From eb4d6f254f7e6186d9db8acb5aea1836f54223df Mon Sep 17 00:00:00 2001 From: eginer Date: Wed, 29 Jun 2022 17:44:04 +0200 Subject: [PATCH] added Abdallah's non hermit davidson --- .../dav_ext_rout_nonsym_B1space.irp.f | 608 ++++++++++++++++++ 1 file changed, 608 insertions(+) create mode 100644 src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f diff --git a/src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f b/src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f new file mode 100644 index 00000000..c5127861 --- /dev/null +++ b/src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f @@ -0,0 +1,608 @@ + +! --- + +subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc) + + use mmap_module + + BEGIN_DOC + ! Generic modified-Davidson diagonalization + ! + ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson + ! + ! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st + ! + ! Initial guess vectors are not necessarily orthonormal + ! + ! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output) + END_DOC + + implicit none + + integer, intent(in) :: sze, N_st, N_st_diag_in + double precision, intent(in) :: H_jj(sze) + logical, intent(inout) :: converged + double precision, intent(inout) :: u_in(sze,N_st_diag_in) + double precision, intent(out) :: energies(N_st) + external hcalc + + character*(16384) :: write_buffer + integer :: iter, N_st_diag + integer :: i, j, k, m + integer :: iter2, itertot + logical :: disk_based + integer :: shift, shift2, itermax + integer :: nproc_target + integer :: order(N_st_diag_in) + double precision :: to_print(2,N_st) + double precision :: r1, r2, alpha + double precision :: cpu, wall + double precision :: cmax + double precision :: energy_shift(N_st_diag_in*davidson_sze_max) + double precision, allocatable :: U(:,:) + double precision, allocatable :: y(:,:), h(:,:), lambda(:) + double precision, allocatable :: residual_norm(:) + + integer :: i_omax + double precision :: lambda_tmp + double precision, allocatable :: U_tmp(:), overlap(:) + + double precision, allocatable :: W(:,:) + !double precision, pointer :: W(:,:) + double precision, external :: u_dot_v, u_dot_u + + + include 'constants.include.F' + + N_st_diag = N_st_diag_in + + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda + if(N_st_diag*3 > sze) then + print *, 'error in Davidson :' + print *, 'Increase n_det_max_full to ', N_st_diag*3 + stop -1 + endif + + itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1 + + provide threshold_nonsym_davidson + call write_time(6) + write(6,'(A)') '' + write(6,'(A)') 'Davidson Diagonalization' + write(6,'(A)') '------------------------' + write(6,'(A)') '' + + + ! Find max number of cores to fit in memory + ! ----------------------------------------- + + nproc_target = nproc + double precision :: rss + integer :: maxab + maxab = sze + + m=1 + disk_based = .False. + call resident_memory(rss) + do + r1 = 8.d0 * &! bytes + ( dble(sze)*(N_st_diag*itermax) &! U + + 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W + + 2.d0*(N_st_diag*itermax)**2 &! h,y + + 2.d0*(N_st_diag*itermax) &! s2,lambda + + 1.d0*(N_st_diag) &! residual_norm + ! In H_S2_u_0_nstates_zmq + + 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector + + 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave + + 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_* + + nproc_target * &! In OMP section + ( 1.d0*(N_int*maxab) &! buffer + + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx + ) / 1024.d0**3 + + if(nproc_target == 0) then + call check_mem(r1, irp_here) + nproc_target = 1 + exit + endif + + if(r1+rss < qp_max_mem) then + exit + endif + + if(itermax > 4) then + itermax = itermax - 1 + else if (m==1.and.disk_based_davidson) then + m = 0 + disk_based = .True. + itermax = 6 + else + nproc_target = nproc_target - 1 + endif + + enddo + + nthreads_davidson = nproc_target + TOUCH nthreads_davidson + + call write_int(6, N_st, 'Number of states') + call write_int(6, N_st_diag, 'Number of states in diagonalization') + call write_int(6, sze, 'Number of basis functions') + call write_int(6, nproc_target, 'Number of threads for diagonalization') + call write_double(6, r1, 'Memory(Gb)') + if(disk_based) then + print *, 'Using swap space to reduce RAM' + endif + + !--------------- + + write(6,'(A)') '' + write_buffer = '=====' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + write_buffer = 'Iter' + do i=1,N_st + write_buffer = trim(write_buffer)//' Energy Residual ' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + write_buffer = '=====' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') write_buffer(1:6+41*N_st) + + ! --- + + + allocate( W(sze,N_st_diag*itermax) ) + + allocate( & + ! Large + U(sze,N_st_diag*itermax), & + ! Small + h(N_st_diag*itermax,N_st_diag*itermax), & + y(N_st_diag*itermax,N_st_diag*itermax), & + lambda(N_st_diag*itermax), & + residual_norm(N_st_diag) & + ) + + U = 0.d0 + h = 0.d0 + y = 0.d0 + lambda = 0.d0 + residual_norm = 0.d0 + + + ASSERT (N_st > 0) + ASSERT (N_st_diag >= N_st) + ASSERT (sze > 0) + + ! Davidson iterations + ! =================== + + converged = .False. + + ! Initialize from N_st to N_st_diag with gaussian random numbers + ! to be sure to have overlap with any eigenvectors + do k = N_st+1, N_st_diag + u_in(k,k) = 10.d0 + do i = 1, sze + call random_number(r1) + call random_number(r2) + r1 = dsqrt(-2.d0*dlog(r1)) + r2 = dtwo_pi*r2 + u_in(i,k) = r1*dcos(r2) + enddo + enddo + ! Normalize all states + do k = 1, N_st_diag + call normalize(u_in(1,k), sze) + enddo + + ! Copy from the guess input "u_in" to the working vectors "U" + do k = 1, N_st_diag + do i = 1, sze + U(i,k) = u_in(i,k) + enddo + enddo + + ! --- + + itertot = 0 + + do while (.not.converged) + + itertot = itertot + 1 + if(itertot == 8) then + exit + endif + + do iter = 1, itermax-1 + + shift = N_st_diag * (iter-1) + shift2 = N_st_diag * iter + + if( (iter > 1) .or. (itertot == 1) ) then + + ! Gram-Schmidt to orthogonalize all new guess with the previous vectors + call ortho_qr(U, size(U, 1), sze, shift2) + call ortho_qr(U, size(U, 1), sze, shift2) + + ! W = H U + call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze) + + else + + ! Already computed in update below + continue + endif + + ! Compute h_kl = = + ! ------------------------------------------- + call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 & + , U, size(U, 1), W, size(W, 1) & + , 0.d0, h, size(h, 1) ) + + + ! Diagonalize h y = lambda y + ! --------------------------- + call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1)) + + + ! Express eigenvectors of h in the determinant basis: + ! --------------------------------------------------- + + ! y(:,k) = rk + ! U(:,k) = Bk + ! U(:,shift2+k) = Rk = Bk x rk + call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & + , U, size(U, 1), y, size(y, 1) & + , 0.d0, U(1,shift2+1), size(U, 1) ) + + do k = 1, N_st_diag + call normalize(U(1,shift2+k), sze) + enddo + + ! --- + ! select the max overlap + + ! + ! start test ------------------------------------------------------------------------ + ! + !double precision, allocatable :: Utest(:,:), Otest(:) + !allocate( Utest(sze,shift2), Otest(shift2) ) + + !call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 & + ! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) ) + !do k = 1, shift2 + ! call normalize(Utest(1,k), sze) + !enddo + !do j = 1, sze + ! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2) + !enddo + + !do k = 1, shift2 + ! Otest(k) = 0.d0 + ! do i = 1, sze + ! Otest(k) += Utest(i,k) * u_in(i,1) + ! enddo + ! Otest(k) = dabs(Otest(k)) + ! print *, ' Otest =', k, Otest(k), lambda(k) + !enddo + + !deallocate(Utest, Otest) + ! + ! end test ------------------------------------------------------------------------ + ! + + + allocate( overlap(N_st_diag) ) + + do k = 1, N_st_diag + overlap(k) = 0.d0 + do i = 1, sze + overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,1) + enddo + overlap(k) = dabs(overlap(k)) + !print *, ' overlap =', k, overlap(k) + enddo + + lambda_tmp = 0.d0 + do k = 1, N_st_diag + if(overlap(k) .gt. lambda_tmp) then + i_omax = k + lambda_tmp = overlap(k) + endif + enddo + deallocate(overlap) + if( lambda_tmp .lt. 0.8d0) then + print *, ' very small overlap..' + print*, ' max overlap = ', lambda_tmp, i_omax + stop + endif + +! lambda_tmp = lambda(1) +! lambda(1) = lambda(i_omax) +! lambda(i_omax) = lambda_tmp +! +! allocate( U_tmp(sze) ) +! do i = 1, sze +! U_tmp(i) = U(i,shift2+1) +! U(i,shift2+1) = U(i,shift2+i_omax) +! U(i,shift2+i_omax) = U_tmp(i) +! enddo +! deallocate(U_tmp) +! +! allocate( U_tmp(N_st_diag*itermax) ) +! do i = 1, shift2 +! U_tmp(i) = y(i,1) +! y(i,1) = y(i,i_omax) +! y(i,i_omax) = U_tmp(i) +! enddo +! deallocate(U_tmp) + + ! --- + + !do k = 1, N_st_diag + ! call normalize(U(1,shift2+k), sze) + !enddo + + ! --- + + ! y(:,k) = rk + ! W(:,k) = H x Bk + ! W(:,shift2+k) = H x Bk x rk + ! = Wk + call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & + , W, size(W, 1), y, size(y, 1) & + , 0.d0, W(1,shift2+1), size(W, 1) ) + + ! --- + + ! Compute residual vector and davidson step + ! ----------------------------------------- + + !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) + do k = 1, N_st_diag + do i = 1, sze + U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2) + enddo + !if(k <= N_st) then + ! residual_norm(k) = u_dot_u(U(1,shift2+k), sze) + ! to_print(1,k) = lambda(k) + ! to_print(2,k) = residual_norm(k) + !endif + enddo + !$OMP END PARALLEL DO + residual_norm(1) = u_dot_u(U(1,shift2+i_omax), sze) + to_print(1,1) = lambda(i_omax) + to_print(2,1) = residual_norm(1) + + + if( (itertot > 1) .and. (iter == 1) ) then + !don't print + continue + else + write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st) + endif + + ! Check convergence + if(iter > 1) then + converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson + endif + + do k = 1, N_st + if(residual_norm(k) > 1.e8) then + print *, 'Davidson failed' + stop -1 + endif + enddo + if(converged) then + exit + endif + + logical, external :: qp_stop + if(qp_stop()) then + converged = .True. + exit + endif + + enddo ! loop over iter + + + ! Re-contract U and update W + ! -------------------------------- + + call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & + , W, size(W, 1), y, size(y, 1) & + , 0.d0, u_in, size(u_in, 1) ) + do k = 1, N_st_diag + do i = 1, sze + W(i,k) = u_in(i,k) + enddo + enddo + + call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & + , U, size(U, 1), y, size(y, 1) & + , 0.d0, u_in, size(u_in, 1) ) + do k = 1, N_st_diag + do i = 1, sze + U(i,k) = u_in(i,k) + enddo + enddo + + call ortho_qr(U, size(U, 1), sze, N_st_diag) + call ortho_qr(U, size(U, 1), sze, N_st_diag) + do j = 1, N_st_diag + k = 1 + do while( (k < sze) .and. (U(k,j) == 0.d0) ) + k = k+1 + enddo + if(U(k,j) * u_in(k,j) < 0.d0) then + do i = 1, sze + W(i,j) = -W(i,j) + enddo + endif + enddo + + enddo ! loop over while + + ! --- + + do k = 1, N_st + energies(k) = lambda(k) + enddo + write_buffer = '=====' + do i = 1, N_st + write_buffer = trim(write_buffer)//' ================ ===========' + enddo + write(6,'(A)') trim(write_buffer) + write(6,'(A)') '' + call write_time(6) + + deallocate(W) + deallocate(U, h, y, lambda, residual_norm) + + FREE nthreads_davidson + +end subroutine davidson_general_ext_rout_nonsym_b1space + +! --- + +subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim) + + implicit none + + integer, intent(in) :: n, A_ldim, V_ldim, E_ldim + double precision, intent(in) :: A(A_ldim,n) + double precision, intent(out) :: energy(E_ldim), V(V_ldim,n) + + character*1 :: JOBVL, JOBVR, BALANC, SENSE + integer :: i, j + integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO + double precision :: ABNRM + integer, allocatable :: iorder(:), IWORK(:) + double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:) + double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:) + double precision, allocatable :: energy_loc(:), V_loc(:,:) + + allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) ) + do i = 1, n + do j = 1, n + Atmp(j,i) = A(j,i) + enddo + enddo + + JOBVL = "N" ! computes the left eigenvectors + JOBVR = "V" ! computes the right eigenvectors + BALANC = "B" ! Diagonal scaling and Permutation for optimization + SENSE = "V" ! Determines which reciprocal condition numbers are computed + lda = n + ldvr = n + ldvl = 1 + + allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) ) + + LWORK = -1 ! to ask for the optimal size of WORK + call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS + , n, Atmp, lda & ! MATRIX TO DIAGONALIZE + , WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES + , VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS + , ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION + , WORK, LWORK, IWORK, INFO ) + + if(INFO .ne. 0) then + print*, 'dgeevx failed !!', INFO + stop + endif + + LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK + deallocate(WORK) + allocate(WORK(LWORK)) + call dgeevx( BALANC, JOBVL, JOBVR, SENSE & + , n, Atmp, lda & + , WR, WI & + , VL, ldvl, VR, ldvr & + , ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & + , WORK, LWORK, IWORK, INFO ) + if(INFO .ne. 0) then + print*, 'dgeevx failed !!', INFO + stop + endif + + deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK ) + deallocate( VL, Atmp ) + + + allocate( energy_loc(n), V_loc(n,n) ) + energy_loc = 0.d0 + V_loc = 0.d0 + + i = 1 + do while(i .le. n) + +! print*, i, WR(i), WI(i) + + if( dabs(WI(i)) .gt. 1e-7 ) then + + print*, ' Found an imaginary component to eigenvalue' + print*, ' Re(i) + Im(i)', i, WR(i), WI(i) + + energy_loc(i) = WR(i) + do j = 1, n + V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1) + enddo + energy_loc(i+1) = WI(i) + do j = 1, n + V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i) + enddo + i = i + 2 + + else + + energy_loc(i) = WR(i) + do j = 1, n + V_loc(j,i) = VR(j,i) + enddo + i = i + 1 + + endif + + enddo + + deallocate(WR, WI, VR) + + + ! ordering +! do j = 1, n +! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5) +! enddo + allocate( iorder(n) ) + do i = 1, n + iorder(i) = i + enddo + call dsort(energy_loc, iorder, n) + do i = 1, n + energy(i) = energy_loc(i) + do j = 1, n + V(j,i) = V_loc(j,iorder(i)) + enddo + enddo + deallocate(iorder) +! do j = 1, n +! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5) +! enddo + deallocate(V_loc, energy_loc) + +end subroutine diag_nonsym_right + +! --- +