From d84e3fa236f91132af65747b9707cb1ef8e109b7 Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Fri, 28 Jan 2022 20:16:01 +0100 Subject: [PATCH] Dressed davidson with CSF --- src/davidson/diagonalize_ci.irp.f | 1 - src/davidson_dressed/diagonalize_ci.irp.f | 316 +++++++++++++--------- 2 files changed, 192 insertions(+), 125 deletions(-) diff --git a/src/davidson/diagonalize_ci.irp.f b/src/davidson/diagonalize_ci.irp.f index fb991b65..54e248cc 100644 --- a/src/davidson/diagonalize_ci.irp.f +++ b/src/davidson/diagonalize_ci.irp.f @@ -1,4 +1,3 @@ - BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] implicit none BEGIN_DOC diff --git a/src/davidson_dressed/diagonalize_ci.irp.f b/src/davidson_dressed/diagonalize_ci.irp.f index 709ee0e6..b58ce9c0 100644 --- a/src/davidson_dressed/diagonalize_ci.irp.f +++ b/src/davidson_dressed/diagonalize_ci.irp.f @@ -21,133 +21,201 @@ END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] - BEGIN_DOC - ! Eigenvectors/values of the CI matrix - END_DOC - implicit none - double precision :: ovrlp,u_dot_v - integer :: i_good_state - integer, allocatable :: index_good_state_array(:) - logical, allocatable :: good_state_array(:) - double precision, allocatable :: s2_values_tmp(:) - integer :: i_other_state - double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:) - integer :: i_state - double precision :: e_0 - integer :: i,j,k,mrcc_state - double precision, allocatable :: s2_eigvalues(:) - double precision, allocatable :: e_array(:) - integer, allocatable :: iorder(:) - - PROVIDE threshold_davidson nthreads_davidson - ! Guess values for the "N_states" states of the CI_eigenvectors_dressed - do j=1,min(N_states,N_det) - do i=1,N_det - CI_eigenvectors_dressed(i,j) = psi_coef(i,j) - enddo - enddo - - do j=min(N_states,N_det)+1,N_states_diag - do i=1,N_det - CI_eigenvectors_dressed(i,j) = 0.d0 - enddo - enddo - - if (diag_algorithm == "Davidson") then - - do j=1,min(N_states,N_det) - do i=1,N_det - CI_eigenvectors_dressed(i,j) = psi_coef(i,j) - enddo - enddo - logical :: converged - converged = .False. - call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,& - size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,& - N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged) - - else if (diag_algorithm == "Lapack") then - - allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) - allocate (eigenvalues(N_det)) - - call lapack_diag(eigenvalues,eigenvectors, & - H_matrix_dressed,size(H_matrix_dressed,1),N_det) - CI_electronic_energy_dressed(:) = 0.d0 - if (s2_eig) then - i_state = 0 - allocate (s2_eigvalues(N_det)) - allocate(index_good_state_array(N_det),good_state_array(N_det)) - good_state_array = .False. - - call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& - N_det,size(eigenvectors,1)) - do j=1,N_det - ! Select at least n_states states with S^2 values closed to "expected_s2" - if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then - i_state +=1 - index_good_state_array(i_state) = j - good_state_array(j) = .True. - endif - if(i_state.eq.N_states) then - exit - endif + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + implicit none + double precision :: ovrlp,u_dot_v + integer :: i_good_state + integer, allocatable :: index_good_state_array(:) + logical, allocatable :: good_state_array(:) + double precision, allocatable :: s2_values_tmp(:) + integer :: i_other_state + double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:) + integer :: i_state + double precision :: e_0 + integer :: i,j,k,mrcc_state + double precision, allocatable :: s2_eigvalues(:) + double precision, allocatable :: e_array(:) + integer, allocatable :: iorder(:) + logical :: converged + logical :: do_csf + + PROVIDE threshold_davidson nthreads_davidson + ! Guess values for the "N_states" states of the CI_eigenvectors_dressed + do j=1,min(N_states,N_det) + do i=1,N_det + CI_eigenvectors_dressed(i,j) = psi_coef(i,j) + enddo + enddo + + do j=min(N_states,N_det)+1,N_states_diag + do i=1,N_det + CI_eigenvectors_dressed(i,j) = 0.d0 + enddo + enddo + + do_csf = s2_eig .and. only_expected_s2 .and. csf_based + + if (diag_algorithm == "Davidson") then + + do j=1,min(N_states,N_det) + do i=1,N_det + CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo - if(i_state .ne.0)then - ! Fill the first "i_state" states that have a correct S^2 value - do j = 1, i_state - do i=1,N_det - CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j)) - enddo - CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j)) - CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) - enddo - i_other_state = 0 - do j = 1, N_det - if(good_state_array(j))cycle - i_other_state +=1 - if(i_state+i_other_state.gt.n_states_diag)then - exit - endif - do i=1,N_det - CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j) - enddo - CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j) - CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) - enddo - else - print*,'' - print*,'!!!!!!!! WARNING !!!!!!!!!' - print*,' Within the ',N_det,'determinants selected' - print*,' and the ',N_states_diag,'states requested' - print*,' We did not find any state with S^2 values close to ',expected_s2 - print*,' We will then set the first N_states eigenvectors of the H matrix' - print*,' as the CI_eigenvectors_dressed' - print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' - print*,'' - do j=1,min(N_states_diag,N_det) - do i=1,N_det - CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) - enddo - CI_electronic_energy_dressed(j) = eigenvalues(j) - CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j) - enddo - endif - deallocate(index_good_state_array,good_state_array) - deallocate(s2_eigvalues) + enddo + converged = .False. + if (do_csf) then + call davidson_diag_H_csf(psi_det,CI_eigenvectors_dressed, & + size(CI_eigenvectors_dressed,1),CI_electronic_energy_dressed, & + N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged) else - call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,& - min(N_det,N_states_diag),size(eigenvectors,1)) - ! Select the "N_states_diag" states of lowest energy - do j=1,min(N_det,N_states_diag) - do i=1,N_det - CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) - enddo - CI_electronic_energy_dressed(j) = eigenvalues(j) - enddo + call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,& + size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,& + N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged) endif - deallocate(eigenvectors,eigenvalues) - endif + + integer :: N_states_diag_save + N_states_diag_save = N_states_diag + do while (.not.converged) + double precision, allocatable :: CI_electronic_energy_tmp (:) + double precision, allocatable :: CI_eigenvectors_tmp (:,:) + double precision, allocatable :: CI_s2_tmp (:) + + N_states_diag *= 2 + TOUCH N_states_diag + + if (do_csf) then + + allocate (CI_electronic_energy_tmp (N_states_diag) ) + allocate (CI_eigenvectors_tmp (N_det,N_states_diag) ) + + CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save) + CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) + + call davidson_diag_H_csf(psi_det,CI_eigenvectors_tmp, & + size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, & + N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged) + + CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save) + CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) + + deallocate (CI_electronic_energy_tmp) + deallocate (CI_eigenvectors_tmp) + + else + + allocate (CI_electronic_energy_tmp (N_states_diag) ) + allocate (CI_eigenvectors_tmp (N_det,N_states_diag) ) + allocate (CI_s2_tmp (N_states_diag) ) + + CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save) + CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) + CI_s2_tmp(1:N_states_diag_save) = CI_eigenvectors_s2_dressed(1:N_states_diag_save) + + call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, & + size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, & + N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged) + + CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save) + CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) + CI_eigenvectors_s2_dressed(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save) + + deallocate (CI_electronic_energy_tmp) + deallocate (CI_eigenvectors_tmp) + deallocate (CI_s2_tmp) + + endif + + enddo + if (N_states_diag > N_states_diag_save) then + N_states_diag = N_states_diag_save + TOUCH N_states_diag + endif + + else if (diag_algorithm == "Lapack") then + + print *, 'Diagonalization of H using Lapack' + allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) + allocate (eigenvalues(N_det)) + + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_dressed,size(H_matrix_dressed,1),N_det) + CI_electronic_energy_dressed(:) = 0.d0 + if (s2_eig) then + i_state = 0 + allocate (s2_eigvalues(N_det)) + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + + call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& + N_det,size(eigenvectors,1)) + do j=1,N_det + ! Select at least n_states states with S^2 values closed to "expected_s2" + if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then + i_state +=1 + index_good_state_array(i_state) = j + good_state_array(j) = .True. + endif + if(i_state.eq.N_states) then + exit + endif + enddo + if(i_state .ne.0)then + ! Fill the first "i_state" states that have a correct S^2 value + do j = 1, i_state + do i=1,N_det + CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j)) + enddo + CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j)) + CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) + enddo + i_other_state = 0 + do j = 1, N_det + if(good_state_array(j))cycle + i_other_state +=1 + if(i_state+i_other_state.gt.n_states_diag)then + exit + endif + do i=1,N_det + CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j) + enddo + CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j) + CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) + enddo + else + print*,'' + print*,'!!!!!!!! WARNING !!!!!!!!!' + print*,' Within the ',N_det,'determinants selected' + print*,' and the ',N_states_diag,'states requested' + print*,' We did not find any state with S^2 values close to ',expected_s2 + print*,' We will then set the first N_states eigenvectors of the H matrix' + print*,' as the CI_eigenvectors_dressed' + print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' + print*,'' + do j=1,min(N_states_diag,N_det) + do i=1,N_det + CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) + enddo + CI_electronic_energy_dressed(j) = eigenvalues(j) + CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j) + enddo + endif + deallocate(index_good_state_array,good_state_array) + deallocate(s2_eigvalues) + else + call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,& + min(N_det,N_states_diag),size(eigenvectors,1)) + ! Select the "N_states_diag" states of lowest energy + do j=1,min(N_det,N_states_diag) + do i=1,N_det + CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) + enddo + CI_electronic_energy_dressed(j) = eigenvalues(j) + enddo + endif + deallocate(eigenvectors,eigenvalues) + endif END_PROVIDER