mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-10 21:18:24 +01:00
still cleaning in two_body_rdm
This commit is contained in:
parent
244831673d
commit
d04774c435
@ -1,2 +1,2 @@
|
|||||||
davidson_undressed
|
two_rdm_routines
|
||||||
density_for_dft
|
density_for_dft
|
||||||
|
@ -1,499 +0,0 @@
|
|||||||
subroutine orb_range_two_rdm_state_av(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_0,N_st,sze)
|
|
||||||
use bitmasks
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! if ispin == 1 :: alpha/alpha 2rdm
|
|
||||||
! == 2 :: beta /beta 2rdm
|
|
||||||
! == 3 :: alpha/beta 2rdm
|
|
||||||
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
|
|
||||||
!
|
|
||||||
! Assumes that the determinants are in psi_det
|
|
||||||
!
|
|
||||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
|
||||||
END_DOC
|
|
||||||
integer, intent(in) :: N_st,sze
|
|
||||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st)
|
|
||||||
|
|
||||||
integer :: k
|
|
||||||
double precision, allocatable :: u_t(:,:)
|
|
||||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
|
||||||
allocate(u_t(N_st,N_det))
|
|
||||||
do k=1,N_st
|
|
||||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
|
||||||
enddo
|
|
||||||
call dtranspose( &
|
|
||||||
u_0, &
|
|
||||||
size(u_0, 1), &
|
|
||||||
u_t, &
|
|
||||||
size(u_t, 1), &
|
|
||||||
N_det, N_st)
|
|
||||||
|
|
||||||
|
|
||||||
call orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
|
|
||||||
deallocate(u_t)
|
|
||||||
|
|
||||||
do k=1,N_st
|
|
||||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
use bitmasks
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Computes two-rdm
|
|
||||||
!
|
|
||||||
! Default should be 1,N_det,0,1
|
|
||||||
END_DOC
|
|
||||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
||||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
|
|
||||||
|
|
||||||
integer :: k
|
|
||||||
|
|
||||||
PROVIDE N_int
|
|
||||||
|
|
||||||
select case (N_int)
|
|
||||||
case (1)
|
|
||||||
call orb_range_two_rdm_state_av_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
case (2)
|
|
||||||
call orb_range_two_rdm_state_av_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
case (3)
|
|
||||||
call orb_range_two_rdm_state_av_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
case (4)
|
|
||||||
call orb_range_two_rdm_state_av_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
case default
|
|
||||||
call orb_range_two_rdm_state_av_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
end select
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
subroutine orb_range_two_rdm_state_av_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
||||||
use bitmasks
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Computes the two rdm for the N_st vectors |u_t>
|
|
||||||
! if ispin == 1 :: alpha/alpha 2rdm
|
|
||||||
! == 2 :: beta /beta 2rdm
|
|
||||||
! == 3 :: alpha/beta 2rdm
|
|
||||||
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
|
|
||||||
! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb
|
|
||||||
! In any cases, the state average weights will be used with an array state_weights
|
|
||||||
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
|
|
||||||
END_DOC
|
|
||||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
||||||
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
|
|
||||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
|
|
||||||
integer :: i,j,k,l
|
|
||||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
|
||||||
integer :: istate
|
|
||||||
integer :: krow, kcol, krow_b, kcol_b
|
|
||||||
integer :: lrow, lcol
|
|
||||||
integer :: mrow, mcol
|
|
||||||
integer(bit_kind) :: spindet($N_int)
|
|
||||||
integer(bit_kind) :: tmp_det($N_int,2)
|
|
||||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
|
||||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
|
||||||
integer(bit_kind), allocatable :: buffer(:,:)
|
|
||||||
integer :: n_doubles
|
|
||||||
integer, allocatable :: doubles(:)
|
|
||||||
integer, allocatable :: singles_a(:)
|
|
||||||
integer, allocatable :: singles_b(:)
|
|
||||||
integer, allocatable :: idx(:), idx0(:)
|
|
||||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
|
||||||
integer*8 :: k8
|
|
||||||
double precision :: c_average
|
|
||||||
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
integer(bit_kind) :: orb_bitmask($N_int)
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
else
|
|
||||||
print*,'Wrong parameter for ispin in general_two_rdm_state_av_work'
|
|
||||||
print*,'ispin = ',ispin
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
PROVIDE N_int
|
|
||||||
|
|
||||||
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
|
||||||
|
|
||||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
|
||||||
allocate(idx0(maxab))
|
|
||||||
|
|
||||||
do i=1,maxab
|
|
||||||
idx0(i) = i
|
|
||||||
enddo
|
|
||||||
|
|
||||||
|
|
||||||
! Prepare the array of all alpha single excitations
|
|
||||||
! -------------------------------------------------
|
|
||||||
|
|
||||||
PROVIDE N_int nthreads_davidson
|
|
||||||
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
|
||||||
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
|
||||||
! !$OMP psi_bilinear_matrix_columns, &
|
|
||||||
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
|
|
||||||
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
|
|
||||||
! !$OMP psi_bilinear_matrix_transp_rows, &
|
|
||||||
! !$OMP psi_bilinear_matrix_transp_columns, &
|
|
||||||
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
|
|
||||||
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
|
|
||||||
! !$OMP psi_bilinear_matrix_columns_loc, &
|
|
||||||
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
|
|
||||||
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
|
||||||
! !$OMP ishift, idx0, u_t, maxab) &
|
|
||||||
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
|
|
||||||
! !$OMP lcol, lrow, l_a, l_b, &
|
|
||||||
! !$OMP buffer, doubles, n_doubles, &
|
|
||||||
! !$OMP tmp_det2, idx, l, kcol_prev, &
|
|
||||||
! !$OMP singles_a, n_singles_a, singles_b, &
|
|
||||||
! !$OMP n_singles_b, k8)
|
|
||||||
|
|
||||||
! Alpha/Beta double excitations
|
|
||||||
! =============================
|
|
||||||
|
|
||||||
allocate( buffer($N_int,maxab), &
|
|
||||||
singles_a(maxab), &
|
|
||||||
singles_b(maxab), &
|
|
||||||
doubles(maxab), &
|
|
||||||
idx(maxab))
|
|
||||||
|
|
||||||
kcol_prev=-1
|
|
||||||
|
|
||||||
ASSERT (iend <= N_det)
|
|
||||||
ASSERT (istart > 0)
|
|
||||||
ASSERT (istep > 0)
|
|
||||||
|
|
||||||
!!$OMP DO SCHEDULE(dynamic,64)
|
|
||||||
do k_a=istart+ishift,iend,istep
|
|
||||||
|
|
||||||
krow = psi_bilinear_matrix_rows(k_a)
|
|
||||||
ASSERT (krow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
kcol = psi_bilinear_matrix_columns(k_a)
|
|
||||||
ASSERT (kcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
||||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
||||||
|
|
||||||
if (kcol /= kcol_prev) then
|
|
||||||
call get_all_spin_singles_$N_int( &
|
|
||||||
psi_det_beta_unique, idx0, &
|
|
||||||
tmp_det(1,2), N_det_beta_unique, &
|
|
||||||
singles_b, n_singles_b)
|
|
||||||
endif
|
|
||||||
kcol_prev = kcol
|
|
||||||
|
|
||||||
! Loop over singly excited beta columns
|
|
||||||
! -------------------------------------
|
|
||||||
|
|
||||||
do i=1,n_singles_b
|
|
||||||
lcol = singles_b(i)
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
|
||||||
|
|
||||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
|
|
||||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
|
||||||
lrow = psi_bilinear_matrix_rows(l_a)
|
|
||||||
ASSERT (lrow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
||||||
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
idx(j) = l_a
|
|
||||||
l_a = l_a+1
|
|
||||||
enddo
|
|
||||||
j = j-1
|
|
||||||
|
|
||||||
call get_all_spin_singles_$N_int( &
|
|
||||||
buffer, idx, tmp_det(1,1), j, &
|
|
||||||
singles_a, n_singles_a )
|
|
||||||
|
|
||||||
! Loop over alpha singles
|
|
||||||
! -----------------------
|
|
||||||
|
|
||||||
if(alpha_beta.or.spin_trace)then
|
|
||||||
do k = 1,n_singles_a
|
|
||||||
l_a = singles_a(k)
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
|
|
||||||
lrow = psi_bilinear_matrix_rows(l_a)
|
|
||||||
ASSERT (lrow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
||||||
c_average = 0.d0
|
|
||||||
do l= 1, N_states
|
|
||||||
c_1(l) = u_t(l,l_a)
|
|
||||||
c_2(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
call orb_range_off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
|
|
||||||
enddo
|
|
||||||
|
|
||||||
enddo
|
|
||||||
! !$OMP END DO
|
|
||||||
|
|
||||||
! !$OMP DO SCHEDULE(dynamic,64)
|
|
||||||
do k_a=istart+ishift,iend,istep
|
|
||||||
|
|
||||||
|
|
||||||
! Single and double alpha exitations
|
|
||||||
! ===================================
|
|
||||||
|
|
||||||
|
|
||||||
! Initial determinant is at k_a in alpha-major representation
|
|
||||||
! -----------------------------------------------------------------------
|
|
||||||
|
|
||||||
krow = psi_bilinear_matrix_rows(k_a)
|
|
||||||
ASSERT (krow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
kcol = psi_bilinear_matrix_columns(k_a)
|
|
||||||
ASSERT (kcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
||||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
||||||
|
|
||||||
! Initial determinant is at k_b in beta-major representation
|
|
||||||
! ----------------------------------------------------------------------
|
|
||||||
|
|
||||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
||||||
ASSERT (k_b <= N_det)
|
|
||||||
|
|
||||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
|
||||||
|
|
||||||
! Loop inside the beta column to gather all the connected alphas
|
|
||||||
lcol = psi_bilinear_matrix_columns(k_a)
|
|
||||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
||||||
do i=1,N_det_alpha_unique
|
|
||||||
if (l_a > N_det) exit
|
|
||||||
lcol = psi_bilinear_matrix_columns(l_a)
|
|
||||||
if (lcol /= kcol) exit
|
|
||||||
lrow = psi_bilinear_matrix_rows(l_a)
|
|
||||||
ASSERT (lrow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
||||||
idx(i) = l_a
|
|
||||||
l_a = l_a+1
|
|
||||||
enddo
|
|
||||||
i = i-1
|
|
||||||
|
|
||||||
call get_all_spin_singles_and_doubles_$N_int( &
|
|
||||||
buffer, idx, spindet, i, &
|
|
||||||
singles_a, doubles, n_singles_a, n_doubles )
|
|
||||||
|
|
||||||
! Compute Hij for all alpha singles
|
|
||||||
! ----------------------------------
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
||||||
do i=1,n_singles_a
|
|
||||||
l_a = singles_a(i)
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
|
|
||||||
lrow = psi_bilinear_matrix_rows(l_a)
|
|
||||||
ASSERT (lrow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
||||||
c_average = 0.d0
|
|
||||||
do l= 1, N_states
|
|
||||||
c_1(l) = u_t(l,l_a)
|
|
||||||
c_2(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
|
||||||
! increment the alpha/beta part for single excitations
|
|
||||||
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
! increment the alpha/alpha part for single excitations
|
|
||||||
call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
endif
|
|
||||||
|
|
||||||
enddo
|
|
||||||
|
|
||||||
|
|
||||||
! Compute Hij for all alpha doubles
|
|
||||||
! ----------------------------------
|
|
||||||
|
|
||||||
if(alpha_alpha.or.spin_trace)then
|
|
||||||
do i=1,n_doubles
|
|
||||||
l_a = doubles(i)
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
|
|
||||||
lrow = psi_bilinear_matrix_rows(l_a)
|
|
||||||
ASSERT (lrow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
c_average = 0.d0
|
|
||||||
do l= 1, N_states
|
|
||||||
c_1(l) = u_t(l,l_a)
|
|
||||||
c_2(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
! Single and double beta excitations
|
|
||||||
! ==================================
|
|
||||||
|
|
||||||
|
|
||||||
! Initial determinant is at k_a in alpha-major representation
|
|
||||||
! -----------------------------------------------------------------------
|
|
||||||
|
|
||||||
krow = psi_bilinear_matrix_rows(k_a)
|
|
||||||
kcol = psi_bilinear_matrix_columns(k_a)
|
|
||||||
|
|
||||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
||||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
||||||
|
|
||||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
|
||||||
|
|
||||||
! Initial determinant is at k_b in beta-major representation
|
|
||||||
! -----------------------------------------------------------------------
|
|
||||||
|
|
||||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
||||||
ASSERT (k_b <= N_det)
|
|
||||||
|
|
||||||
! Loop inside the alpha row to gather all the connected betas
|
|
||||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
|
||||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
|
||||||
do i=1,N_det_beta_unique
|
|
||||||
if (l_b > N_det) exit
|
|
||||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
|
||||||
if (lrow /= krow) exit
|
|
||||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
||||||
ASSERT (lcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
|
||||||
idx(i) = l_b
|
|
||||||
l_b = l_b+1
|
|
||||||
enddo
|
|
||||||
i = i-1
|
|
||||||
|
|
||||||
call get_all_spin_singles_and_doubles_$N_int( &
|
|
||||||
buffer, idx, spindet, i, &
|
|
||||||
singles_b, doubles, n_singles_b, n_doubles )
|
|
||||||
|
|
||||||
! Compute Hij for all beta singles
|
|
||||||
! ----------------------------------
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
||||||
do i=1,n_singles_b
|
|
||||||
l_b = singles_b(i)
|
|
||||||
ASSERT (l_b <= N_det)
|
|
||||||
|
|
||||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
||||||
ASSERT (lcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
|
||||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
||||||
c_average = 0.d0
|
|
||||||
do l= 1, N_states
|
|
||||||
c_1(l) = u_t(l,l_a)
|
|
||||||
c_2(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
if(alpha_beta.or.spin_trace.or.beta_beta)then
|
|
||||||
! increment the alpha/beta part for single excitations
|
|
||||||
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
! increment the beta /beta part for single excitations
|
|
||||||
call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
|
|
||||||
! Compute Hij for all beta doubles
|
|
||||||
! ----------------------------------
|
|
||||||
|
|
||||||
if(beta_beta.or.spin_trace)then
|
|
||||||
do i=1,n_doubles
|
|
||||||
l_b = doubles(i)
|
|
||||||
ASSERT (l_b <= N_det)
|
|
||||||
|
|
||||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
||||||
ASSERT (lcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
||||||
c_average = 0.d0
|
|
||||||
do l= 1, N_states
|
|
||||||
c_1(l) = u_t(l,l_a)
|
|
||||||
c_2(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
ASSERT (l_a <= N_det)
|
|
||||||
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
! Diagonal contribution
|
|
||||||
! =====================
|
|
||||||
|
|
||||||
|
|
||||||
! Initial determinant is at k_a in alpha-major representation
|
|
||||||
! -----------------------------------------------------------------------
|
|
||||||
|
|
||||||
krow = psi_bilinear_matrix_rows(k_a)
|
|
||||||
ASSERT (krow <= N_det_alpha_unique)
|
|
||||||
|
|
||||||
kcol = psi_bilinear_matrix_columns(k_a)
|
|
||||||
ASSERT (kcol <= N_det_beta_unique)
|
|
||||||
|
|
||||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
||||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
||||||
|
|
||||||
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
|
||||||
|
|
||||||
double precision :: c_1(N_states),c_2(N_states)
|
|
||||||
c_average = 0.d0
|
|
||||||
do l = 1, N_states
|
|
||||||
c_1(l) = u_t(l,k_a)
|
|
||||||
c_average += c_1(l) * c_1(l) * state_weights(l)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
call orb_range_diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
|
|
||||||
end do
|
|
||||||
!!$OMP END DO
|
|
||||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
|
||||||
!!$OMP END PARALLEL
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
SUBST [ N_int ]
|
|
||||||
|
|
||||||
1;;
|
|
||||||
2;;
|
|
||||||
3;;
|
|
||||||
4;;
|
|
||||||
N_int;;
|
|
||||||
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
@ -1,97 +0,0 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
|
||||||
implicit none
|
|
||||||
double precision, allocatable :: state_weights(:)
|
|
||||||
BEGIN_DOC
|
|
||||||
! state_av_act_two_rdm_alpha_alpha_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha electrons
|
|
||||||
!
|
|
||||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
|
|
||||||
!
|
|
||||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
|
||||||
END_DOC
|
|
||||||
allocate(state_weights(N_states))
|
|
||||||
state_weights = state_average_weight
|
|
||||||
integer :: ispin
|
|
||||||
! condition for alpha/beta spin
|
|
||||||
ispin = 1
|
|
||||||
state_av_act_two_rdm_alpha_alpha_mo = 0.D0
|
|
||||||
call orb_range_two_rdm_state_av(state_av_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
|
||||||
implicit none
|
|
||||||
double precision, allocatable :: state_weights(:)
|
|
||||||
BEGIN_DOC
|
|
||||||
! state_av_act_two_rdm_beta_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of beta electrons
|
|
||||||
!
|
|
||||||
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
|
|
||||||
!
|
|
||||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
|
||||||
END_DOC
|
|
||||||
allocate(state_weights(N_states))
|
|
||||||
state_weights = state_average_weight
|
|
||||||
integer :: ispin
|
|
||||||
! condition for alpha/beta spin
|
|
||||||
ispin = 2
|
|
||||||
state_av_act_two_rdm_beta_beta_mo = 0.d0
|
|
||||||
call orb_range_two_rdm_state_av(state_av_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
|
||||||
implicit none
|
|
||||||
double precision, allocatable :: state_weights(:)
|
|
||||||
BEGIN_DOC
|
|
||||||
! state_av_act_two_rdm_alpha_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta electrons
|
|
||||||
!
|
|
||||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
|
|
||||||
!
|
|
||||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
|
||||||
END_DOC
|
|
||||||
allocate(state_weights(N_states))
|
|
||||||
state_weights = state_average_weight
|
|
||||||
integer :: ispin
|
|
||||||
! condition for alpha/beta spin
|
|
||||||
print*,''
|
|
||||||
print*,''
|
|
||||||
print*,''
|
|
||||||
print*,'providint state_av_act_two_rdm_alpha_beta_mo '
|
|
||||||
ispin = 3
|
|
||||||
print*,'ispin = ',ispin
|
|
||||||
state_av_act_two_rdm_alpha_beta_mo = 0.d0
|
|
||||||
call orb_range_two_rdm_state_av(state_av_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! state_av_act_two_rdm_spin_trace_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM
|
|
||||||
!
|
|
||||||
! \sum_{\sigma, \sigma'} <Psi| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi>
|
|
||||||
!
|
|
||||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
|
||||||
END_DOC
|
|
||||||
double precision, allocatable :: state_weights(:)
|
|
||||||
allocate(state_weights(N_states))
|
|
||||||
state_weights = state_average_weight
|
|
||||||
integer :: ispin
|
|
||||||
! condition for alpha/beta spin
|
|
||||||
ispin = 4
|
|
||||||
state_av_act_two_rdm_spin_trace_mo = 0.d0
|
|
||||||
integer :: i
|
|
||||||
double precision :: wall_0,wall_1
|
|
||||||
call wall_time(wall_0)
|
|
||||||
print*,'providing the state average TWO-RDM ...'
|
|
||||||
print*,'psi_det_size = ',psi_det_size
|
|
||||||
print*,'N_det = ',N_det
|
|
||||||
call orb_range_two_rdm_state_av(state_av_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,N_states,size(psi_coef,1))
|
|
||||||
|
|
||||||
call wall_time(wall_1)
|
|
||||||
print*,'Time to provide the state average TWO-RDM',wall_1 - wall_0
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
@ -1,670 +0,0 @@
|
|||||||
|
|
||||||
subroutine orb_range_diagonal_contrib_to_two_rdm_ab_dm(det_1,c_1,big_array,dim1,orb_bitmask)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the DIAGONAL PART of the alpha/beta two body rdm in a specific range of orbitals
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2)
|
|
||||||
integer :: i,j,h1,h2
|
|
||||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
h1 = occ(i,1)
|
|
||||||
do j = 1, n_occ_ab(2)
|
|
||||||
h2 = occ(j,2)
|
|
||||||
big_array(h1,h2,h1,h2) += c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
subroutine orb_range_diagonal_contrib_to_all_two_rdm_dm(det_1,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the DIAGONAL PART of the two body rdms in a specific range of orbitals for a given determinant det_1
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2)
|
|
||||||
integer :: i,j,h1,h2
|
|
||||||
integer(bit_kind) :: det_1_act(N_int,2)
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
do i = 1, N_int
|
|
||||||
det_1_act(i,1) = iand(det_1(i,1),orb_bitmask(i))
|
|
||||||
det_1_act(i,2) = iand(det_1(i,2),orb_bitmask(i))
|
|
||||||
enddo
|
|
||||||
|
|
||||||
!print*,'ahah'
|
|
||||||
!call debug_det(det_1_act,N_int)
|
|
||||||
!pause
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
BEGIN_DOC
|
|
||||||
! no factor 1/2 have to be taken into account as the permutations are already taken into account
|
|
||||||
END_DOC
|
|
||||||
call bitstring_to_list_ab(det_1_act, occ, n_occ_ab, N_int)
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
integer :: i1,i2
|
|
||||||
if(alpha_beta)then
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
i1 = occ(i,1)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(2)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
i2 = occ(j,2)
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
else if (alpha_alpha)then
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
i1 = occ(i,1)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(1)
|
|
||||||
i2 = occ(j,1)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
|
|
||||||
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
else if (beta_beta)then
|
|
||||||
do i = 1, n_occ_ab(2)
|
|
||||||
i1 = occ(i,2)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(2)
|
|
||||||
i2 = occ(j,2)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
|
|
||||||
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
else if(spin_trace)then
|
|
||||||
! 0.5 * (alpha beta + beta alpha)
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
i1 = occ(i,1)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(2)
|
|
||||||
i2 = occ(j,2)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += 0.5d0 * (c_1 )
|
|
||||||
big_array(h2,h1,h2,h1) += 0.5d0 * (c_1 )
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
!stop
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
i1 = occ(i,1)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(1)
|
|
||||||
i2 = occ(j,1)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
|
|
||||||
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
do i = 1, n_occ_ab(2)
|
|
||||||
i1 = occ(i,2)
|
|
||||||
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
|
|
||||||
do j = 1, n_occ_ab(2)
|
|
||||||
i2 = occ(j,2)
|
|
||||||
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
|
|
||||||
h1 = list_orb_reverse(i1)
|
|
||||||
h2 = list_orb_reverse(i2)
|
|
||||||
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
|
|
||||||
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_double_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a alpha/beta DOUBLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 3 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
integer :: i,j,h1,h2,p1,p2
|
|
||||||
integer :: exc(0:2,2,2)
|
|
||||||
double precision :: phase
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
!print*,''
|
|
||||||
!do i = 1, mo_num
|
|
||||||
! print*,'list_orb',i,list_orb_reverse(i)
|
|
||||||
!enddo
|
|
||||||
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
!print*,'h1',h1
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
!print*,'passed h1 = ',h1
|
|
||||||
h2 = exc(1,1,2)
|
|
||||||
!print*,'h2',h2
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
!print*,'passed h2 = ',h2
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
!print*,'p1',p1
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
!print*,'passed p1 = ',p1
|
|
||||||
p2 = exc(1,2,2)
|
|
||||||
!print*,'p2',p2
|
|
||||||
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
|
||||||
p2 = list_orb_reverse(p2)
|
|
||||||
!print*,'passed p2 = ',p2
|
|
||||||
if(alpha_beta)then
|
|
||||||
big_array(h1,h2,p1,p2) += c_1 * phase
|
|
||||||
else if(spin_trace)then
|
|
||||||
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(p1,p2,h1,h2) += 0.5d0 * c_1 * phase
|
|
||||||
!print*,'h1,h2,p1,p2',h1,h2,p1,p2
|
|
||||||
!print*,'',big_array(h1,h2,p1,p2)
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 3 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2)
|
|
||||||
integer :: i,j,h1,h2,p1
|
|
||||||
integer :: exc(0:2,2,2)
|
|
||||||
double precision :: phase
|
|
||||||
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
|
|
||||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
||||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
|
||||||
if(alpha_beta)then
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
! Mono alpha
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(2)
|
|
||||||
h2 = occ(i,2)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h1,h2,p1,h2) += c_1 * phase
|
|
||||||
enddo
|
|
||||||
else
|
|
||||||
! Mono beta
|
|
||||||
h1 = exc(1,1,2)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,2)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
h2 = occ(i,1)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h2,h1,h2,p1) += c_1 * phase
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
else if(spin_trace)then
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
! Mono alpha
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(2)
|
|
||||||
h2 = occ(i,2)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
|
||||||
enddo
|
|
||||||
else
|
|
||||||
! Mono beta
|
|
||||||
h1 = exc(1,1,2)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,2)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
h2 = occ(i,1)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 1 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
use bitmasks
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2)
|
|
||||||
integer :: i,j,h1,h2,p1
|
|
||||||
integer :: exc(0:2,2,2)
|
|
||||||
double precision :: phase
|
|
||||||
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
|
|
||||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
||||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
|
||||||
if(alpha_alpha.or.spin_trace)then
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
! Mono alpha
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(1)
|
|
||||||
h2 = occ(i,1)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
|
||||||
|
|
||||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
|
||||||
enddo
|
|
||||||
else
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 2 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2)
|
|
||||||
integer :: i,j,h1,h2,p1
|
|
||||||
integer :: exc(0:2,2,2)
|
|
||||||
double precision :: phase
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
||||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
|
||||||
if(beta_beta.or.spin_trace)then
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
return
|
|
||||||
else
|
|
||||||
! Mono beta
|
|
||||||
h1 = exc(1,1,2)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
p1 = exc(1,2,2)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
do i = 1, n_occ_ab(2)
|
|
||||||
h2 = occ(i,2)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
|
||||||
|
|
||||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 1 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
integer :: i,j,h1,h2,p1,p2
|
|
||||||
integer :: exc(0:2,2)
|
|
||||||
double precision :: phase
|
|
||||||
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
|
||||||
h1 =exc(1,1)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
h2 =exc(2,1)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
p1 =exc(1,2)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
p2 =exc(2,2)
|
|
||||||
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
|
||||||
p2 = list_orb_reverse(p2)
|
|
||||||
if(alpha_alpha.or.spin_trace)then
|
|
||||||
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
|
|
||||||
|
|
||||||
big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
|
|
||||||
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine orb_range_off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
|
||||||
use bitmasks
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
|
||||||
!
|
|
||||||
! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
|
|
||||||
!
|
|
||||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
|
||||||
!
|
|
||||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
|
||||||
!
|
|
||||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
|
||||||
!
|
|
||||||
! ispin determines which spin-spin component of the two-rdm you will update
|
|
||||||
!
|
|
||||||
! ispin == 1 :: alpha/ alpha
|
|
||||||
! ispin == 2 :: beta / beta
|
|
||||||
! ispin == 3 :: alpha/ beta
|
|
||||||
! ispin == 4 :: spin traced <=> total two-rdm
|
|
||||||
!
|
|
||||||
! here, only ispin == 2 or 4 will do something
|
|
||||||
END_DOC
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
integer, intent(in) :: dim1,ispin
|
|
||||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
|
||||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
|
||||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
|
||||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
|
||||||
double precision, intent(in) :: c_1
|
|
||||||
|
|
||||||
integer :: i,j,h1,h2,p1,p2
|
|
||||||
integer :: exc(0:2,2)
|
|
||||||
double precision :: phase
|
|
||||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
|
||||||
logical :: is_integer_in_string
|
|
||||||
alpha_alpha = .False.
|
|
||||||
beta_beta = .False.
|
|
||||||
alpha_beta = .False.
|
|
||||||
spin_trace = .False.
|
|
||||||
if( ispin == 1)then
|
|
||||||
alpha_alpha = .True.
|
|
||||||
else if(ispin == 2)then
|
|
||||||
beta_beta = .True.
|
|
||||||
else if(ispin == 3)then
|
|
||||||
alpha_beta = .True.
|
|
||||||
else if(ispin == 4)then
|
|
||||||
spin_trace = .True.
|
|
||||||
endif
|
|
||||||
|
|
||||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
|
||||||
h1 =exc(1,1)
|
|
||||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
|
||||||
h1 = list_orb_reverse(h1)
|
|
||||||
h2 =exc(2,1)
|
|
||||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
|
|
||||||
h2 = list_orb_reverse(h2)
|
|
||||||
p1 =exc(1,2)
|
|
||||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
|
||||||
p1 = list_orb_reverse(p1)
|
|
||||||
p2 =exc(2,2)
|
|
||||||
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
|
||||||
p2 = list_orb_reverse(p2)
|
|
||||||
if(beta_beta.or.spin_trace)then
|
|
||||||
big_array(h1,h2,p1,p2) += 0.5d0 * c_1* phase
|
|
||||||
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1* phase
|
|
||||||
|
|
||||||
big_array(h2,h1,p2,p1) += 0.5d0 * c_1* phase
|
|
||||||
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1* phase
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user