mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 20:33:20 +01:00
Improving weights
This commit is contained in:
parent
3d6a75ca42
commit
fb07e986c9
@ -352,9 +352,9 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
|
||||
state_average_weight(:) = state_average_weight_save(:)
|
||||
TOUCH state_average_weight
|
||||
call update_pt2_and_variance_weights(pt2_data, N_states)
|
||||
endif
|
||||
|
||||
call update_pt2_and_variance_weights(pt2_data, N_states)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -648,7 +648,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
do_cycle = .True.
|
||||
do k=1,N_dominant_dets_of_cfgs
|
||||
call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
||||
do_cycle = do_cycle .and. (degree > excitation_alpha_max)
|
||||
do_cycle = do_cycle .and. (degree > excitation_alpha_max)
|
||||
enddo
|
||||
if (do_cycle) cycle
|
||||
endif
|
||||
@ -658,7 +658,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
do_cycle = .True.
|
||||
do k=1,N_dominant_dets_of_cfgs
|
||||
call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
||||
do_cycle = do_cycle .and. (degree > excitation_beta_max)
|
||||
do_cycle = do_cycle .and. (degree > excitation_beta_max)
|
||||
enddo
|
||||
if (do_cycle) cycle
|
||||
endif
|
||||
|
@ -33,43 +33,59 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
|
||||
double precision :: avg, element, dt, x
|
||||
integer :: k
|
||||
integer, save :: i_iter=0
|
||||
integer, parameter :: i_itermax = 1
|
||||
double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
|
||||
! integer, save :: i_iter=0
|
||||
! integer, parameter :: i_itermax = 1
|
||||
! double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
|
||||
|
||||
pt2(:) = pt2_data % pt2(:)
|
||||
variance(:) = pt2_data % variance(:)
|
||||
|
||||
if (i_iter == 0) then
|
||||
allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
|
||||
memo_pt2(:,:) = 1.d0
|
||||
memo_variance(:,:) = 1.d0
|
||||
endif
|
||||
! if (i_iter == 0) then
|
||||
! allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
|
||||
! memo_pt2(:,:) = 1.d0
|
||||
! memo_variance(:,:) = 1.d0
|
||||
! endif
|
||||
!
|
||||
! i_iter = i_iter+1
|
||||
! if (i_iter > i_itermax) then
|
||||
! i_iter = 1
|
||||
! endif
|
||||
!
|
||||
! dt = 2.0d0
|
||||
|
||||
i_iter = i_iter+1
|
||||
if (i_iter > i_itermax) then
|
||||
i_iter = 1
|
||||
endif
|
||||
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
! do k=1,N_st
|
||||
! element = exp(dt*(pt2(k)/avg -1.d0))
|
||||
! element = min(2.0d0 , element)
|
||||
! element = max(0.5d0 , element)
|
||||
! memo_pt2(k,i_iter) = element
|
||||
! pt2_match_weight(k) *= product(memo_pt2(k,:))
|
||||
!enddo
|
||||
|
||||
dt = 2.0d0
|
||||
|
||||
avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
|
||||
dt = 1.0d0 * selection_factor
|
||||
do k=1,N_st
|
||||
element = exp(dt*(pt2(k)/avg -1.d0))
|
||||
element = exp(dt*(pt2(k)/avg - 1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_pt2(k,i_iter) = element
|
||||
pt2_match_weight(k) *= product(memo_pt2(k,:))
|
||||
print *, k, element
|
||||
pt2_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
|
||||
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
! do k=1,N_st
|
||||
! element = exp(dt*(variance(k)/avg -1.d0))
|
||||
! element = min(2.0d0 , element)
|
||||
! element = max(0.5d0 , element)
|
||||
! memo_variance(k,i_iter) = element
|
||||
! variance_match_weight(k) *= product(memo_variance(k,:))
|
||||
! enddo
|
||||
|
||||
do k=1,N_st
|
||||
element = exp(dt*(variance(k)/avg -1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_variance(k,i_iter) = element
|
||||
variance_match_weight(k) *= product(memo_variance(k,:))
|
||||
variance_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
if (N_det < 100) then
|
||||
@ -78,6 +94,8 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
variance_match_weight(:) = 1.d0
|
||||
endif
|
||||
|
||||
print *, 'XXX', n_det, pt2_match_weight(1), pt2_match_weight(2)
|
||||
|
||||
threshold_davidson_pt2 = min(1.d-6, &
|
||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user