mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-31 08:35:53 +01:00
Preparing for optimization of 5idx in TC
This commit is contained in:
parent
17222fe64b
commit
fb5300a8e5
2
external/qp2-dependencies
vendored
2
external/qp2-dependencies
vendored
@ -1 +1 @@
|
|||||||
Subproject commit 6e23ebac001acae91d1c762ca934e09a9b7d614a
|
Subproject commit e0d0e02e9f5ece138d1520106954a881ab0b8db2
|
@ -245,56 +245,6 @@ END_PROVIDER
|
|||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
|
||||||
|
|
||||||
BEGIN_DOC
|
|
||||||
!
|
|
||||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
|
||||||
!
|
|
||||||
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
|
||||||
!
|
|
||||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
|
||||||
!
|
|
||||||
END_DOC
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
integer :: i, j, k, m, l
|
|
||||||
double precision :: integral, wall1, wall0
|
|
||||||
|
|
||||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
|
||||||
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
|
||||||
|
|
||||||
three_e_5_idx_exch12_bi_ort_old = 0.d0
|
|
||||||
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
|
|
||||||
call wall_time(wall0)
|
|
||||||
|
|
||||||
!$OMP PARALLEL &
|
|
||||||
!$OMP DEFAULT (NONE) &
|
|
||||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
|
||||||
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
|
|
||||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
|
||||||
do i = 1, mo_num
|
|
||||||
do k = 1, mo_num
|
|
||||||
do j = 1, mo_num
|
|
||||||
do l = 1, mo_num
|
|
||||||
do m = 1, mo_num
|
|
||||||
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
|
||||||
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
!$OMP END DO
|
|
||||||
!$OMP END PARALLEL
|
|
||||||
|
|
||||||
call wall_time(wall1)
|
|
||||||
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
! ---
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
@ -305,6 +255,12 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
|
|||||||
!
|
!
|
||||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
!
|
!
|
||||||
|
! Equivalent to:
|
||||||
|
!
|
||||||
|
! call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
||||||
|
!
|
||||||
|
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
!
|
||||||
END_DOC
|
END_DOC
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
@ -314,10 +270,10 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
|
|||||||
double precision :: weight
|
double precision :: weight
|
||||||
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
|
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
|
||||||
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
|
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
|
||||||
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
|
|
||||||
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
|
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
|
||||||
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
|
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
|
||||||
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
|
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
|
||||||
|
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
|
||||||
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
|
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
|
||||||
|
|
||||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
295
src/bi_ort_ints/three_body_ijmkl_old.irp.f
Normal file
295
src/bi_ort_ints/three_body_ijmkl_old.irp.f
Normal file
@ -0,0 +1,295 @@
|
|||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
three_e_5_idx_direct_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
|
||||||
|
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
|
||||||
|
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
|
||||||
|
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
three_e_5_idx_exch23_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
|
||||||
|
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
three_e_5_idx_exch13_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
|
||||||
|
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||||
|
!
|
||||||
|
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||||
|
!
|
||||||
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer :: i, j, k, m, l
|
||||||
|
double precision :: integral, wall1, wall0
|
||||||
|
|
||||||
|
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||||
|
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
||||||
|
|
||||||
|
three_e_5_idx_exch12_bi_ort_old = 0.d0
|
||||||
|
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
|
||||||
|
call wall_time(wall0)
|
||||||
|
|
||||||
|
!$OMP PARALLEL &
|
||||||
|
!$OMP DEFAULT (NONE) &
|
||||||
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||||
|
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
|
||||||
|
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||||
|
do i = 1, mo_num
|
||||||
|
do k = 1, mo_num
|
||||||
|
do j = 1, mo_num
|
||||||
|
do l = 1, mo_num
|
||||||
|
do m = 1, mo_num
|
||||||
|
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
||||||
|
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
!$OMP END DO
|
||||||
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
|
call wall_time(wall1)
|
||||||
|
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
Loading…
Reference in New Issue
Block a user