10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 20:33:20 +01:00

Merge branch 'dev' into master

This commit is contained in:
Anthony Scemama 2019-04-08 11:37:29 +02:00 committed by GitHub
commit e9be29933c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 69 additions and 5 deletions

View File

@ -3,7 +3,7 @@
""" """
Usage: Usage:
qp_plugins list [-iuq] qp_plugins list [-iuq]
qp_plugins download <url> qp_plugins download <url> [-n <name>]
qp_plugins install <name>... qp_plugins install <name>...
qp_plugins uninstall <name> qp_plugins uninstall <name>
qp_plugins create -n <name> [-r <repo>] [<needed_modules>...] qp_plugins create -n <name> [-r <repo>] [<needed_modules>...]
@ -186,7 +186,10 @@ def main(arguments):
url.endswith(".zip")) url.endswith(".zip"))
os.chdir(QP_PLUGINS) os.chdir(QP_PLUGINS)
if is_repo: if is_repo:
subprocess.check_call(["git", "clone", url]) git_cmd=["git", "clone", url]
if arguments["--name"]:
git_cmd.append(arguments["--name"])
subprocess.check_call(git_cmd)
else: else:
filename = url.split('/')[-1] filename = url.split('/')[-1]

View File

@ -195,6 +195,20 @@ BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_p
enddo enddo
accu = 1.d0/accu accu = 1.d0/accu
weight_at_r(l,k,j) = tmp_array(j) * accu weight_at_r(l,k,j) = tmp_array(j) * accu
if(isnan(weight_at_r(l,k,j)))then
print*,'isnan(weight_at_r(l,k,j))'
print*,l,k,j
accu = 0.d0
do i = 1, nucl_num
! function defined for each atom "i" by equation (13) and (21) with k == 3
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
print*,i,tmp_array(i)
! Then you compute the summ the P_n(r) function for each of the "r" points
accu += tmp_array(i)
enddo
write(*,'(100(F16.10,X))')tmp_array(j) , accu
stop
endif
enddo enddo
enddo enddo
enddo enddo
@ -221,6 +235,12 @@ BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angul
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)& contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)&
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2 *knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
if(isnan(final_weight_at_r(k,i,j)))then
print*,'isnan(final_weight_at_r(k,i,j))'
print*,k,i,j
write(*,'(100(F16.10,X))')weights_angular_points(k) , weight_at_r(k,i,j) , contrib_integration , dr_radial_integral
stop
endif
enddo enddo
enddo enddo
enddo enddo

View File

@ -31,6 +31,10 @@ double precision function cell_function_becke(r,atom_number)
double precision :: mu_ij,nu_ij double precision :: mu_ij,nu_ij
double precision :: distance_i,distance_j,step_function_becke double precision :: distance_i,distance_j,step_function_becke
integer :: j integer :: j
if(int(nucl_charge(atom_number))==0)then
cell_function_becke = 0.d0
return
endif
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number)) distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number)) distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number)) distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
@ -38,6 +42,7 @@ double precision function cell_function_becke(r,atom_number)
cell_function_becke = 1.d0 cell_function_becke = 1.d0
do j = 1, nucl_num do j = 1, nucl_num
if(j==atom_number)cycle if(j==atom_number)cycle
if(int(nucl_charge(j))==0)cycle
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j)) distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j)) distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j)) distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))

View File

@ -16,3 +16,10 @@ doc: Type of density
doc: if [no_core_dm] then all elements of the density matrix involving at least one orbital set as core are set to zero doc: if [no_core_dm] then all elements of the density matrix involving at least one orbital set as core are set to zero
interface: ezfio, provider, ocaml interface: ezfio, provider, ocaml
default: full_density default: full_density
[normalize_dm]
type: logical
doc: Type of density
doc: if .True., then you normalize the no_core_dm to elec_alpha_num - n_core_orb and elec_beta_num - n_core_orb
interface: ezfio, provider, ocaml
default: True

View File

@ -29,6 +29,20 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_s
one_e_dm_mo_alpha_for_dft(i,j,:) = 0.d0 one_e_dm_mo_alpha_for_dft(i,j,:) = 0.d0
enddo enddo
enddo enddo
if(normalize_dm)then
double precision :: elec_alpha_frozen_num, elec_alpha_valence(N_states)
elec_alpha_frozen_num = elec_alpha_num - n_core_orb
elec_alpha_valence = 0.d0
integer :: istate
do istate = 1, N_states
do i = 1, mo_num
elec_alpha_valence(istate) += one_e_dm_mo_alpha_for_dft(i,i,istate)
enddo
elec_alpha_valence(istate) = elec_alpha_frozen_num/elec_alpha_valence(istate)
one_e_dm_mo_alpha_for_dft(:,:,istate) = one_e_dm_mo_alpha_for_dft(:,:,istate) * elec_alpha_valence(istate)
enddo
endif
endif endif
END_PROVIDER END_PROVIDER
@ -64,6 +78,19 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_st
one_e_dm_mo_beta_for_dft(i,j,:) = 0.d0 one_e_dm_mo_beta_for_dft(i,j,:) = 0.d0
enddo enddo
enddo enddo
if(normalize_dm)then
double precision :: elec_beta_valence(N_states),elec_beta_frozen_num
elec_beta_frozen_num = elec_beta_num - n_core_orb
elec_beta_valence = 0.d0
integer :: istate
do istate = 1, N_states
do i = 1, mo_num
elec_beta_valence(istate) += one_e_dm_mo_beta_for_dft(i,i,istate)
enddo
elec_beta_valence(istate) = elec_beta_frozen_num/elec_beta_valence(istate)
one_e_dm_mo_beta_for_dft(:,:,istate) = one_e_dm_mo_beta_for_dft(:,:,istate) * elec_beta_valence(istate)
enddo
endif
endif endif
END_PROVIDER END_PROVIDER

View File

@ -227,6 +227,8 @@ END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_alpha_at_r, (n_points_final_grid,N_states) ] BEGIN_PROVIDER [double precision, one_e_dm_alpha_at_r, (n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_dm_beta_at_r, (n_points_final_grid,N_states) ] &BEGIN_PROVIDER [double precision, one_e_dm_beta_at_r, (n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ]
&BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate) ! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)

View File

@ -1,4 +1,4 @@
BEGIN_PROVIDER [ double precision, slater_bragg_radii, (100)] BEGIN_PROVIDER [ double precision, slater_bragg_radii, (0:100)]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! atomic radii in Angstrom defined in table I of JCP 41, 3199 (1964) Slater ! atomic radii in Angstrom defined in table I of JCP 41, 3199 (1964) Slater
@ -54,10 +54,10 @@ BEGIN_PROVIDER [ double precision, slater_bragg_radii, (100)]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, slater_bragg_radii_ua, (100)] BEGIN_PROVIDER [double precision, slater_bragg_radii_ua, (0:100)]
implicit none implicit none
integer :: i integer :: i
do i = 1, 100 do i = 0, 100
slater_bragg_radii_ua(i) = slater_bragg_radii(i) * 1.889725989d0 slater_bragg_radii_ua(i) = slater_bragg_radii(i) * 1.889725989d0
enddo enddo
END_PROVIDER END_PROVIDER