22 @@ end
|
||||
print *,'coef of HF in RIGHT eigenvector = ',reigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_r)
|
||||
print *,'State with largest LEFT coefficient of HF ',igood_l
|
||||
print *,'coef of HF in LEFT eigenvector = ',leigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_l)
|
||||
endif
|
||||
if(state_following_tc)then
|
||||
endif
|
||||
|
||||
if(state_following_tc) then
|
||||
print *,'Following the states with the largest coef on HF'
|
||||
print *,'igood_r,igood_l',igood_r,igood_l
|
||||
i= igood_r
|
||||
i = igood_r
|
||||
eigval_right_tc_bi_orth(1) = eigval_right_tmp(i)
|
||||
do j = 1, N_det
|
||||
reigvec_tc_bi_orth(j,1) = reigvec_tc_bi_orth_tmp(j,i)
|
||||
! print*,reigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
i= igood_l
|
||||
i = igood_l
|
||||
eigval_left_tc_bi_orth(1) = eigval_right_tmp(i)
|
||||
do j = 1, N_det
|
||||
leigvec_tc_bi_orth(j,1) = leigvec_tc_bi_orth_tmp(j,i)
|
||||
enddo
|
||||
else
|
||||
else
|
||||
do i = 1, N_states
|
||||
eigval_right_tc_bi_orth(i) = eigval_right_tmp(i)
|
||||
eigval_left_tc_bi_orth(i) = eigval_right_tmp(i)
|
||||
@ -193,9 +200,12 @@ end
|
||||
leigvec_tc_bi_orth(j,i) = leigvec_tc_bi_orth_tmp(j,i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
|
||||
endif
|
||||
else
|
||||
|
||||
else ! n_det > N_det_max_full
|
||||
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
@ -203,36 +213,39 @@ end
|
||||
external H_tc_dagger_u_0_opt
|
||||
external H_tc_s2_dagger_u_0_opt
|
||||
external H_tc_s2_u_0_opt
|
||||
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
|
||||
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
enddo
|
||||
!!!! Preparing the left-eigenvector
|
||||
|
||||
print*,'---------------------------------'
|
||||
print*,'---------------------------------'
|
||||
print*,'Computing the left-eigenvector '
|
||||
print*,'---------------------------------'
|
||||
print*,'---------------------------------'
|
||||
!!!! Preparing the left-eigenvector
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
|
||||
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav)
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt)
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav)
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt)
|
||||
integer :: n_it_max,i_it
|
||||
n_it_max = 1
|
||||
converged = .False.
|
||||
i_it = 0
|
||||
do while (.not.converged)
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt)
|
||||
i_it += 1
|
||||
if(i_it .gt. 5)exit
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt)
|
||||
i_it += 1
|
||||
if(i_it .gt. 5) exit
|
||||
enddo
|
||||
do istate = 1, N_states
|
||||
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
|
||||
print*,'---------------------------------'
|
||||
@ -240,78 +253,125 @@ end
|
||||
print*,'Computing the right-eigenvector '
|
||||
print*,'---------------------------------'
|
||||
print*,'---------------------------------'
|
||||
!!!! Preparing the right-eigenvector
|
||||
!!!! Preparing the right-eigenvector
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
|
||||
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
|
||||
converged = .False.
|
||||
i_it = 0
|
||||
do while (.not.converged)
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt)
|
||||
i_it += 1
|
||||
if(i_it .gt. 5)exit
|
||||
do while (.not. converged)
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_opt)
|
||||
i_it += 1
|
||||
if(i_it .gt. 5) exit
|
||||
enddo
|
||||
do istate = 1, N_states
|
||||
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
|
||||
deallocate(H_jj)
|
||||
endif
|
||||
call bi_normalize(leigvec_tc_bi_orth,reigvec_tc_bi_orth,size(reigvec_tc_bi_orth,1),N_det,N_states)
|
||||
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ',leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1)
|
||||
norm_ground_left_right_bi_orth = 0.d0
|
||||
do j = 1, N_det
|
||||
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,1) * reigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
print*,'norm l/r = ',norm_ground_left_right_bi_orth
|
||||
print*,'<S2> = ',s2_eigvec_tc_bi_orth(1)
|
||||
endif
|
||||
|
||||
call bi_normalize(leigvec_tc_bi_orth, reigvec_tc_bi_orth, size(reigvec_tc_bi_orth, 1), N_det, N_states)
|
||||
! check bi-orthogonality
|
||||
allocate(Stmp(N_states,N_states))
|
||||
call dgemm( 'T', 'N', N_states, N_states, N_det, 1.d0 &
|
||||
, leigvec_tc_bi_orth(1,1), size(leigvec_tc_bi_orth, 1), reigvec_tc_bi_orth(1,1), size(reigvec_tc_bi_orth, 1) &
|
||||
, 0.d0, Stmp(1,1), size(Stmp, 1) )
|
||||
print *, ' overlap matrix between states:'
|
||||
do i = 1, N_states
|
||||
write(*,'(1000(F16.10,X))') Stmp(i,:)
|
||||
enddo
|
||||
deallocate(Stmp)
|
||||
|
||||
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ', leigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(1,1)
|
||||
do i = 1, N_states
|
||||
norm_ground_left_right_bi_orth = 0.d0
|
||||
do j = 1, N_det
|
||||
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i)
|
||||
enddo
|
||||
print*,' state ', i
|
||||
print*,' norm l/r = ', norm_ground_left_right_bi_orth
|
||||
print*,' <S2> = ', s2_eigvec_tc_bi_orth(i)
|
||||
enddo
|
||||
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
allocate(buffer(N_det,N_states))
|
||||
do k = 1, N_states
|
||||
do i = 1, N_det
|
||||
psi_l_coef_bi_ortho(i,k) = leigvec_tc_bi_orth(i,k)
|
||||
buffer(i,k) = leigvec_tc_bi_orth(i,k)
|
||||
enddo
|
||||
enddo
|
||||
TOUCH psi_l_coef_bi_ortho
|
||||
call ezfio_set_tc_bi_ortho_psi_l_coef_bi_ortho(buffer)
|
||||
do k = 1, N_states
|
||||
do i = 1, N_det
|
||||
psi_r_coef_bi_ortho(i,k) = reigvec_tc_bi_orth(i,k)
|
||||
buffer(i,k) = reigvec_tc_bi_orth(i,k)
|
||||
enddo
|
||||
enddo
|
||||
TOUCH psi_r_coef_bi_ortho
|
||||
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(buffer)
|
||||
deallocate(buffer)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine bi_normalize(u_l,u_r,n,ld,nstates)
|
||||
subroutine bi_normalize(u_l, u_r, n, ld, nstates)
|
||||
|
||||
BEGIN_DOC
|
||||
!!!! Normalization of the scalar product of the left/right eigenvectors
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n, ld, nstates
|
||||
double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates)
|
||||
integer, intent(in) :: n,ld,nstates
|
||||
integer :: i
|
||||
double precision :: accu, tmp
|
||||
integer :: i, j
|
||||
double precision :: accu, tmp
|
||||
|
||||
do i = 1, nstates
|
||||
!!!! Normalization of right eigenvectors |Phi>
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_r(j,i) * u_r(j,i)
|
||||
enddo
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
print*,'accu_r = ',accu
|
||||
do j = 1, n
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
tmp = u_r(1,i) / dabs(u_r(1,i))
|
||||
do j = 1, n
|
||||
u_r(j,i) *= tmp
|
||||
enddo
|
||||
!!!! Adaptation of the norm of the left eigenvector such that <chi|Phi> = 1
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_l(j,i) * u_r(j,i)
|
||||
! print*,j, u_l(j,i) , u_r(j,i)
|
||||
enddo
|
||||
if(accu.gt.0.d0)then
|
||||
|
||||
!!!! Normalization of right eigenvectors |Phi>
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_r(j,i) * u_r(j,i)
|
||||
enddo
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
else
|
||||
accu = 1.d0/dsqrt(-accu)
|
||||
endif
|
||||
tmp = (u_l(1,i) * u_r(1,i) )/dabs(u_l(1,i) * u_r(1,i))
|
||||
do j = 1, n
|
||||
u_l(j,i) *= accu * tmp
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
print*,'accu_r = ',accu
|
||||
do j = 1, n
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
tmp = u_r(1,i) / dabs(u_r(1,i))
|
||||
do j = 1, n
|
||||
u_r(j,i) *= tmp
|
||||
enddo
|
||||
|
||||
!!!! Adaptation of the norm of the left eigenvector such that <chi|Phi> = 1
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_l(j,i) * u_r(j,i)
|
||||
!print*,j, u_l(j,i) , u_r(j,i)
|
||||
enddo
|
||||
print*,'accu_lr = ', accu
|
||||
if(accu.gt.0.d0)then
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
else
|
||||
accu = 1.d0/dsqrt(-accu)
|
||||
endif
|
||||
tmp = (u_l(1,i) * u_r(1,i) )/dabs(u_l(1,i) * u_r(1,i))
|
||||
do j = 1, n
|
||||
u_l(j,i) *= accu * tmp
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
@ -12,6 +12,11 @@
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hmono, htwoe, hthree, htot) &
|
||||
!$OMP SHARED (N_det, psi_det, N_int,htilde_matrix_elmt_bi_ortho)
|
||||
do i = 1, N_det
|
||||
|
34
src/tc_bi_ortho/tc_utils.irp.f
Normal file
34
src/tc_bi_ortho/tc_utils.irp.f
Normal file
@ -0,0 +1,34 @@
|
||||
|
||||
subroutine write_tc_energy()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
double precision :: E_TC, O_TC
|
||||
|
||||
do k = 1, n_states
|
||||
|
||||
E_TC = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
!htot = htilde_matrix_elmt_bi_ortho(i,j)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
E_TC = E_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * htot
|
||||
!E_TC = E_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(j,k) * htot
|
||||
enddo
|
||||
enddo
|
||||
|
||||
O_TC = 0.d0
|
||||
do i = 1, N_det
|
||||
!O_TC = O_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(i,k)
|
||||
O_TC = O_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(i,k)
|
||||
enddo
|
||||
|
||||
print *, ' state :', k
|
||||
print *, " E_TC = ", E_TC / O_TC
|
||||
print *, " O_TC = ", O_TC
|
||||
|
||||
enddo
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user