10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 20:34:58 +01:00

Preparing for optimization of 5idx in TC

This commit is contained in:
Anthony Scemama 2023-06-02 08:51:04 +02:00
parent 17222fe64b
commit fb5300a8e5
3 changed files with 303 additions and 52 deletions

@ -1 +1 @@
Subproject commit 6e23ebac001acae91d1c762ca934e09a9b7d614a Subproject commit e0d0e02e9f5ece138d1520106954a881ab0b8db2

View File

@ -245,56 +245,6 @@ END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
three_e_5_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)] BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC BEGIN_DOC
@ -305,6 +255,12 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
! !
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign ! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
! !
! Equivalent to:
!
! call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
!
END_DOC END_DOC
implicit none implicit none
@ -314,10 +270,10 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
double precision :: weight double precision :: weight
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:) double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:) double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num)) allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num)) allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num)) allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num)) allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp provide mos_r_in_r_array_transp mos_l_in_r_array_transp

View File

@ -0,0 +1,295 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
three_e_5_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
END_PROVIDER