10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-23 04:43:45 +01:00

problem with 1rdm kpts

This commit is contained in:
Kevin Gasperich 2020-03-24 16:43:04 -05:00
parent 92f321e594
commit e638a640f0
5 changed files with 482 additions and 81 deletions

View File

@ -177,7 +177,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
if (is_complex) then
!todo: psi_selectors isn't linked to psi_selectors_coef anymore; should we provide both?
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals_complex pt2_w
!PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals_complex pt2_w
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals_kpts pt2_w
PROVIDE psi_selectors pt2_u pt2_J pt2_R
else
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w

View File

@ -6,7 +6,7 @@ subroutine print_energy_components()
integer, save :: ifirst = 0
double precision :: Vee, Ven, Vnn, Vecp, T, f
complex*16 :: fc
integer :: i,j,k
integer :: i,j,k,kk
Vnn = nuclear_repulsion
@ -20,12 +20,18 @@ subroutine print_energy_components()
T = 0.d0
if (is_complex) then
do j=1,mo_num
do i=1,mo_num
fc = one_e_dm_mo_alpha_complex(i,j,k) + one_e_dm_mo_beta_complex(i,j,k)
Ven = Ven + dble(fc * mo_integrals_n_e_complex(j,i))
Vecp = Vecp + dble(fc * mo_pseudo_integrals_complex(j,i))
T = T + dble(fc * mo_kinetic_integrals_complex(j,i))
do kk=1,kpt_num
do j=1,mo_num_per_kpt
do i=1,mo_num_per_kpt
!fc = one_e_dm_mo_alpha_complex(i,j,k) + one_e_dm_mo_beta_complex(i,j,k)
!Ven = Ven + dble(fc * mo_integrals_n_e_complex(j,i))
!Vecp = Vecp + dble(fc * mo_pseudo_integrals_complex(j,i))
!T = T + dble(fc * mo_kinetic_integrals_complex(j,i))
fc = one_e_dm_mo_alpha_kpts(i,j,kk,k) + one_e_dm_mo_beta_kpts(i,j,kk,k)
Ven = Ven + dble(fc * mo_integrals_n_e_kpts(j,i,kk))
Vecp = Vecp + dble(fc * mo_pseudo_integrals_kpts(j,i,kk))
T = T + dble(fc * mo_kinetic_integrals_kpts(j,i,kk))
enddo
enddo
enddo
else

View File

@ -290,8 +290,8 @@ END_PROVIDER
integer :: i,j,k,l
complex*16 :: mo_alpha,mo_beta
one_e_dm_ao_alpha = (0.d0,0.d0)
one_e_dm_ao_beta = (0.d0,0.d0)
one_e_dm_ao_alpha_complex = (0.d0,0.d0)
one_e_dm_ao_beta_complex = (0.d0,0.d0)
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
@ -309,3 +309,381 @@ END_PROVIDER
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_alpha_average_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_mo_beta_average_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
END_DOC
integer :: i,k
one_e_dm_mo_alpha_average_kpts = (0.d0,0.d0)
one_e_dm_mo_beta_average_kpts = (0.d0,0.d0)
do i = 1,N_states
do k=1,kpt_num
one_e_dm_mo_alpha_average_kpts(:,:,k) += one_e_dm_mo_alpha_kpts(:,:,k,i) * state_average_weight(i)
one_e_dm_mo_beta_average_kpts(:,:,k) += one_e_dm_mo_beta_kpts(:,:,k,i) * state_average_weight(i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_diff_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num,2:N_states) ]
implicit none
BEGIN_DOC
! Difference of the one-body density matrix with respect to the ground state
END_DOC
integer :: i,j, istate,k
do istate=2,N_states
do k=1,kpt_num
do j=1,mo_num_per_kpt
do i=1,mo_num_per_kpt
one_e_dm_mo_diff_kpts(i,j,k,istate) = &
one_e_dm_mo_alpha_kpts(i,j,k,istate) - one_e_dm_mo_alpha_kpts(i,j,k,1) +&
one_e_dm_mo_beta_kpts (i,j,k,istate) - one_e_dm_mo_beta_kpts (i,j,k,1)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_spin_index_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states,2) ]
implicit none
integer :: i,j,k,ispin,istate
ispin = 1
do istate = 1, N_states
do k=1,kpt_num
do j = 1, mo_num_per_kpt
do i = 1, mo_num_per_kpt
one_e_dm_mo_spin_index_kpts(i,j,k,istate,ispin) = one_e_dm_mo_alpha_kpts(i,j,k,istate)
enddo
enddo
enddo
enddo
ispin = 2
do istate = 1, N_states
do k=1,kpt_num
do j = 1, mo_num_per_kpt
do i = 1, mo_num_per_kpt
one_e_dm_mo_spin_index_kpts(i,j,k,istate,ispin) = one_e_dm_mo_beta_kpts(i,j,k,istate)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_dagger_mo_spin_index_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states,2) ]
print*,irp_here,' not implemented for kpts'
stop -1
! implicit none
! integer :: i,j,ispin,istate
! ispin = 1
! do istate = 1, N_states
! do j = 1, mo_num
! one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_alpha(j,j,istate)
! do i = j+1, mo_num
! one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
! one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
! enddo
! enddo
! enddo
!
! ispin = 2
! do istate = 1, N_states
! do j = 1, mo_num
! one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_beta(j,j,istate)
! do i = j+1, mo_num
! one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
! one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
! enddo
! enddo
! enddo
!
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_alpha_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_mo_beta_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
! $\gamma_{\mu\nu} = \langle\Psi|a_{\nu}^{\dagger}a_{\mu}|\Psi\rangle$
! $\gamma_{\mu\nu} = \langle a_{\nu} \Psi|a_{\mu} \Psi\rangle$
! $\gamma_{\mu\nu} = \sum_{IJ} c^*_J c_I \langle a_{\nu} I|a_{\mu} J\rangle$
END_DOC
!todo: implement for kpts
integer :: j,k,l,m,k_a,k_b
integer :: occ(N_int*bit_kind_size,2)
complex*16 :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: ih1,ip1,kh1,kp1,kk,k_shft,ii
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
integer(bit_kind) :: tmp_det_kpts(N_int,2)
integer :: exc(0:2,2),n_occ(2)
complex*16, allocatable :: tmp_a(:,:,:,:), tmp_b(:,:,:,:)
integer :: krow, kcol, lrow, lcol
PROVIDE psi_det psi_coef_complex
one_e_dm_mo_alpha_kpts = (0.d0,0.d0)
one_e_dm_mo_beta_kpts = (0.d0,0.d0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2,ih1,ip1,kh1,kp1,kk,&
!$OMP tmp_det_kpts,k_shft,ii)&
!$OMP SHARED(psi_det,psi_coef_complex,N_int,N_states,elec_alpha_num_kpts, &
!$OMP elec_beta_num_kpts,one_e_dm_mo_alpha_kpts,one_e_dm_mo_beta_kpts,N_det,&
!$OMP mo_num_per_kpt,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP psi_bilinear_matrix_values_complex, psi_bilinear_matrix_transp_values_complex,&
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here,kpt_num,kpts_bitmask)
allocate(tmp_a(mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states), tmp_b(mo_num_per_kpt,mo_num_per_kpt,kpt_num,N_states) )
tmp_a = (0.d0,0.d0)
!$OMP DO SCHEDULE(dynamic,64)
do k_a=1,N_det
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
do kk=1,kpt_num
k_shft = (kk-1)*mo_num_per_kpt
do ii=1,N_int
tmp_det_kpts(ii,1) = iand(tmp_det(ii,1),kpts_bitmask(ii,kk))
tmp_det_kpts(ii,2) = iand(tmp_det(ii,2),kpts_bitmask(ii,kk))
enddo
call bitstring_to_list_ab(tmp_det_kpts, occ, n_occ, N_int)
do m=1,N_states
ck = cdabs(psi_bilinear_matrix_values_complex(k_a,m)*psi_bilinear_matrix_values_complex(k_a,m))
!do l=1,elec_alpha_num_kpts(kk)
do l=1,n_occ(1)
j = occ(l,1) - k_shft
tmp_a(j,j,kk,m) += ck
enddo
enddo
enddo
if (k_a == N_det) cycle
l = k_a+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while ( lcol == kcol )
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
! h1 occ in k
! p1 occ in l
ih1 = mod(h1-1,mo_num_per_kpt)+1
ip1 = mod(p1-1,mo_num_per_kpt)+1
kh1 = (h1-1)/mo_num_per_kpt + 1
kp1 = (p1-1)/mo_num_per_kpt + 1
if (kh1.ne.kp1) then
print *,'problem in: ',irp_here,'a'
print *,' h1 = ',h1
print *,' p1 = ',p1
print *,'ih1 = ',ih1
print *,'ip1 = ',ip1
print *,'kh1 = ',kh1
print *,'kp1 = ',kp1
!call debug_det(tmp_det,N_int)
!call debug_spindet(tmp_det2,N_int)
!call print_spindet(tmp_det2,N_int)
!stop -2
endif
do m=1,N_states
ckl = dconjg(psi_bilinear_matrix_values_complex(k_a,m))*psi_bilinear_matrix_values_complex(l,m) * phase
tmp_a(ih1,ip1,kh1,m) += dconjg(ckl)
tmp_a(ip1,ih1,kh1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_alpha_kpts(:,:,:,:) = one_e_dm_mo_alpha_kpts(:,:,:,:) + tmp_a(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a)
tmp_b = (0.d0,0.d0)
!$OMP DO SCHEDULE(dynamic,64)
do k_b=1,N_det
krow = psi_bilinear_matrix_transp_rows(k_b)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_transp_columns(k_b)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
do kk=1,kpt_num
k_shft = (kk-1)*mo_num_per_kpt
do ii=1,N_int
tmp_det_kpts(ii,1) = iand(tmp_det(ii,1),kpts_bitmask(ii,kk))
tmp_det_kpts(ii,2) = iand(tmp_det(ii,2),kpts_bitmask(ii,kk))
enddo
call bitstring_to_list_ab(tmp_det_kpts, occ, n_occ, N_int)
do m=1,N_states
ck = cdabs(psi_bilinear_matrix_transp_values_complex(k_b,m)*psi_bilinear_matrix_transp_values_complex(k_b,m))
do l=1,n_occ(2)
j = occ(l,2) - k_shft
tmp_b(j,j,kk,m) += ck
enddo
enddo
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while ( lrow == krow )
tmp_det2(:) = psi_det_beta_unique(:, lcol)
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
ih1 = mod(h1-1,mo_num_per_kpt)+1
ip1 = mod(p1-1,mo_num_per_kpt)+1
kh1 = (h1-1)/mo_num_per_kpt + 1
kp1 = (p1-1)/mo_num_per_kpt + 1
if (kh1.ne.kp1) then
print *,'problem in: ',irp_here,'b'
print *,' h1 = ',h1
print *,' p1 = ',p1
print *,'ih1 = ',ih1
print *,'ip1 = ',ip1
print *,'kh1 = ',kh1
print *,'kp1 = ',kp1
!stop -3
endif
do m=1,N_states
ckl = dconjg(psi_bilinear_matrix_transp_values_complex(k_b,m))*psi_bilinear_matrix_transp_values_complex(l,m) * phase
tmp_b(ih1,ip1,kh1,m) += dconjg(ckl)
tmp_b(ip1,ih1,kh1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_beta_kpts(:,:,:,:) = one_e_dm_mo_beta_kpts(:,:,:,:) + tmp_b(:,:,:,:)
!$OMP END CRITICAL
deallocate(tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! One-body density matrix
END_DOC
one_e_dm_mo_kpts = one_e_dm_mo_alpha_average_kpts + one_e_dm_mo_beta_average_kpts
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_spin_density_mo_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! $\rho(\alpha) - \rho(\beta)$
END_DOC
one_e_spin_density_mo_kpts = one_e_dm_mo_alpha_average_kpts - one_e_dm_mo_beta_average_kpts
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_spin_density_ao_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num) ]
BEGIN_DOC
! One body spin density matrix on the |AO| basis : $\rho_{AO}(\alpha) - \rho_{AO}(\beta)$
! todo: verify that this is correct for complex
! equivalent to using mo_to_ao_no_overlap?
END_DOC
implicit none
integer :: i,j,k,l,kk
complex*16 :: dm_mo
one_e_spin_density_ao_kpts = (0.d0,0.d0)
do kk=1,kpt_num
do k = 1, ao_num_per_kpt
do l = 1, ao_num_per_kpt
do i = 1, mo_num_per_kpt
do j = 1, mo_num_per_kpt
dm_mo = one_e_spin_density_mo_kpts(j,i,kk)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_spin_density_ao_kpts(l,k,kk) += dconjg(mo_coef_kpts(k,i,kk)) * mo_coef_kpts(l,j,kk) * dm_mo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_ao_alpha_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_ao_beta_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num) ]
BEGIN_DOC
! One body density matrix on the |AO| basis : $\rho_{AO}(\alpha), \rho_{AO}(\beta)$.
END_DOC
implicit none
integer :: i,j,k,l,kk
complex*16 :: mo_alpha,mo_beta
one_e_dm_ao_alpha_kpts = (0.d0,0.d0)
one_e_dm_ao_beta_kpts = (0.d0,0.d0)
do kk=1,kpt_num
do k = 1, ao_num_per_kpt
do l = 1, ao_num_per_kpt
do i = 1, mo_num_per_kpt
do j = 1, mo_num_per_kpt
mo_alpha = one_e_dm_mo_alpha_average_kpts(j,i,kk)
mo_beta = one_e_dm_mo_beta_average_kpts(j,i,kk)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_dm_ao_alpha_kpts(l,k,kk) += dconjg(mo_coef_kpts(k,i,kk)) * mo_coef_kpts(l,j,kk) * mo_alpha
one_e_dm_ao_beta_kpts(l,k,kk) += dconjg(mo_coef_kpts(k,i,kk)) * mo_coef_kpts(l,j,kk) * mo_beta
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -336,6 +336,7 @@ END_PROVIDER
BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo_num_per_kpt,kpt_num) ]
implicit none
integer :: i0,j0,i,j,k0,k,kblock,kvirt
integer :: i_i, i_j, i_k, kocc
integer :: n_occ_ab(2,kpt_num)
integer :: occ(N_int*bit_kind_size,2,kpt_num)
integer :: n_occ_ab_virt(2)
@ -343,7 +344,7 @@ BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo
integer(bit_kind) :: key_test(N_int)
integer(bit_kind) :: key_virt(N_int,2)
complex*16 :: accu
complex*16, allocatable :: array_coulomb(:,:),array_exchange(:,:)
complex*16, allocatable :: array_coulomb(:),array_exchange(:)
do kblock = 1,kpt_num
call bitstring_to_list_ab(ref_closed_shell_bitmask_kpts(1,1,kblock), &
@ -378,9 +379,9 @@ BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo
accu += 2.d0 * array_coulomb(i_k) - array_exchange(i_k)
enddo
enddo
fock_op_cshell_ref_bitmask_cplx(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
!fock_op_cshell_ref_bitmask_cplx(j,i) = dconjg(accu) + mo_one_e_integrals_complex(j,i)
fock_op_cshell_ref_bitmask_cplx(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
fock_op_cshell_ref_bitmask_kpts(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
enddo
enddo
@ -401,8 +402,8 @@ BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo
accu += 2.d0 * array_coulomb(i_k) - array_exchange(i_k)
enddo
enddo
fock_op_cshell_ref_bitmask_cplx(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
fock_op_cshell_ref_bitmask_cplx(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
fock_op_cshell_ref_bitmask_kpts(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
enddo
enddo
@ -423,8 +424,8 @@ BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo
accu += 2.d0 * array_coulomb(i_k) - array_exchange(i_k)
enddo
enddo
fock_op_cshell_ref_bitmask_cplx(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
fock_op_cshell_ref_bitmask_cplx(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock) = accu + mo_one_e_integrals_kpts(i_i,i_j,kblock)
fock_op_cshell_ref_bitmask_kpts(i_j,i_i,kblock) = dconjg(fock_op_cshell_ref_bitmask_kpts(i_i,i_j,kblock))
enddo
enddo
enddo
@ -432,69 +433,83 @@ BEGIN_PROVIDER [complex*16, fock_op_cshell_ref_bitmask_kpts, (mo_num_per_kpt, mo
END_PROVIDER
subroutine get_single_excitation_from_fock_kpts(det_1,det_2,h,p,spin,phase,hij)
use bitmasks
implicit none
integer,intent(in) :: h,p,spin
double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: det_1(N_int,2), det_2(N_int,2)
complex*16, intent(out) :: hij
integer(bit_kind) :: differences(N_int,2)
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: partcl(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_partcl(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i
complex*16 :: buffer_c(mo_num),buffer_x(mo_num)
! do
do i=1, mo_num
buffer_c(i) = big_array_coulomb_integrals_kpts(i,ki,h,p,kp)
buffer_x(i) = big_array_exchange_integrals_kpts(i,ki,h,p,kp)
enddo
do i = 1, N_int
differences(i,1) = xor(det_1(i,1),ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(det_1(i,2),ref_closed_shell_bitmask(i,2))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
partcl(i,1) = iand(differences(i,1),det_1(i,1))
partcl(i,2) = iand(differences(i,2),det_1(i,2))
enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
hij = fock_op_cshell_ref_bitmask_cplx(h,p)
! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1)
hij -= buffer_c(i)
enddo
do i0 = 1, n_occ_ab_hole(2)
i = occ_hole(i0,2)
hij -= buffer_c(i)
enddo
! holes :: exchange terms
do i0 = 1, n_occ_ab_hole(spin)
i = occ_hole(i0,spin)
hij += buffer_x(i)
enddo
! particles :: direct terms
do i0 = 1, n_occ_ab_partcl(1)
i = occ_partcl(i0,1)
hij += buffer_c(i)
enddo
do i0 = 1, n_occ_ab_partcl(2)
i = occ_partcl(i0,2)
hij += buffer_c(i)
enddo
! particles :: exchange terms
do i0 = 1, n_occ_ab_partcl(spin)
i = occ_partcl(i0,spin)
hij -= buffer_x(i)
enddo
hij = hij * phase
subroutine get_single_excitation_from_fock_kpts(det_1,det_2,ih,ip,spin,phase,hij)
use bitmasks
!called by i_h_j{,_s2,_single_spin}_complex
! ih, ip are indices in total mo list (not per kpt)
implicit none
integer,intent(in) :: ih,ip,spin
double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: det_1(N_int,2), det_2(N_int,2)
complex*16, intent(out) :: hij
integer(bit_kind) :: differences(N_int,2)
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: partcl(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_partcl(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i,h,p
integer :: ki,khp
complex*16 :: buffer_c(mo_num_per_kpt),buffer_x(mo_num_per_kpt)
khp = (ip-1)/mo_num_per_kpt+1
p = mod(ip-1,mo_num_per_kpt)+1
h = mod(ih-1,mo_num_per_kpt)+1
!todo: omp kpts
do ki=1,kpt_num
do i=1, mo_num_per_kpt
!<hi|pi>
buffer_c(i) = big_array_coulomb_integrals_kpts(i,ki,h,p,khp)
!<hi|ip>
buffer_x(i) = big_array_exchange_integrals_kpts(i,ki,h,p,khp)
enddo
do i = 1, N_int
!holes in ref, not in det1
!part in det1, not in ref
differences(i,1) = iand(xor(det_1(i,1),ref_closed_shell_bitmask(i,1)),kpts_bitmask(i,ki))
differences(i,2) = iand(xor(det_1(i,2),ref_closed_shell_bitmask(i,2)),kpts_bitmask(i,ki))
!differences(i,1) = xor(det_1(i,1),ref_closed_shell_bitmask_kpts(i,1,ki))
!differences(i,2) = xor(det_1(i,2),ref_closed_shell_bitmask_kpts(i,2,ki))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask_kpts(i,1,ki))
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask_kpts(i,2,ki))
partcl(i,1) = iand(differences(i,1),det_1(i,1))
partcl(i,2) = iand(differences(i,2),det_1(i,2))
enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
hij = fock_op_cshell_ref_bitmask_kpts(h,p,khp)
! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1) - (ki-1)*mo_num_per_kpt
hij -= buffer_c(i)
enddo
do i0 = 1, n_occ_ab_hole(2)
i = occ_hole(i0,2) - (ki-1)*mo_num_per_kpt
hij -= buffer_c(i)
enddo
! holes :: exchange terms
do i0 = 1, n_occ_ab_hole(spin)
i = occ_hole(i0,spin) - (ki-1)*mo_num_per_kpt
hij += buffer_x(i)
enddo
! particles :: direct terms
do i0 = 1, n_occ_ab_partcl(1)
i = occ_partcl(i0,1) - (ki-1)*mo_num_per_kpt
hij += buffer_c(i)
enddo
do i0 = 1, n_occ_ab_partcl(2)
i = occ_partcl(i0,2) - (ki-1)*mo_num_per_kpt
hij += buffer_c(i)
enddo
! particles :: exchange terms
do i0 = 1, n_occ_ab_partcl(spin)
i = occ_partcl(i0,spin) - (ki-1)*mo_num_per_kpt
hij -= buffer_x(i)
enddo
enddo
hij = hij * phase
end

View File

@ -2491,7 +2491,8 @@ subroutine i_H_j_complex(key_i,key_j,Nint,hij)
p = exc(1,2,2)
spin = 2
endif
call get_single_excitation_from_fock_complex(key_i,key_j,m,p,spin,phase,hij)
!call get_single_excitation_from_fock_complex(key_i,key_j,m,p,spin,phase,hij)
call get_single_excitation_from_fock_kpts(key_i,key_j,m,p,spin,phase,hij)
case (0)
hij = dcmplx(diag_H_mat_elem(key_i,Nint),0.d0)