10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 10:03:47 +01:00

Merge pull request #282 from AbdAmmar/dev-stable-tc-scf

Dev stable tc scf
This commit is contained in:
Emmanuel Giner 2023-05-10 10:08:13 +02:00 committed by GitHub
commit cd1b90c768
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
75 changed files with 2782 additions and 914 deletions

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable 5462
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=64 -DINTEL

2
configure vendored
View File

@ -232,7 +232,7 @@ EOF
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file qp2-dependencies/f77-zmq-4.3.2.tar.gz
tar --gunzip --extract --file qp2-dependencies/f77-zmq-4.3.?.tar.gz
cd f77-zmq-*
./configure --prefix=\$QP_ROOT
export ZMQ_H="\$QP_ROOT"/include/zmq.h

View File

@ -25,7 +25,7 @@ except ImportError:
"quantum_package.rc"))
print("\n".join(["", "Error:", "source %s" % f, ""]))
sys.exit(1)
raise
# Compress path
def comp_path(path):

186
scripts/qp_exc_energy.py Executable file
View File

@ -0,0 +1,186 @@
#!/usr/bin/env python
# Computes the error on the excitation energy of a CIPSI run.
def student(p,df):
import scipy
from scipy.stats import t
return t.ppf(p, df)
def chi2cdf(x,k):
import scipy
import scipy.stats
return scipy.stats.chi2.cdf(x,k)
def jarque_bera(data):
n = max(len(data), 2)
norm = 1./ sum( [ w for (_,w) in data ] )
mu = sum( [ w* x for (x,w) in data ] ) * norm
sigma2 = sum( [ w*(x-mu)**2 for (x,w) in data ] ) * norm
if sigma2 > 0.:
S = ( sum( [ w*(x-mu)**3 for (x,w) in data ] ) * norm ) / sigma2**(3./2.)
K = ( sum( [ w*(x-mu)**4 for (x,w) in data ] ) * norm ) / sigma2**2
else:
S = 0.
K = 0.
# Value of the Jarque-Bera test
JB = n/6. * (S**2 + 1./4. * (K-3.)**2)
# Probability that the data comes from a Gaussian distribution
p = 1. - chi2cdf(JB,2)
return JB, mu, sqrt(sigma2/(n-1)), p
to_eV = 27.2107362681
import sys, os
import scipy
import scipy.stats
from math import sqrt, gamma, exp
import json
def read_data(filename,state):
""" Read energies and PT2 from input file """
with open(filename,'r') as f:
lines = json.load(f)['fci']
print(f"State: {state}")
gs = []
es = []
for l in lines:
try:
pt2_0 = l['states'][0]['pt2']
e_0 = l['states'][0]['energy']
pt2_1 = l['states'][state]['pt2']
e_1 = l['states'][state]['energy']
gs.append( (e_0, pt2_0) )
es.append( (e_1, pt2_1) )
except: pass
def f(p_1, p0, p1):
e, pt2 = p0
y0, x0 = p_1
y1, x1 = p1
try:
alpha = (y1-y0)/(x0-x1)
except ZeroDivisionError:
alpha = 1.
return [e, pt2, alpha]
for l in (gs, es):
p_1, p0, p1 = l[0], l[0], l[1]
l[0] = f(p_1, p0, p1)
for i in range(1,len(l)-1):
p_1 = (l[i-1][0], l[i-1][1])
p0 = l[i]
p1 = l[i+1]
l[i] = f(p_1, p0, p1)
i = len(l)-1
p_1 = (l[i-1][0], l[i-1][1])
p0 = l[i]
p1 = l[-1]
l[i] = f(p_1, p0, p1)
return [ x+y for x,y in zip(gs,es) ]
def compute(data):
d = []
for e0, p0, a0, e1, p1, a1 in data:
x = (e1+p1)-(e0+p0)
w = 1./sqrt(p0**2 + p1**2)
bias = (a1-1.)*p1 - (a0-1.)*p0
d.append( (x,w,bias) )
x = []
target = (scipy.stats.norm.cdf(1.)-0.5)*2 # = 0.6827
print("| %2s | %8s | %8s | %8s | %8s | %8s |"%( "N", "DE", "+/-", "bias", "P(G)", "J"))
print("|----+----------+----------+----------+----------+----------|")
xmax = (0.,0.,0.,0.,0.,0,0.)
for i in range(len(data)-1):
jb, mu, sigma, p = jarque_bera( [ (x,w) for (x,w,bias) in d[i:] ] )
bias = sum ( [ w * e for (_,w,e) in d[i:] ] ) / sum ( [ w for (_,w,_) in d[i:] ] )
mu = (mu+0.5*bias) * to_eV
sigma = sigma * to_eV
bias = bias * to_eV
n = len(data[i:])
beta = student(0.5*(1.+target/p) ,n)
err = sigma * beta + 0.5*abs(bias)
print("| %2d | %8.3f | %8.3f | %8.3f | %8.3f | %8.3f |"%( n, mu, err, bias, p, jb))
if n < 3 :
continue
y = (err, p, mu, err, jb,n,bias)
if p > xmax[1]: xmax = y
if p < 0.8:
continue
x.append(y)
x = sorted(x)
print("|----+----------+----------+----------+----------+----------|")
if x != []:
xmax = x[0]
_, p, mu, err, jb, n, bias = xmax
beta = student(0.5*(1.+target/p),n)
print("| %2d | %8.3f | %8.3f | %8.3f | %8.3f | %8.3f |\n"%(n, mu, err, bias, p, jb))
return mu, err, bias, p
filename = sys.argv[1]
print(filename)
if len(sys.argv) > 2:
state = int(sys.argv[2])
else:
state = 1
data = read_data(filename,state)
mu, err, bias, _ = compute(data)
print(" %s: %8.3f +/- %5.3f eV\n"%(filename, mu, err))
import numpy as np
A = np.array( [ [ data[-1][1], 1. ],
[ data[-2][1], 1. ] ] )
B = np.array( [ [ data[-1][0] ],
[ data[-2][0] ] ] )
E0 = np.linalg.solve(A,B)[1]
A = np.array( [ [ data[-1][4], 1. ],
[ data[-2][4], 1. ] ] )
B = np.array( [ [ data[-1][3] ],
[ data[-2][3] ] ] )
E1 = np.linalg.solve(A,B)[1]
average_2 = (E1-E0)*to_eV
A = np.array( [ [ data[-1][1], 1. ],
[ data[-2][1], 1. ],
[ data[-3][1], 1. ] ] )
B = np.array( [ [ data[-1][0] ],
[ data[-2][0] ],
[ data[-3][0] ] ] )
E0 = np.linalg.lstsq(A,B,rcond=None)[0][1]
A = np.array( [ [ data[-1][4], 1. ],
[ data[-2][4], 1. ],
[ data[-3][4], 1. ] ] )
B = np.array( [ [ data[-1][3] ],
[ data[-2][3] ],
[ data[-3][3] ] ] )
E1 = np.linalg.lstsq(A,B,rcond=None)[0][1]
average_3 = (E1-E0)*to_eV
exc = ((data[-1][3] + data[-1][4]) - (data[-1][0] + data[-1][1])) * to_eV
error_2 = abs(average_2 - average_3)
error_3 = abs(average_3 - exc)
print(" 2-3 points: %.3f +/- %.3f "% (average_3, error_2))
print(" largest wf: %.3f +/- %.3f "%(average_3, error_3))

View File

@ -3,3 +3,4 @@ ao_two_e_ints
becke_numerical_grid
mo_one_e_ints
dft_utils_in_r
tc_keywords

View File

@ -1,4 +1,72 @@
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) [1 - erf(mu r12)]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_fit
double precision :: r(3), expo_fit, coef_fit
double precision :: tmp
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing int2_grad1u2_grad2u2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
int2_grad1u2_grad2u2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_fit, r, coef_fit, expo_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2,int2_grad1u2_grad2u2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp = 0.d0
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
tmp += -0.25d0 * coef_fit * overlap_gauss_r12_ao(r, expo_fit, i, j)
enddo
int2_grad1u2_grad2u2(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2(j,i,ipoint) = int2_grad1u2_grad2u2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2 =', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
@ -26,15 +94,15 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
int2_grad1u2_grad2u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
!$OMP DO
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
@ -53,7 +121,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += -0.25d0 * coef_fit * int_fit
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
! ---
@ -78,8 +146,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
@ -96,7 +164,7 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
@ -120,15 +188,15 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
int2_u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!$OMP DO
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
@ -147,7 +215,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += coef_fit * int_fit
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
! ---
@ -172,8 +240,8 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num

View File

@ -24,12 +24,12 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
v_ij_erf_rk_cst_mu_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -51,7 +51,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
! if(dabs(coef)*dabs(int_mu - int_coulomb) .lt. 1d-12) cycle
! if(dabs(coef)*dabs(int_mu - int_coulomb) .lt. 1d-12) cycle
tmp += coef * (int_mu - int_coulomb)
@ -77,8 +77,8 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
@ -112,13 +112,13 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
x_v_ij_erf_rk_cst_mu_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points,&
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points,&
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -143,7 +143,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
! if( dabs(coef)*(dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
! if( dabs(coef)*(dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
tmp_x += coef * (ints(1) - ints_coulomb(1))
tmp_y += coef * (ints(2) - ints_coulomb(2))
@ -175,8 +175,8 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
@ -220,15 +220,15 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
v_ij_u_cst_mu_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
!$OMP DO
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -253,7 +253,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
tmp += coef * coef_fit * int_fit
@ -280,8 +280,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num

View File

@ -1,17 +1,34 @@
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b2_size]
BEGIN_PROVIDER [integer, List_all_comb_b2_size]
implicit none
List_all_comb_b2_size = 2**nucl_num
PROVIDE j1b_type
if(j1b_type .eq. 3) then
List_all_comb_b2_size = 2**nucl_num
elseif(j1b_type .eq. 4) then
List_all_comb_b2_size = nucl_num + 1
else
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the envelope is ', List_all_comb_b2_size
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b2, (nucl_num, List_all_comb_b2_size)]
BEGIN_PROVIDER [integer, List_all_comb_b2, (nucl_num, List_all_comb_b2_size)]
implicit none
integer :: i, j
@ -50,57 +67,79 @@ END_PROVIDER
List_all_comb_b2_expo = 0.d0
List_all_comb_b2_cent = 0.d0
do i = 1, List_all_comb_b2_size
if(j1b_type .eq. 3) then
tmp_cent_x = 0.d0
tmp_cent_y = 0.d0
tmp_cent_z = 0.d0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
List_all_comb_b2_expo(i) += tmp_alphaj
tmp_cent_x += tmp_alphaj * nucl_coord(j,1)
tmp_cent_y += tmp_alphaj * nucl_coord(j,2)
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
enddo
do i = 1, List_all_comb_b2_size
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(2,i) = tmp_cent_y / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(3,i) = tmp_cent_z / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_b2_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b2(k,i)) * j1b_pen(k)
List_all_comb_b2_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
tmp_cent_x = 0.d0
tmp_cent_y = 0.d0
tmp_cent_z = 0.d0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
List_all_comb_b2_expo(i) += tmp_alphaj
tmp_cent_x += tmp_alphaj * nucl_coord(j,1)
tmp_cent_y += tmp_alphaj * nucl_coord(j,2)
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(2,i) = tmp_cent_y / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(3,i) = tmp_cent_z / List_all_comb_b2_expo(i)
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
! ---
List_all_comb_b2_coef(i) = List_all_comb_b2_coef(i) / List_all_comb_b2_expo(i)
enddo
do i = 1, List_all_comb_b2_size
! ---
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b2(k,i)) * j1b_pen(k)
do i = 1, List_all_comb_b2_size
List_all_comb_b2_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
phase = 0
do j = 1, nucl_num
phase += List_all_comb_b2(j,i)
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_coef(i) = List_all_comb_b2_coef(i) / List_all_comb_b2_expo(i)
enddo
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
enddo
! ---
do i = 1, List_all_comb_b2_size
phase = 0
do j = 1, nucl_num
phase += List_all_comb_b2(j,i)
enddo
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
enddo
elseif(j1b_type .eq. 4) then
List_all_comb_b2_coef( 1) = 1.d0
List_all_comb_b2_expo( 1) = 0.d0
List_all_comb_b2_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_all_comb_b2_coef( i+1) = -1.d0
List_all_comb_b2_expo( i+1) = j1b_pen( i)
List_all_comb_b2_cent(1,i+1) = nucl_coord(i,1)
List_all_comb_b2_cent(2,i+1) = nucl_coord(i,2)
List_all_comb_b2_cent(3,i+1) = nucl_coord(i,3)
enddo
else
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
endif
!print *, ' coeff, expo & cent of list b2'
!do i = 1, List_all_comb_b2_size
@ -115,14 +154,31 @@ END_PROVIDER
BEGIN_PROVIDER [ integer, List_all_comb_b3_size]
implicit none
double precision :: tmp
List_all_comb_b3_size = 3**nucl_num
if(j1b_type .eq. 3) then
List_all_comb_b3_size = 3**nucl_num
elseif(j1b_type .eq. 4) then
tmp = 0.5d0 * dble(nucl_num) * (dble(nucl_num) + 3.d0)
List_all_comb_b3_size = int(tmp) + 1
else
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the square of the envelope is ', List_all_comb_b3_size
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b3, (nucl_num, List_all_comb_b3_size)]
BEGIN_PROVIDER [integer, List_all_comb_b3, (nucl_num, List_all_comb_b3_size)]
implicit none
integer :: i, j, ii, jj
@ -162,7 +218,11 @@ END_PROVIDER
implicit none
integer :: i, j, k, phase
integer :: ii
double precision :: tmp_alphaj, tmp_alphak, facto
double precision :: tmp1, tmp2, tmp3, tmp4
double precision :: xi, yi, zi, xj, yj, zj
double precision :: dx, dy, dz, r2
provide j1b_pen
@ -170,60 +230,126 @@ END_PROVIDER
List_all_comb_b3_expo = 0.d0
List_all_comb_b3_cent = 0.d0
do i = 1, List_all_comb_b3_size
if(j1b_type .eq. 3) then
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b3_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
do i = 1, List_all_comb_b3_size
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b3_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(3,i) = List_all_comb_b3_cent(3,i) / List_all_comb_b3_expo(i)
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
! ---
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(3,i) = List_all_comb_b3_cent(3,i) / List_all_comb_b3_expo(i)
enddo
do i = 1, List_all_comb_b3_size
! ---
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b3(k,i)) * j1b_pen(k)
do i = 1, List_all_comb_b3_size
List_all_comb_b3_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b3(k,i)) * j1b_pen(k)
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
List_all_comb_b3_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
List_all_comb_b3_coef(i) = List_all_comb_b3_coef(i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_all_comb_b3(j,i)
enddo
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo
elseif(j1b_type .eq. 4) then
ii = 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_expo( ii) = 0.d0
List_all_comb_b3_cent(1:3,ii) = 0.d0
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = -2.d0
List_all_comb_b3_expo( ii) = j1b_pen( i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_expo( ii) = 2.d0 * j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num-1
tmp1 = j1b_pen(i)
xi = nucl_coord(i,1)
yi = nucl_coord(i,2)
zi = nucl_coord(i,3)
do j = i+1, nucl_num
tmp2 = j1b_pen(j)
tmp3 = tmp1 + tmp2
tmp4 = 1.d0 / tmp3
xj = nucl_coord(j,1)
yj = nucl_coord(j,2)
zj = nucl_coord(j,3)
dx = xi - xj
dy = yi - yj
dz = zi - zj
r2 = dx*dx + dy*dy + dz*dz
ii = ii + 1
List_all_comb_b3_coef( ii) = dexp(-tmp1*tmp2*tmp4*r2)
List_all_comb_b3_expo( ii) = tmp3
List_all_comb_b3_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_all_comb_b3_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)
List_all_comb_b3_cent(3,ii) = tmp4 * (tmp1 * zi + tmp2 * zj)
enddo
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
else
List_all_comb_b3_coef(i) = List_all_comb_b3_coef(i) / List_all_comb_b3_expo(i)
enddo
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
! ---
do i = 1, List_all_comb_b3_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_all_comb_b3(j,i)
enddo
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo
endif
!print *, ' coeff, expo & cent of list b3'
!do i = 1, List_all_comb_b3_size

View File

@ -53,13 +53,13 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
integral_erf = ao_two_e_integral_erf(i, k, j, l)
integral = integral_erf + integral_pot
if( j1b_type .eq. 1 ) then
!print *, ' j1b type 1 is added'
integral = integral + j1b_gauss_2e_j1(i, k, j, l)
elseif( j1b_type .eq. 2 ) then
!print *, ' j1b type 2 is added'
integral = integral + j1b_gauss_2e_j2(i, k, j, l)
endif
!if( j1b_type .eq. 1 ) then
! !print *, ' j1b type 1 is added'
! integral = integral + j1b_gauss_2e_j1(i, k, j, l)
!elseif( j1b_type .eq. 2 ) then
! !print *, ' j1b type 2 is added'
! integral = integral + j1b_gauss_2e_j2(i, k, j, l)
!endif
if(abs(integral) < thr) then
cycle

View File

@ -18,3 +18,8 @@ interface: ezfio,provider,ocaml
default: False
ezfio_name: direct
[do_ao_cholesky]
type: logical
doc: Perform Cholesky decomposition of AO integrals
interface: ezfio,provider,ocaml
default: True

View File

@ -0,0 +1,100 @@
BEGIN_PROVIDER [ integer, cholesky_ao_num_guess ]
implicit none
BEGIN_DOC
! Number of Cholesky vectors in AO basis
END_DOC
integer :: i,j,k,l
double precision :: xnorm0, x, integral
double precision, external :: ao_two_e_integral
cholesky_ao_num_guess = 0
xnorm0 = 0.d0
x = 0.d0
do j=1,ao_num
do i=1,ao_num
integral = ao_two_e_integral(i,i,j,j)
if (integral > ao_integrals_threshold) then
cholesky_ao_num_guess += 1
else
x += integral
endif
enddo
enddo
print *, 'Cholesky decomposition of AO integrals'
print *, '--------------------------------------'
print *, ''
print *, 'Estimated Error: ', x
print *, 'Guess size: ', cholesky_ao_num_guess, '(', 100.d0*dble(cholesky_ao_num_guess)/dble(ao_num*ao_num), ' %)'
END_PROVIDER
BEGIN_PROVIDER [ integer, cholesky_ao_num ]
&BEGIN_PROVIDER [ double precision, cholesky_ao, (ao_num, ao_num, cholesky_ao_num_guess) ]
use mmap_module
implicit none
BEGIN_DOC
! Cholesky vectors in AO basis: (ik|a):
! <ij|kl> = (ik|jl) = sum_a (ik|a).(a|jl)
END_DOC
type(c_ptr) :: ptr
integer :: fd, i,j,k,l, rank
double precision, pointer :: ao_integrals(:,:,:,:)
double precision, external :: ao_two_e_integral
! Store AO integrals in a memory mapped file
call mmap(trim(ezfio_work_dir)//'ao_integrals', &
(/ int(ao_num,8), int(ao_num,8), int(ao_num,8), int(ao_num,8) /), &
8, fd, .False., ptr)
call c_f_pointer(ptr, ao_integrals, (/ao_num, ao_num, ao_num, ao_num/))
double precision :: integral
logical, external :: ao_two_e_integral_zero
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k,l, integral) SCHEDULE(dynamic)
do l=1,ao_num
do j=1,l
do k=1,ao_num
do i=1,k
if (ao_two_e_integral_zero(i,j,k,l)) cycle
integral = ao_two_e_integral(i,k,j,l)
ao_integrals(i,k,j,l) = integral
ao_integrals(k,i,j,l) = integral
ao_integrals(i,k,l,j) = integral
ao_integrals(k,i,l,j) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
! Call Lapack
cholesky_ao_num = cholesky_ao_num_guess
call pivoted_cholesky(ao_integrals, cholesky_ao_num, ao_integrals_threshold, ao_num*ao_num, cholesky_ao)
print *, 'Rank: ', cholesky_ao_num, '(', 100.d0*dble(cholesky_ao_num)/dble(ao_num*ao_num), ' %)'
! Remove mmap
double precision, external :: getUnitAndOpen
call munmap( &
(/ int(ao_num,8), int(ao_num,8), int(ao_num,8), int(ao_num,8) /), &
8, fd, ptr)
open(unit=99,file=trim(ezfio_work_dir)//'ao_integrals')
close(99, status='delete')
END_PROVIDER
BEGIN_PROVIDER [ double precision, cholesky_ao_transp, (cholesky_ao_num, ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Transposed of the Cholesky vectors in AO basis set
END_DOC
integer :: i,j,k
do j=1,ao_num
do i=1,ao_num
do k=1,ao_num
cholesky_ao_transp(k,i,j) = cholesky_ao(i,j,k)
enddo
enddo
enddo
END_PROVIDER

View File

@ -486,7 +486,7 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
if (ao_one_e_integral_zero(j,l)) then
out_val = 0.d0
out_val(1:sze) = 0.d0
return
endif

View File

@ -8,22 +8,22 @@ BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
ao_one_e_integrals_tc_tot = ao_one_e_integrals
provide j1b_type
!provide j1b_type
if( (j1b_type .eq. 1) .or. (j1b_type .eq. 2) ) then
print *, ' do things properly !'
stop
!if( (j1b_type .eq. 1) .or. (j1b_type .eq. 2) ) then
!
! print *, ' do things properly !'
! stop
!do i = 1, ao_num
! do j = 1, ao_num
! ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
! + j1b_gauss_hermII (j,i) &
! + j1b_gauss_nonherm(j,i) )
! enddo
!enddo
! !do i = 1, ao_num
! ! do j = 1, ao_num
! ! ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
! ! + j1b_gauss_hermII (j,i) &
! ! + j1b_gauss_nonherm(j,i) )
! ! enddo
! !enddo
endif
!endif
END_PROVIDER

View File

@ -1,3 +1,4 @@
json
perturbation
zmq
mpi

View File

@ -16,7 +16,6 @@ subroutine run_cipsi
double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators
@ -76,7 +75,6 @@ subroutine run_cipsi
)
write(*,'(A)') '--------------------------------------------------------------------------------'
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select)
if (do_pt2) then
@ -106,10 +104,10 @@ subroutine run_cipsi
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call increment_n_iter(psi_energy_with_nucl_rep, pt2_data)
call print_extrapolated_energy()
call print_mol_properties()
N_iter += 1
call write_cipsi_json(pt2_data,pt2_data_err)
if (qp_stop()) exit
@ -130,13 +128,13 @@ subroutine run_cipsi
if (qp_stop()) exit
enddo
if (.not.qp_stop()) then
if (N_det < N_det_max) then
call diagonalize_CI
call save_wavefunction
call save_energy(psi_energy_with_nucl_rep, zeros)
endif
! If stopped because N_det > N_det_max, do an extra iteration to compute the PT2
if ((.not.qp_stop()).and. &
(N_det > N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and.&
(correlation_energy_ratio <= correlation_energy_ratio_max) &
) then
if (do_pt2) then
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)
@ -155,11 +153,13 @@ subroutine run_cipsi
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call print_summary(psi_energy_with_nucl_rep(1:N_states), &
pt2_data, pt2_data_err, N_det,N_configuration,N_states,psi_s2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call increment_n_iter(psi_energy_with_nucl_rep, pt2_data)
call print_extrapolated_energy()
call print_mol_properties()
call write_cipsi_json(pt2_data,pt2_data_err)
endif
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)
end

View File

@ -7,7 +7,9 @@ BEGIN_PROVIDER [ integer, nthreads_pt2 ]
character*(32) :: env
call getenv('QP_NTHREADS_PT2',env)
if (trim(env) /= '') then
call lock_io()
read(env,*) nthreads_pt2
call unlock_io()
call write_int(6,nthreads_pt2,'Target number of threads for PT2')
endif
END_PROVIDER

View File

@ -15,7 +15,6 @@ subroutine run_stochastic_cipsi
double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated distributed_davidson mo_two_e_integrals_in_map
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators
@ -96,10 +95,10 @@ subroutine run_stochastic_cipsi
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call increment_n_iter(psi_energy_with_nucl_rep, pt2_data)
call print_extrapolated_energy()
call print_mol_properties()
N_iter += 1
call write_cipsi_json(pt2_data,pt2_data_err)
if (qp_stop()) exit
@ -119,13 +118,13 @@ subroutine run_stochastic_cipsi
if (qp_stop()) exit
enddo
if (.not.qp_stop()) then
if (N_det < N_det_max) then
call diagonalize_CI
call save_wavefunction
call save_energy(psi_energy_with_nucl_rep, zeros)
endif
! If stopped because N_det > N_det_max, do an extra iteration to compute the PT2
if ((.not.qp_stop()).and. &
(N_det > N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and.&
(correlation_energy_ratio <= correlation_energy_ratio_max) &
) then
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)
call pt2_alloc(pt2_data, N_states)
@ -135,9 +134,10 @@ subroutine run_stochastic_cipsi
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call print_summary(psi_energy_with_nucl_rep, &
pt2_data , pt2_data_err, N_det, N_configuration, N_states, psi_s2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call increment_n_iter(psi_energy_with_nucl_rep, pt2_data)
call print_extrapolated_energy()
call print_mol_properties()
call write_cipsi_json(pt2_data,pt2_data_err)
endif
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)

View File

@ -0,0 +1,53 @@
subroutine write_cipsi_json(pt2_data, pt2_data_err)
use selection_types
implicit none
BEGIN_DOC
! Writes JSON data for CIPSI runs
END_DOC
type(pt2_type), intent(in) :: pt2_data, pt2_data_err
integer :: i,j,k
call lock_io
character*(64), allocatable :: fmtk(:)
integer :: N_states_p, N_iter_p
N_states_p = min(N_states,N_det)
N_iter_p = min(N_iter,8)
allocate(fmtk(0:N_iter_p))
fmtk(:) = '('' '',E22.15,'','')'
fmtk(N_iter_p) = '('' '',E22.15)'
write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_int_fmt) 'n_det', N_det
if (s2_eig) then
write(json_unit, json_int_fmt) 'n_cfg', N_configuration
if (only_expected_s2) then
write(json_unit, json_int_fmt) 'n_csf', N_csf
endif
endif
write(json_unit, json_array_open_fmt) 'states'
do k=1,N_states_p
write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_real_fmt) 'energy', psi_energy_with_nucl_rep(k)
write(json_unit, json_real_fmt) 's2', psi_s2(k)
write(json_unit, json_real_fmt) 'pt2', pt2_data % pt2(k)
write(json_unit, json_real_fmt) 'pt2_err', pt2_data_err % pt2(k)
write(json_unit, json_real_fmt) 'rpt2', pt2_data % rpt2(k)
write(json_unit, json_real_fmt) 'rpt2_err', pt2_data_err % rpt2(k)
write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k)
write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k)
write(json_unit, json_array_open_fmt) 'ex_energy'
do i=2,N_iter_p
write(json_unit, fmtk(i)) extrapolated_energy(i,k)
enddo
write(json_unit, json_array_close_fmtx)
if (k < N_states_p) then
write(json_unit, json_dict_close_fmt)
else
write(json_unit, json_dict_close_fmtx)
endif
enddo
write(json_unit, json_array_close_fmtx)
write(json_unit, json_dict_close_fmt)
deallocate(fmtk)
call unlock_io
end

View File

@ -1,6 +1,7 @@
json
mpi
perturbation
zmq
iterations_tc
iterations
csf
tc_bi_ortho

View File

@ -94,7 +94,15 @@ subroutine run_stochastic_cipsi
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
! stop
N_iter += 1
call print_summary(psi_energy_with_nucl_rep, &
pt2_data, pt2_data_err, N_det,N_configuration,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call increment_n_iter(psi_energy_with_nucl_rep, pt2_data)
call print_extrapolated_energy()
! call print_mol_properties()
call write_cipsi_json(pt2_data,pt2_data_err)
if (qp_stop()) exit

View File

@ -0,0 +1,53 @@
subroutine write_cipsi_json(pt2_data, pt2_data_err)
use selection_types
implicit none
BEGIN_DOC
! Writes JSON data for CIPSI runs
END_DOC
type(pt2_type), intent(in) :: pt2_data, pt2_data_err
integer :: i,j,k
call lock_io
character*(64), allocatable :: fmtk(:)
integer :: N_states_p, N_iter_p
N_states_p = min(N_states,N_det)
N_iter_p = min(N_iter,8)
allocate(fmtk(0:N_iter_p))
fmtk(:) = '('' '',E22.15,'','')'
fmtk(N_iter_p) = '('' '',E22.15)'
write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_int_fmt) 'n_det', N_det
if (s2_eig) then
write(json_unit, json_int_fmt) 'n_cfg', N_configuration
if (only_expected_s2) then
write(json_unit, json_int_fmt) 'n_csf', N_csf
endif
endif
write(json_unit, json_array_open_fmt) 'states'
do k=1,N_states_p
write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_real_fmt) 'energy', psi_energy_with_nucl_rep(k)
write(json_unit, json_real_fmt) 's2', psi_s2(k)
write(json_unit, json_real_fmt) 'pt2', pt2_data % pt2(k)
write(json_unit, json_real_fmt) 'pt2_err', pt2_data_err % pt2(k)
write(json_unit, json_real_fmt) 'rpt2', pt2_data % rpt2(k)
write(json_unit, json_real_fmt) 'rpt2_err', pt2_data_err % rpt2(k)
write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k)
write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k)
write(json_unit, json_array_open_fmt) 'ex_energy'
do i=2,N_iter_p
write(json_unit, fmtk(i)) extrapolated_energy(i,k)
enddo
write(json_unit, json_array_close_fmtx)
if (k < N_states_p) then
write(json_unit, json_dict_close_fmt)
else
write(json_unit, json_dict_close_fmtx)
endif
enddo
write(json_unit, json_array_close_fmtx)
write(json_unit, json_dict_close_fmt)
deallocate(fmtk)
call unlock_io
end

View File

@ -150,7 +150,9 @@ subroutine davidson_slave_work(zmq_to_qp_run_socket, zmq_socket_push, N_st, sze,
exit
endif
if(task_id == 0) exit
call lock_io()
read (msg,*) imin, imax, ishift, istep
call unlock_io()
integer :: k
do k=imin,imax
v_t(:,k) = 0.d0
@ -546,6 +548,8 @@ end
integer function zmq_put_N_states_diag(zmq_to_qp_run_socket,worker_id)
use f77_zmq
implicit none

View File

@ -461,9 +461,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
!y = h_p
! y = h_p ! Doesn't work for non-singlets
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &

View File

@ -9,4 +9,21 @@ BEGIN_PROVIDER [ integer(omp_lock_kind), file_lock ]
call omp_init_lock(file_lock)
END_PROVIDER
! These functions need to be called because internal read and write are not thread safe.
subroutine lock_io()
implicit none
BEGIN_DOC
! Needs to be called because before doing I/O because internal read and write
! are not thread safe.
END_DOC
call omp_set_lock(file_lock)
end subroutine lock_io()
subroutine unlock_io()
implicit none
BEGIN_DOC
! Needs to be called because afterdoing I/O because internal read and write
! are not thread safe.
END_DOC
call omp_unset_lock(file_lock)
end subroutine lock_io()

View File

@ -39,12 +39,19 @@ program fci
if (.not.is_zmq_slave) then
PROVIDE psi_det psi_coef mo_two_e_integrals_in_map
write(json_unit,json_array_open_fmt) 'fci'
if (do_pt2) then
call run_stochastic_cipsi
else
call run_cipsi
endif
write(json_unit,json_dict_uopen_fmt)
write(json_unit,json_dict_close_fmtx)
write(json_unit,json_array_close_fmtx)
call json_close
else
PROVIDE mo_two_e_integrals_in_map pt2_min_parallel_tasks

View File

@ -1,3 +1,4 @@
json
tc_bi_ortho
davidson_undressed
cipsi_tc_bi_ortho

View File

@ -62,6 +62,7 @@ subroutine run_cipsi_tc
endif
endif
! ---
write(json_unit,json_array_open_fmt) 'fci_tc'
if (do_pt2) then
call run_stochastic_cipsi
@ -69,6 +70,11 @@ subroutine run_cipsi_tc
call run_cipsi
endif
write(json_unit,json_dict_uopen_fmt)
write(json_unit,json_dict_close_fmtx)
write(json_unit,json_array_close_fmtx)
call json_close
else
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
if(elec_alpha_num+elec_beta_num.ge.3)then

View File

@ -4,6 +4,6 @@ subroutine save_energy(E,pt2)
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E(N_states), pt2(N_states)
call ezfio_set_fci_tc_energy(E(1:N_states))
call ezfio_set_fci_tc_energy_pt2(E(1:N_states)+pt2(1:N_states))
call ezfio_set_fci_tc_bi_energy(E(1:N_states))
call ezfio_set_fci_tc_bi_energy_pt2(E(1:N_states)+pt2(1:N_states))
end

View File

@ -1,3 +1,4 @@
ao_one_e_ints
ao_two_e_ints
scf_utils
json

View File

@ -15,115 +15,59 @@
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
ao_two_e_integral_alpha = 0.d0
ao_two_e_integral_beta = 0.d0
if (do_direct_integrals) then
if (do_ao_cholesky) then ! Use Cholesky-decomposed integrals
ao_two_e_integral_alpha(:,:) = ao_two_e_integral_alpha_chol(:,:)
ao_two_e_integral_beta (:,:) = ao_two_e_integral_beta_chol (:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,keys,values,p,q,r,s,i0,j0,k0,l0, &
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2, &
!$OMP local_threshold)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
else ! Use integrals in AO basis set
allocate(keys(1), values(1))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
ao_two_e_integral_alpha = 0.d0
ao_two_e_integral_beta = 0.d0
if (do_direct_integrals) then
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(static,64)
do p=1_8,q
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. &
(ii(1)>ao_num).or. &
(jj(1)>ao_num).or. &
(ll(1)>ao_num) ) then
cycle
endif
k = kk(1)
i = ii(1)
l = ll(1)
j = jj(1)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,keys,values,p,q,r,s,i0,j0,k0,l0,&
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2,&
!$OMP local_threshold) &
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz,&
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
logical, external :: ao_two_e_integral_zero
if (ao_two_e_integral_zero(i,k,j,l)) then
cycle
endif
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
if (local_threshold < ao_integrals_threshold) then
cycle
endif
i0 = i
j0 = j
k0 = k
l0 = l
values(1) = 0.d0
local_threshold = ao_integrals_threshold/local_threshold
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
c1 = SCF_density_matrix_ao_alpha(k,i)
c2 = SCF_density_matrix_ao_beta(k,i)
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
cycle
endif
if (values(1) == 0.d0) then
values(1) = ao_two_e_integral(k0,l0,i0,j0)
endif
integral = c0 * values(1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(1)
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_two_e_integrals_in_map
allocate(keys(1), values(1))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(8), jj(8), kk(8), ll(8), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(static,64)
do p=1_8,q
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. &
(ii(1)>ao_num).or. &
(jj(1)>ao_num).or. &
(ll(1)>ao_num) ) then
cycle
endif
k = kk(1)
i = ii(1)
l = ll(1)
j = jj(1)
logical, external :: ao_two_e_integral_zero
if (ao_two_e_integral_zero(i,k,j,l)) then
cycle
endif
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
if (local_threshold < ao_integrals_threshold) then
cycle
endif
i0 = i
j0 = j
k0 = k
l0 = l
values(1) = 0.d0
local_threshold = ao_integrals_threshold/local_threshold
do k2=1,8
if (kk(k2)==0) then
cycle
@ -132,25 +76,162 @@
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
c1 = SCF_density_matrix_ao_alpha(k,i)
c2 = SCF_density_matrix_ao_beta(k,i)
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
cycle
endif
if (values(1) == 0.d0) then
values(1) = ao_two_e_integral(k0,l0,i0,j0)
endif
integral = c0 * values(1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(k1)
ao_two_e_integral_alpha_tmp(l,j) -= SCF_density_matrix_ao_alpha(k,i) * integral
ao_two_e_integral_beta_tmp (l,j) -= SCF_density_matrix_ao_beta (k,i) * integral
integral = values(1)
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_two_e_integrals_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(8), jj(8), kk(8), ll(8), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max,&
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(k1)
ao_two_e_integral_alpha_tmp(l,j) -= SCF_density_matrix_ao_alpha(k,i) * integral
ao_two_e_integral_beta_tmp (l,j) -= SCF_density_matrix_ao_beta (k,i) * integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
endif
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha_chol, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta_chol , (ao_num, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
integer :: m,n,l,s,j
double precision :: integral
double precision, allocatable :: X(:), X2(:,:,:,:), X3(:,:,:,:)
allocate (X(cholesky_ao_num))
! X(j) = \sum_{mn} SCF_density_matrix_ao(m,n) * cholesky_ao(m,n,j)
call dgemm('T','N',cholesky_ao_num,1,ao_num*ao_num,1.d0, &
cholesky_ao, ao_num*ao_num, &
SCF_density_matrix_ao, ao_num*ao_num,0.d0, &
X, cholesky_ao_num)
!
! ao_two_e_integral_alpha(m,n) = \sum_{j} cholesky_ao(m,n,j) * X(j)
call dgemm('N','N',ao_num*ao_num,1,cholesky_ao_num, 1.d0, &
cholesky_ao, ao_num*ao_num, &
X, cholesky_ao_num, 0.d0, &
ao_two_e_integral_alpha_chol, ao_num*ao_num)
deallocate(X)
ao_two_e_integral_beta_chol = ao_two_e_integral_alpha_chol
allocate(X2(ao_num,ao_num,cholesky_ao_num,2))
! ao_two_e_integral_alpha_chol (l,s) -= cholesky_ao(l,m,j) * SCF_density_matrix_ao_beta (m,n) * cholesky_ao(n,s,j)
call dgemm('N','N',ao_num,ao_num*cholesky_ao_num,ao_num, 1.d0, &
SCF_density_matrix_ao_alpha, ao_num, &
cholesky_ao, ao_num, 0.d0, &
X2(1,1,1,1), ao_num)
call dgemm('N','N',ao_num,ao_num*cholesky_ao_num,ao_num, 1.d0, &
SCF_density_matrix_ao_beta, ao_num, &
cholesky_ao, ao_num, 0.d0, &
X2(1,1,1,2), ao_num)
allocate(X3(ao_num,cholesky_ao_num,ao_num,2))
do s=1,ao_num
do j=1,cholesky_ao_num
do m=1,ao_num
X3(m,j,s,1) = X2(m,s,j,1)
X3(m,j,s,2) = X2(m,s,j,2)
enddo
enddo
enddo
deallocate(X2)
call dgemm('N','N',ao_num,ao_num,ao_num*cholesky_ao_num, -1.d0, &
cholesky_ao, ao_num, &
X3(1,1,1,1), ao_num*cholesky_ao_num, 1.d0, &
ao_two_e_integral_alpha_chol, ao_num)
call dgemm('N','N',ao_num,ao_num,ao_num*cholesky_ao_num, -1.d0, &
cholesky_ao, ao_num, &
X3(1,1,1,2), ao_num*cholesky_ao_num, 1.d0, &
ao_two_e_integral_beta_chol, ao_num)
deallocate(X3)
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]

View File

@ -80,9 +80,14 @@ subroutine run
mo_label = 'Orthonormalized'
call Roothaan_Hall_SCF
call ezfio_set_hartree_fock_energy(SCF_energy)
write(json_unit,json_array_open_fmt) 'scf'
call Roothaan_Hall_SCF
write(json_unit,json_array_close_fmtx)
call json_close
call ezfio_set_hartree_fock_energy(SCF_energy)
end

View File

@ -1,24 +0,0 @@
[n_iter]
interface: ezfio
doc: Number of saved iterations
type:integer
default: 1
[n_det_iterations]
interface: ezfio, provider
doc: Number of determinants at each iteration
type: integer
size: (100)
[energy_iterations]
interface: ezfio, provider
doc: The variational energy at each iteration
type: double precision
size: (determinants.n_states,100)
[pt2_iterations]
interface: ezfio, provider
doc: The |PT2| correction at each iteration
type: double precision
size: (determinants.n_states,100)

View File

@ -1,37 +0,0 @@
BEGIN_PROVIDER [ integer, n_iter ]
implicit none
BEGIN_DOC
! number of iterations
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
double precision :: zeros(N_states,100)
integer :: izeros(100)
zeros = 0.d0
izeros = 0
call ezfio_set_iterations_n_iter(0)
call ezfio_set_iterations_energy_iterations(zeros)
call ezfio_set_iterations_pt2_iterations(zeros)
call ezfio_set_iterations_n_det_iterations(izeros)
n_iter = 1
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_iter, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_iter with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER

View File

@ -1,42 +1,65 @@
BEGIN_PROVIDER [ double precision, extrapolated_energy, (N_iter,N_states) ]
implicit none
BEGIN_DOC
! Extrapolated energy, using E_var = f(PT2) where PT2=0
END_DOC
integer :: i
do i=1,min(N_states,N_det)
call extrapolate_data(N_iter, &
energy_iterations(i,1:N_iter), &
pt2_iterations(i,1:N_iter), &
extrapolated_energy(1:N_iter,i))
enddo
END_PROVIDER
subroutine save_iterations(e_, pt2_,n_)
BEGIN_PROVIDER [ integer, N_iter ]
implicit none
BEGIN_DOC
! Update the energy in the EZFIO file.
! Number of CIPSI iterations
END_DOC
integer, intent(in) :: n_
double precision, intent(in) :: e_(N_states), pt2_(N_states)
integer :: i
if (N_iter == 101) then
do i=2,N_iter-1
energy_iterations(1:N_states,N_iter-1) = energy_iterations(1:N_states,N_iter)
pt2_iterations(1:N_states,N_iter-1) = pt2_iterations(1:N_states,N_iter)
N_iter = 0
END_PROVIDER
BEGIN_PROVIDER [ integer, N_iter_max ]
implicit none
BEGIN_DOC
! Max number of iterations for extrapolations
END_DOC
N_iter_max = 8
END_PROVIDER
BEGIN_PROVIDER [ double precision, energy_iterations , (n_states,N_iter_max) ]
&BEGIN_PROVIDER [ double precision, pt2_iterations , (n_states,N_iter_max) ]
&BEGIN_PROVIDER [ double precision, extrapolated_energy, (N_iter_max,N_states) ]
implicit none
BEGIN_DOC
! The energy at each iteration for the extrapolations
END_DOC
energy_iterations = 0.d0
pt2_iterations = 0.d0
extrapolated_energy = 0.d0
END_PROVIDER
subroutine increment_n_iter(e, pt2_data)
use selection_types
implicit none
BEGIN_DOC
! Does what is necessary to increment n_iter
END_DOC
double precision, intent(in) :: e(*)
type(pt2_type), intent(in) :: pt2_data
integer :: k, i
if (N_det < N_states) return
if (N_iter < N_iter_max) then
N_iter += 1
else
do k=2,N_iter
energy_iterations(1:N_states,k-1) = energy_iterations(1:N_states,k)
pt2_iterations(1:N_states,k-1) = pt2_iterations(1:N_states,k)
enddo
N_iter = N_iter-1
TOUCH N_iter
endif
energy_iterations(1:N_states,N_iter) = e(1:N_states)
pt2_iterations(1:N_states,N_iter) = pt2_data % rpt2(1:N_states)
energy_iterations(1:N_states,N_iter) = e_(1:N_states)
pt2_iterations(1:N_states,N_iter) = pt2_(1:N_states)
n_det_iterations(N_iter) = n_
call ezfio_set_iterations_N_iter(N_iter)
call ezfio_set_iterations_energy_iterations(energy_iterations)
call ezfio_set_iterations_pt2_iterations(pt2_iterations)
call ezfio_set_iterations_n_det_iterations(n_det_iterations)
if (N_iter < 2) then
extrapolated_energy(1,:) = energy_iterations(:,1) + pt2_iterations(:,1)
extrapolated_energy(2,:) = energy_iterations(:,2) + pt2_iterations(:,2)
else
do i=1,N_states
call extrapolate_data(N_iter, &
energy_iterations(i,1:N_iter), &
pt2_iterations(i,1:N_iter), &
extrapolated_energy(1:N_iter,i))
enddo
endif
end

View File

@ -5,10 +5,14 @@ subroutine print_extrapolated_energy
END_DOC
integer :: i,k
integer :: N_states_p, N_iter_p
if (N_iter< 2) then
return
endif
N_states_p = min(N_states,N_det)
N_iter_p = min(N_iter, 8)
write(*,'(A)') ''
write(*,'(A)') 'Extrapolated energies'
write(*,'(A)') '------------------------'
@ -20,20 +24,20 @@ subroutine print_extrapolated_energy
write(*,*) '=========== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy'
write(*,*) '=========== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,2X,F18.8)') pt2_iterations(1,N_iter+1-k), extrapolated_energy(k,1)
do k=2,N_iter_p
write(*,'(F11.4,2X,F18.8)') pt2_iterations(1,k), extrapolated_energy(k,1)
enddo
write(*,*) '=========== ', '==================='
do i=2, min(N_states,N_det)
do i=2, N_states_p
print *, ''
print *, 'State ', i
print *, ''
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy ', ' Excitation (a.u) ', ' Excitation (eV) '
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,X,3(X,F18.8))') pt2_iterations(i,N_iter+1-k), extrapolated_energy(k,i), &
do k=2,N_iter_p
write(*,'(F11.4,X,3(X,F18.8))') pt2_iterations(i,k), extrapolated_energy(k,i), &
extrapolated_energy(k,i) - extrapolated_energy(k,1), &
(extrapolated_energy(k,i) - extrapolated_energy(k,1) ) * 27.211396641308d0
enddo

View File

@ -1,24 +0,0 @@
[n_iter]
interface: ezfio
doc: Number of saved iterations
type:integer
default: 1
[n_det_iterations]
interface: ezfio, provider
doc: Number of determinants at each iteration
type: integer
size: (100)
[energy_iterations]
interface: ezfio, provider
doc: The variational energy at each iteration
type: double precision
size: (determinants.n_states,100)
[pt2_iterations]
interface: ezfio, provider
doc: The |PT2| correction at each iteration
type: double precision
size: (determinants.n_states,100)

View File

View File

@ -1,37 +0,0 @@
BEGIN_PROVIDER [ integer, n_iter ]
implicit none
BEGIN_DOC
! number of iterations
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
double precision :: zeros(N_states,100)
integer :: izeros(100)
zeros = 0.d0
izeros = 0
call ezfio_set_iterations_n_iter(0)
call ezfio_set_iterations_energy_iterations(zeros)
call ezfio_set_iterations_pt2_iterations(zeros)
call ezfio_set_iterations_n_det_iterations(izeros)
n_iter = 1
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_iter, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_iter with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER

View File

@ -1,43 +0,0 @@
BEGIN_PROVIDER [ double precision, extrapolated_energy, (N_iter,N_states) ]
implicit none
BEGIN_DOC
! Extrapolated energy, using E_var = f(PT2) where PT2=0
END_DOC
! integer :: i
extrapolated_energy = 0.D0
END_PROVIDER
subroutine get_extrapolated_energy(Niter,ept2,pt1,extrap_energy)
implicit none
integer, intent(in) :: Niter
double precision, intent(in) :: ept2(Niter),pt1(Niter),extrap_energy(Niter)
call extrapolate_data(Niter,ept2,pt1,extrap_energy)
end
subroutine save_iterations(e_, pt2_,n_)
implicit none
BEGIN_DOC
! Update the energy in the EZFIO file.
END_DOC
integer, intent(in) :: n_
double precision, intent(in) :: e_(N_states), pt2_(N_states)
integer :: i
if (N_iter == 101) then
do i=2,N_iter-1
energy_iterations(1:N_states,N_iter-1) = energy_iterations(1:N_states,N_iter)
pt2_iterations(1:N_states,N_iter-1) = pt2_iterations(1:N_states,N_iter)
enddo
N_iter = N_iter-1
TOUCH N_iter
endif
energy_iterations(1:N_states,N_iter) = e_(1:N_states)
pt2_iterations(1:N_states,N_iter) = pt2_(1:N_states)
n_det_iterations(N_iter) = n_
call ezfio_set_iterations_N_iter(N_iter)
call ezfio_set_iterations_energy_iterations(energy_iterations)
call ezfio_set_iterations_pt2_iterations(pt2_iterations)
call ezfio_set_iterations_n_det_iterations(n_det_iterations)
end

View File

@ -1,46 +0,0 @@
subroutine print_extrapolated_energy
implicit none
BEGIN_DOC
! Print the extrapolated energy in the output
END_DOC
integer :: i,k
if (N_iter< 2) then
return
endif
write(*,'(A)') ''
write(*,'(A)') 'Extrapolated energies'
write(*,'(A)') '------------------------'
write(*,'(A)') ''
print *, ''
print *, 'State ', 1
print *, ''
write(*,*) '=========== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy'
write(*,*) '=========== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,2X,F18.8)') pt2_iterations(1,N_iter+1-k), extrapolated_energy(k,1)
enddo
write(*,*) '=========== ', '==================='
do i=2, min(N_states,N_det)
print *, ''
print *, 'State ', i
print *, ''
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
write(*,*) 'minimum PT2 ', 'Extrapolated energy ', ' Excitation (a.u) ', ' Excitation (eV) '
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
do k=2,min(N_iter,8)
write(*,'(F11.4,X,3(X,F18.8))') pt2_iterations(i,N_iter+1-k), extrapolated_energy(k,i), &
extrapolated_energy(k,i) - extrapolated_energy(k,1), &
(extrapolated_energy(k,i) - extrapolated_energy(k,1) ) * 27.211396641308d0
enddo
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
enddo
print *, ''
end subroutine

View File

@ -1,104 +0,0 @@
subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s2_)
use selection_types
implicit none
BEGIN_DOC
! Print the extrapolated energy in the output
END_DOC
integer, intent(in) :: n_det_, n_configuration_, n_st
double precision, intent(in) :: e_(n_st), s2_(n_st)
type(pt2_type) , intent(in) :: pt2_data, pt2_data_err
integer :: i, k
integer :: N_states_p
character*(9) :: pt2_string
character*(512) :: fmt
if (do_pt2) then
pt2_string = ' '
else
pt2_string = '(approx)'
endif
N_states_p = min(N_det_,n_st)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det_
print '(A)', '-----------------------------------'
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(13X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A13,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', e_(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', e_(1:N_states_p)-e_(1)
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
endif
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2 '//pt2_string, (pt2_data % pt2(k), pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# rPT2'//pt2_string, (pt2_data % rpt2(k), pt2_data_err % rpt2(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_data % pt2(k),pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_data % rpt2(k),pt2_data_err % rpt2(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1)), &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1))*27.211396641308d0, &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det_
print *, 'N_states = ', n_st
if (s2_eig) then
print *, 'N_cfg = ', N_configuration_
if (only_expected_s2) then
print *, 'N_csf = ', N_csf
endif
endif
print *, ''
do k=1, N_states_p
print*,'* State ',k
print *, '< S^2 > = ', s2_(k)
print *, 'E = ', e_(k)
print *, 'Variance = ', pt2_data % variance(k), ' +/- ', pt2_data_err % variance(k)
print *, 'PT norm = ', dsqrt(pt2_data % overlap(k,k)), ' +/- ', 0.5d0*dsqrt(pt2_data % overlap(k,k)) * pt2_data_err % overlap(k,k) / (pt2_data % overlap(k,k))
print *, 'PT2 = ', pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'rPT2 = ', pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, ''
enddo
print *, '-----'
if(n_st.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i) - e_(1)), &
(e_(i) - e_(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))), &
(e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + renormalized perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))), &
(e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))) * 27.211396641308d0
enddo
endif
! call print_energy_components()
end subroutine

5
src/json/EZFIO.cfg Normal file
View File

@ -0,0 +1,5 @@
[empty]
type: logical
doc: Needed to create the json directory
interface: ezfio

1
src/json/NEED Normal file
View File

@ -0,0 +1 @@
ezfio_files

5
src/json/README.rst Normal file
View File

@ -0,0 +1,5 @@
====
json
====
JSON files to simplify getting output information from QP.

45
src/json/json.irp.f Normal file
View File

@ -0,0 +1,45 @@
BEGIN_PROVIDER [ character*(128), json_filename ]
implicit none
BEGIN_DOC
! Fortran unit of the JSON file
END_DOC
integer, external :: getUnitAndOpen
integer :: counter
character*(128) :: prefix
logical :: exists
prefix = trim(ezfio_filename)//'/json/'
call lock_io
exists = .True.
counter = 0
do while (exists)
counter += 1
write(json_filename, '(A,I5.5,A)') trim(prefix), counter, '.json'
INQUIRE(FILE=trim(json_filename), EXIST=exists)
enddo
call unlock_io
END_PROVIDER
BEGIN_PROVIDER [ integer, json_unit]
implicit none
BEGIN_DOC
! Unit file for JSON output
END_DOC
integer, external :: getUnitAndOpen
call ezfio_set_json_empty(.False.)
call lock_io
json_unit = getUnitAndOpen(json_filename, 'w')
write(json_unit, '(A)') '{'
call unlock_io
END_PROVIDER
subroutine json_close
call lock_io
write(json_unit, '(A)') '}'
close(json_unit)
call unlock_io
FREE json_unit
end

View File

@ -0,0 +1,46 @@
BEGIN_PROVIDER [ character*(64), json_int_fmt ]
&BEGIN_PROVIDER [ character*(64), json_int_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_real_fmt ]
&BEGIN_PROVIDER [ character*(64), json_real_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_str_fmt ]
&BEGIN_PROVIDER [ character*(64), json_str_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_true_fmt ]
&BEGIN_PROVIDER [ character*(64), json_true_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_false_fmt ]
&BEGIN_PROVIDER [ character*(64), json_false_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_array_open_fmt ]
&BEGIN_PROVIDER [ character*(64), json_array_uopen_fmt ]
&BEGIN_PROVIDER [ character*(64), json_array_close_fmt ]
&BEGIN_PROVIDER [ character*(64), json_array_close_uopen_fmt ]
&BEGIN_PROVIDER [ character*(64), json_array_close_fmtx ]
&BEGIN_PROVIDER [ character*(64), json_dict_open_fmt ]
&BEGIN_PROVIDER [ character*(64), json_dict_uopen_fmt ]
&BEGIN_PROVIDER [ character*(64), json_dict_close_uopen_fmt ]
&BEGIN_PROVIDER [ character*(64), json_dict_close_fmt ]
&BEGIN_PROVIDER [ character*(64), json_dict_close_fmtx ]
implicit none
BEGIN_DOC
! Formats for JSON output.
! x: used to mark the last write (no comma)
END_DOC
json_int_fmt = '('' "'',A,''": '',I10,'','')'
json_int_fmtx = '('' "'',A,''": '',I10)'
json_real_fmt = '('' "'',A,''": '',E22.15,'','')'
json_real_fmtx = '('' "'',A,''": '',E22.15)'
json_str_fmt = '('' "'',A,''": "'',A,''",'')'
json_str_fmtx = '('' "'',A,''": "'',A,''"'')'
json_true_fmt = '('' "'',A,''": true,'')'
json_true_fmtx = '('' "'',A,''": true'')'
json_false_fmt = '('' "'',A,''": false,'')'
json_false_fmtx = '('' "'',A,''": false'')'
json_array_open_fmt = '('' "'',A,''": ['')'
json_array_uopen_fmt = '('' ['')'
json_array_close_fmt = '('' ],'')'
json_array_close_uopen_fmt = '('' ], ['')'
json_array_close_fmtx = '('' ]'')'
json_dict_open_fmt = '('' "'',A,''": {'')'
json_dict_uopen_fmt = '('' {'')'
json_dict_close_fmt = '('' },'')'
json_dict_close_uopen_fmt = '('' }, {'')'
json_dict_close_fmtx = '('' }'')'
END_PROVIDER

View File

@ -90,7 +90,11 @@ subroutine run
! Choose SCF algorithm
write(json_unit,*) '"scf" : ['
call Roothaan_Hall_SCF
write(json_unit,*) ']'
call json_close
end

View File

@ -93,7 +93,10 @@ subroutine run
level_shift += 1.d0
touch level_shift
write(json_unit,*) '"scf" : ['
call Roothaan_Hall_SCF
write(json_unit,*) ']'
call json_close
call ezfio_set_kohn_sham_rs_energy(SCF_energy)
write(*, '(A22,X,F16.10)') 'one_e_energy = ',one_e_energy

View File

@ -9,6 +9,12 @@ doc: Coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_coef_aux]
type: double precision
doc: AUX Coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_coef_imag]
type: double precision
doc: Imaginary part of the MO coefficient of the i-th |AO| on the j-th |MO|

View File

@ -0,0 +1,53 @@
! ---
BEGIN_PROVIDER [double precision, mo_coef_aux, (ao_num,mo_num)]
implicit none
integer :: i, j
logical :: exists
double precision, allocatable :: buffer(:,:)
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_aux(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_aux with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_aux(mo_coef_aux)
write(*,*) 'Read mo_coef_aux'
endif
IRP_IF MPI
call MPI_BCAST(mo_coef_aux, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_aux with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do i = 1, mo_num
do j = 1, ao_num
mo_coef_aux(j,i) = ao_ortho_canonical_coef(j,i)
enddo
enddo
endif
END_PROVIDER

View File

@ -0,0 +1,16 @@
BEGIN_PROVIDER [ double precision, cholesky_mo, (mo_num, mo_num, cholesky_ao_num) ]
implicit none
BEGIN_DOC
! Cholesky vectors in MO basis
END_DOC
integer :: k
!$OMP PARALLEL DO PRIVATE(k)
do k=1,cholesky_ao_num
call ao_to_mo(cholesky_ao(1,1,k),ao_num,cholesky_mo(1,1,k),mo_num)
enddo
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -377,6 +377,7 @@ integer function load_mo_integrals(filename)
integer*8 :: n, j
load_mo_integrals = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
call lock_io()
read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd
@ -399,6 +400,7 @@ integer function load_mo_integrals(filename)
n = mo_integrals_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo
call unlock_io()
call map_sort(mo_integrals_map)
load_mo_integrals = 0
return

View File

@ -50,13 +50,16 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
call cpu_time(cpu_1)
if(no_vvvv_integrals)then
! call four_idx_novvvv
call four_idx_novvvv_old
else
if (dble(ao_num)**4 * 32.d-9 < dble(qp_max_mem)) then
call four_idx_dgemm
if (do_ao_cholesky) then
call add_integrals_to_map_cholesky
else
call add_integrals_to_map(full_ijkl_bitmask_4)
if (dble(ao_num)**4 * 32.d-9 < dble(qp_max_mem)) then
call four_idx_dgemm
else
call add_integrals_to_map(full_ijkl_bitmask_4)
endif
endif
endif
@ -175,7 +178,7 @@ subroutine add_integrals_to_map(mask_ijkl)
implicit none
BEGIN_DOC
! Adds integrals to tha MO map according to some bitmask
! Adds integrals to the MO map according to some bitmask
END_DOC
integer(bit_kind), intent(in) :: mask_ijkl(N_int,4)
@ -450,13 +453,72 @@ subroutine add_integrals_to_map(mask_ijkl)
end
subroutine add_integrals_to_map_cholesky
use bitmasks
implicit none
BEGIN_DOC
! Adds integrals to the MO map using Cholesky vectors
END_DOC
integer :: i,j,k,l,m
integer :: size_buffer, n_integrals
size_buffer = min(mo_num*mo_num*mo_num,16000000)
double precision, allocatable :: Vtmp(:,:,:,:)
integer(key_kind) , allocatable :: buffer_i(:)
real(integral_kind), allocatable :: buffer_value(:)
if (.True.) then
! In-memory transformation
allocate (Vtmp(mo_num,mo_num,mo_num,mo_num))
call dgemm('N','T',mo_num*mo_num,mo_num*mo_num,cholesky_ao_num,1.d0, &
cholesky_mo, mo_num*mo_num, &
cholesky_mo, mo_num*mo_num, 0.d0, &
Vtmp, mo_num*mo_num)
!$OMP PARALLEL PRIVATE(i,j,k,l,n_integrals,buffer_value, buffer_i)
allocate (buffer_i(size_buffer), buffer_value(size_buffer))
n_integrals = 0
!$OMP DO
do l=1,mo_num
do k=1,l
do j=1,mo_num
do i=1,j
if (abs(Vtmp(i,j,k,l)) > mo_integrals_threshold) then
n_integrals += 1
buffer_value(n_integrals) = Vtmp(i,j,k,l)
!DIR$ FORCEINLINE
call mo_two_e_integrals_index(i,k,j,l,buffer_i(n_integrals))
if (n_integrals == size_buffer) then
call map_append(mo_integrals_map, buffer_i, buffer_value, n_integrals)
n_integrals = 0
endif
endif
enddo
enddo
enddo
enddo
!$OMP END DO
call map_append(mo_integrals_map, buffer_i, buffer_value, n_integrals)
deallocate(buffer_i, buffer_value)
!$OMP END PARALLEL
deallocate(Vtmp)
call map_unique(mo_integrals_map)
endif
end
subroutine add_integrals_to_map_three_indices(mask_ijk)
use bitmasks
implicit none
BEGIN_DOC
! Adds integrals to tha MO map according to some bitmask
! Adds integrals to the MO map according to some bitmask
END_DOC
integer(bit_kind), intent(in) :: mask_ijk(N_int,3)

View File

@ -18,13 +18,13 @@ program debug_fit
PROVIDE mu_erf j1b_pen
!call test_j1b_nucl()
call test_grad_j1b_nucl()
!call test_grad_j1b_nucl()
!call test_lapl_j1b_nucl()
!call test_list_b2()
!call test_list_b3()
call test_list_b3()
call test_fit_u()
!call test_fit_u()
!call test_fit_u2()
!call test_fit_ugradu()
@ -236,16 +236,25 @@ subroutine test_list_b3()
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_tmp, i_num, normalz
double precision :: r(3)
double precision, external :: j1b_nucl
double precision :: grad_num(3), eps_der, eps_lap, tmp_der, tmp_lap, i0, ip, im
double precision, external :: j1b_nucl_square
print*, ' test_list_b3 ...'
eps_ij = 1d-7
eps_der = 1d-5
tmp_der = 0.5d0 / eps_der
eps_lap = 1d-4
tmp_lap = 1.d0 / (eps_lap*eps_lap)
! ---
PROVIDE v_1b_list_b3
eps_ij = 1d-7
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -253,8 +262,7 @@ subroutine test_list_b3()
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_list_b3(ipoint)
i_tmp = j1b_nucl(r)
i_num = i_tmp * i_tmp
i_num = j1b_nucl_square(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in list_b3 on', ipoint
@ -267,8 +275,136 @@ subroutine test_list_b3()
normalz += dabs(i_num)
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
print*, ' acc_tot on val = ', acc_tot
print*, ' normalz on val = ', normalz
! ---
PROVIDE v_1b_square_grad
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_square_grad(ipoint,1)
r(1) = r(1) + eps_der
ip = j1b_nucl_square(r)
r(1) = r(1) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(1) = r(1) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_x list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = v_1b_square_grad(ipoint,2)
r(2) = r(2) + eps_der
ip = j1b_nucl_square(r)
r(2) = r(2) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(2) = r(2) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_y list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = v_1b_square_grad(ipoint,3)
r(3) = r(3) + eps_der
ip = j1b_nucl_square(r)
r(3) = r(3) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(3) = r(3) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_z list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot on grad = ', acc_tot
print*, ' normalz on grad = ', normalz
! ---
PROVIDE v_1b_square_lapl
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i0 = j1b_nucl_square(r)
i_exc = v_1b_square_lapl(ipoint)
r(1) = r(1) + eps_lap
ip = j1b_nucl_square(r)
r(1) = r(1) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(1) = r(1) + eps_lap
i_num = tmp_lap * (ip - 2.d0 * i0 + im)
r(2) = r(2) + eps_lap
ip = j1b_nucl_square(r)
r(2) = r(2) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(2) = r(2) + eps_lap
i_num = i_num + tmp_lap * (ip - 2.d0 * i0 + im)
r(3) = r(3) + eps_lap
ip = j1b_nucl_square(r)
r(3) = r(3) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(3) = r(3) + eps_lap
i_num = i_num + tmp_lap * (ip - 2.d0 * i0 + im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in lapl list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot on lapl = ', acc_tot
print*, ' normalz on lapl = ', normalz
! ---
return
end subroutine test_list_b3

View File

@ -17,7 +17,7 @@ BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num, n_poi
!
! if J(r1,r2) = u12 x v1 x v2
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)]) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
! = -0.25 x v1^2 \int r2 \phi_i(2) \phi_j(2) [1 - erf(mu r12)]^2 v2^2
! + -0.50 x (grad_1 v1)^2 \int r2 \phi_i(2) \phi_j(2) u12^2 v2^2
! + -1.00 x v1 (grad_1 v1) \int r2 \phi_i(2) \phi_j(2) (grad_1 u12) v2^2
@ -267,7 +267,7 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid)]
implicit none
integer :: ipoint, i, j
@ -358,7 +358,8 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_ik_r, ao_i_r
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:), tmp(:,:,:)
@ -373,16 +374,18 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
else
! ---
PROVIDE int2_grad1_u12_square_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num))
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
@ -390,13 +393,57 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
tc_grad_square_ao = 0.d0
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_grad_square_ao, ao_num*ao_num)
! ---
if((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
! an additional term is added here directly instead of
! being added in int2_grad1_u12_square_ao for performance
! note that the factor
PROVIDE int2_u2_j1b2
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector, &
!$OMP v_1b_square_grad, v_1b_square_lapl, aos_grad_in_r_array_transp_bis)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i) = weight1 * ( ao_k_r * ao_i_r * v_1b_square_lapl(ipoint) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_j1b2(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_grad_square_ao, ao_num*ao_num)
endif
! ---
deallocate(b_mat)
call sum_A_At(tc_grad_square_ao(1,1,1,1), ao_num*ao_num)

View File

@ -8,79 +8,160 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
double precision :: x, y, z, dx, dy, dz
double precision :: a, d, e, fact_r
do ipoint = 1, n_points_final_grid
if(j1b_type .eq. 3) then
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
e = 1.d0 - dexp(-a*d)
do ipoint = 1, n_points_final_grid
fact_r = fact_r * e
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
e = 1.d0 - dexp(-a*d)
fact_r = fact_r * e
enddo
v_1b(ipoint) = fact_r
enddo
v_1b(ipoint) = fact_r
enddo
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
fact_r = fact_r - dexp(-a*d)
enddo
v_1b(ipoint) = fact_r
enddo
else
print*, 'j1b_type = ', j1b_pen, 'is not implemented for v_1b'
stop
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_grad, (3, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: x, y, z, dx, dy, dz, r2
double precision :: a, d, e
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
do ipoint = 1, n_points_final_grid
PROVIDE j1b_type
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
if(j1b_type .eq. 3) then
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
phase = 0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
phase = 0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
e = -2.d0 * (-1.d0)**dble(phase) * dexp(-a_expo)
fact_x += e * ax_der
fact_y += e * ay_der
fact_z += e * az_der
enddo
v_1b_grad(1,ipoint) = fact_x
v_1b_grad(2,ipoint) = fact_y
v_1b_grad(3,ipoint) = fact_z
enddo
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
e = -2.d0 * (-1.d0)**dble(phase) * dexp(-a_expo)
r2 = dx*dx + dy*dy + dz*dz
fact_x += e * ax_der
fact_y += e * ay_der
fact_z += e * az_der
a = j1b_pen(j)
e = a * dexp(-a * r2)
ax_der += e * dx
ay_der += e * dy
az_der += e * dz
enddo
v_1b_grad(1,ipoint) = 2.d0 * ax_der
v_1b_grad(2,ipoint) = 2.d0 * ay_der
v_1b_grad(3,ipoint) = 2.d0 * az_der
enddo
v_1b_grad(1,ipoint) = fact_x
v_1b_grad(2,ipoint) = fact_y
v_1b_grad(3,ipoint) = fact_z
enddo
else
print*, 'j1b_type = ', j1b_pen, 'is not implemented'
stop
endif
END_PROVIDER
@ -91,7 +172,7 @@ BEGIN_PROVIDER [ double precision, v_1b_lapl, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: a, d, e, b
double precision :: a, e, b
double precision :: fact_r
double precision :: ax_der, ay_der, az_der, a_expo
@ -202,6 +283,56 @@ BEGIN_PROVIDER [ double precision, v_1b_list_b3, (n_points_final_grid)]
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_1b_square_grad, (n_points_final_grid,3)]
&BEGIN_PROVIDER [double precision, v_1b_square_lapl, (n_points_final_grid) ]
implicit none
integer :: ipoint, i
double precision :: x, y, z, dx, dy, dz, r2
double precision :: coef, expo, a_expo, tmp
double precision :: fact_x, fact_y, fact_z, fact_r
PROVIDE List_all_comb_b3_coef List_all_comb_b3_expo List_all_comb_b3_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
fact_r = 0.d0
do i = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef(i)
expo = List_all_comb_b3_expo(i)
dx = x - List_all_comb_b3_cent(1,i)
dy = y - List_all_comb_b3_cent(2,i)
dz = z - List_all_comb_b3_cent(3,i)
r2 = dx * dx + dy * dy + dz * dz
a_expo = expo * r2
tmp = coef * expo * dexp(-a_expo)
fact_x += tmp * dx
fact_y += tmp * dy
fact_z += tmp * dz
fact_r += tmp * (3.d0 - 2.d0 * a_expo)
enddo
v_1b_square_grad(ipoint,1) = -2.d0 * fact_x
v_1b_square_grad(ipoint,2) = -2.d0 * fact_y
v_1b_square_grad(ipoint,3) = -2.d0 * fact_z
v_1b_square_lapl(ipoint) = -2.d0 * fact_r
enddo
END_PROVIDER
! ---
double precision function j12_mu_r12(r12)

View File

@ -19,8 +19,12 @@
END_DOC
implicit none
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: v1b_r1, v1b_r2, u2b_r12
double precision :: grad1_v1b(3), grad1_u2b(3)
double precision :: dx, dy, dz
double precision, external :: j12_mu, j1b_nucl
PROVIDE j1b_type
PROVIDE final_grid_points_extra
@ -28,12 +32,43 @@
grad1_u12_num = 0.d0
grad1_u12_squared_num = 0.d0
if((j1b_type .ge. 100) .and. (j1b_type .lt. 200)) then
if(j1b_type .eq. 100) then
double precision :: v1b_r1, v1b_r2, u2b_r12
double precision :: grad1_v1b(3), grad1_u2b(3)
double precision :: dx, dy, dz
double precision, external :: j12_mu, j1b_nucl
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v1b_r1, v1b_r2, u2b_r12, grad1_v1b, grad1_u2b, dx, dy, dz) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, final_grid_points, &
!$OMP final_grid_points_extra, grad1_u12_num, grad1_u12_squared_num)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call grad1_j12_mu(r1, r2, grad1_u2b)
dx = grad1_u2b(1)
dy = grad1_u2b(2)
dz = grad1_u2b(3)
grad1_u12_num(jpoint,ipoint,1) = dx
grad1_u12_num(jpoint,ipoint,2) = dy
grad1_u12_num(jpoint,ipoint,3) = dz
grad1_u12_squared_num(jpoint,ipoint) = dx*dx + dy*dy + dz*dz
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -74,6 +109,42 @@
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, grad1_u2b, dx, dy, dz) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, final_grid_points, &
!$OMP final_grid_points_extra, grad1_u12_num, grad1_u12_squared_num)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call grad1_j12_mu(r1, r2, grad1_u2b)
dx = grad1_u2b(1)
dy = grad1_u2b(2)
dz = grad1_u2b(3)
grad1_u12_num(jpoint,ipoint,1) = dx
grad1_u12_num(jpoint,ipoint,2) = dy
grad1_u12_num(jpoint,ipoint,3) = dz
grad1_u12_squared_num(jpoint,ipoint) = dx*dx + dy*dy + dz*dz
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
@ -91,20 +162,20 @@ double precision function j12_mu(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: mu_r12, r12
double precision :: mu_tmp, r12
if((j1b_type .ge. 100) .and. (j1b_type .lt. 200)) then
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
mu_r12 = mu_erf * r12
mu_tmp = mu_erf * r12
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_r12)) - inv_sq_pi_2 * dexp(-mu_r12*mu_r12) / mu_erf
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu'
stop
endif
@ -116,6 +187,8 @@ end function j12_mu
subroutine grad1_j12_mu(r1, r2, grad)
include 'constants.include.F'
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad(3)
@ -123,13 +196,13 @@ subroutine grad1_j12_mu(r1, r2, grad)
grad = 0.d0
if((j1b_type .ge. 100) .and. (j1b_type .lt. 200)) then
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt( dx * dx + dy * dy + dz * dz )
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
@ -138,6 +211,28 @@ subroutine grad1_j12_mu(r1, r2, grad)
grad(2) = tmp * dy
grad(3) = tmp * dz
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
double precision :: mu_val, mu_tmp, mu_der(3)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
grad(1) = tmp * mu_der(1)
grad(2) = tmp * mu_der(2)
grad(3) = tmp * mu_der(3)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
grad(1) = grad(1) + tmp * dx
grad(2) = grad(2) + tmp * dy
grad(3) = grad(3) + tmp * dz
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
@ -157,7 +252,18 @@ double precision function j1b_nucl(r)
integer :: i
double precision :: a, d, e, x, y, z
if(j1b_type .eq. 103) then
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
j1b_nucl = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl = j1b_nucl - dexp(-a*dsqrt(d))
enddo
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
j1b_nucl = 1.d0
do i = 1, nucl_num
@ -169,7 +275,7 @@ double precision function j1b_nucl(r)
j1b_nucl = j1b_nucl * e
enddo
elseif(j1b_type .eq. 104) then
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
j1b_nucl = 1.d0
do i = 1, nucl_num
@ -180,7 +286,7 @@ double precision function j1b_nucl(r)
j1b_nucl = j1b_nucl - dexp(-a*d)
enddo
elseif(j1b_type .eq. 105) then
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
j1b_nucl = 1.d0
do i = 1, nucl_num
@ -194,7 +300,7 @@ double precision function j1b_nucl(r)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl'
stop
endif
@ -204,6 +310,75 @@ end function j1b_nucl
! ---
double precision function j1b_nucl_square(r)
implicit none
double precision, intent(in) :: r(3)
integer :: i
double precision :: a, d, e, x, y, z
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
j1b_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - dexp(-a*dsqrt(d))
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
j1b_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
e = 1.d0 - dexp(-a*d)
j1b_nucl_square = j1b_nucl_square * e
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
j1b_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - dexp(-a*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
j1b_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
j1b_nucl_square = j1b_nucl_square - dexp(-a*d*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_square'
stop
endif
return
end function j1b_nucl_square
! ---
subroutine grad1_j1b_nucl(r, grad)
implicit none
@ -215,7 +390,29 @@ subroutine grad1_j1b_nucl(r, grad)
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
if(j1b_type .eq. 103) then
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, nucl_num
a = j1b_pen(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = dsqrt(x*x + y*y + z*z)
e = a * dexp(-a*d) / d
fact_x += e * x
fact_y += e * y
fact_z += e * z
enddo
grad(1) = fact_x
grad(2) = fact_y
grad(3) = fact_z
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
x = r(1)
y = r(2)
@ -254,7 +451,7 @@ subroutine grad1_j1b_nucl(r, grad)
grad(2) = fact_y
grad(3) = fact_z
else if(j1b_type .eq. 104) then
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
fact_x = 0.d0
fact_y = 0.d0
@ -276,7 +473,7 @@ subroutine grad1_j1b_nucl(r, grad)
grad(2) = 2.d0 * fact_y
grad(3) = 2.d0 * fact_z
else if(j1b_type .eq. 105) then
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
fact_x = 0.d0
fact_y = 0.d0
@ -300,7 +497,7 @@ subroutine grad1_j1b_nucl(r, grad)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' j1b_type = ', j1b_type, 'not implemented for grad1_j1b_nucl'
stop
endif
@ -310,3 +507,180 @@ end subroutine grad1_j1b_nucl
! ---
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: mu_val, mu_der(3)
double precision :: r(3)
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
double precision :: dm_tot, tmp1, tmp2, tmp3
if(j1b_type .eq. 200) then
!
! r = 0.5 (r1 + r2)
!
! mu[rho(r)] = alpha sqrt(rho) + mu0 exp(-rho)
!
! d mu[rho(r)] / dx1 = 0.5 d mu[rho(r)] / dx
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
!
PROVIDE mu_r_ct mu_erf
r(1) = 0.5d0 * (r1(1) + r2(1))
r(2) = 0.5d0 * (r1(2) + r2(2))
r(3) = 0.5d0 * (r1(3) + r2(3))
call density_and_grad_alpha_beta(r, dm_a, dm_b, grad_dm_a, grad_dm_b)
dm_tot = dm_a(1) + dm_b(1)
tmp1 = dsqrt(dm_tot)
tmp2 = mu_erf * dexp(-dm_tot)
mu_val = mu_r_ct * tmp1 + tmp2
mu_der = 0.d0
if(dm_tot .lt. 1d-7) return
tmp3 = 0.25d0 * mu_r_ct / tmp1 - 0.5d0 * tmp2
mu_der(1) = tmp3 * (grad_dm_a(1,1) + grad_dm_b(1,1))
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
elseif(j1b_type .eq. 201) then
!
! r = 0.5 (r1 + r2)
!
! mu[rho(r)] = alpha rho + mu0 exp(-rho)
!
! d mu[rho(r)] / dx1 = 0.5 d mu[rho(r)] / dx
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
!
PROVIDE mu_r_ct mu_erf
r(1) = 0.5d0 * (r1(1) + r2(1))
r(2) = 0.5d0 * (r1(2) + r2(2))
r(3) = 0.5d0 * (r1(3) + r2(3))
call density_and_grad_alpha_beta(r, dm_a, dm_b, grad_dm_a, grad_dm_b)
dm_tot = dm_a(1) + dm_b(1)
tmp2 = mu_erf * dexp(-dm_tot)
mu_val = mu_r_ct * dm_tot + tmp2
tmp3 = 0.5d0 * (mu_r_ct - tmp2)
mu_der(1) = tmp3 * (grad_dm_a(1,1) + grad_dm_b(1,1))
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
return
end subroutine mu_r_val_and_grad
! ---
subroutine grad1_j1b_nucl_square_num(r1, grad)
implicit none
double precision, intent(in) :: r1(3)
double precision, intent(out) :: grad(3)
double precision :: r(3), eps, tmp_eps, vp, vm
double precision, external :: j1b_nucl_square
eps = 1d-5
tmp_eps = 0.5d0 / eps
r(1:3) = r1(1:3)
r(1) = r(1) + eps
vp = j1b_nucl_square(r)
r(1) = r(1) - 2.d0 * eps
vm = j1b_nucl_square(r)
r(1) = r(1) + eps
grad(1) = tmp_eps * (vp - vm)
r(2) = r(2) + eps
vp = j1b_nucl_square(r)
r(2) = r(2) - 2.d0 * eps
vm = j1b_nucl_square(r)
r(2) = r(2) + eps
grad(2) = tmp_eps * (vp - vm)
r(3) = r(3) + eps
vp = j1b_nucl_square(r)
r(3) = r(3) - 2.d0 * eps
vm = j1b_nucl_square(r)
r(3) = r(3) + eps
grad(3) = tmp_eps * (vp - vm)
return
end subroutine grad1_j1b_nucl_square_num
! ---
subroutine grad1_j12_mu_square_num(r1, r2, grad)
include 'constants.include.F'
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad(3)
double precision :: r(3)
double precision :: eps, tmp_eps, vp, vm
double precision, external :: j12_mu_square
eps = 1d-5
tmp_eps = 0.5d0 / eps
r(1:3) = r1(1:3)
r(1) = r(1) + eps
vp = j12_mu_square(r, r2)
r(1) = r(1) - 2.d0 * eps
vm = j12_mu_square(r, r2)
r(1) = r(1) + eps
grad(1) = tmp_eps * (vp - vm)
r(2) = r(2) + eps
vp = j12_mu_square(r, r2)
r(2) = r(2) - 2.d0 * eps
vm = j12_mu_square(r, r2)
r(2) = r(2) + eps
grad(2) = tmp_eps * (vp - vm)
r(3) = r(3) + eps
vp = j12_mu_square(r, r2)
r(3) = r(3) - 2.d0 * eps
vm = j12_mu_square(r, r2)
r(3) = r(3) + eps
grad(3) = tmp_eps * (vp - vm)
return
end subroutine grad1_j12_mu_square_num
! ---
double precision function j12_mu_square(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, external :: j12_mu
j12_mu_square = j12_mu(r1, r2) * j12_mu(r1, r2)
return
end function j12_mu_square
! ---

View File

@ -35,13 +35,40 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
PROVIDE j1b_type
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
endif
if(j1b_type .eq. 3) then
else
if(.not.read_tc_integ) then
if(j1b_type .eq. 0) then
PROVIDE v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu
int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp1) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points &
!$OMP , v_ij_erf_rk_cst_mu, x_v_ij_erf_rk_cst_mu, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = 0.5d0 * (tmp1 * x - x_v_ij_erf_rk_cst_mu(i,j,ipoint,1))
int2_grad1_u12_ao(i,j,ipoint,2) = 0.5d0 * (tmp1 * y - x_v_ij_erf_rk_cst_mu(i,j,ipoint,2))
int2_grad1_u12_ao(i,j,ipoint,3) = 0.5d0 * (tmp1 * z - x_v_ij_erf_rk_cst_mu(i,j,ipoint,3))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
PROVIDE v_1b_grad v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b
@ -73,32 +100,29 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!$OMP END DO
!$OMP END PARALLEL
endif
elseif(j1b_type .ge. 100) then
elseif(j1b_type .ge. 100) then
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
PROVIDE grad1_u12_num
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
PROVIDE grad1_u12_num
double precision, allocatable :: tmp(:,:,:)
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
tmp = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
double precision, allocatable :: tmp(:,:,:)
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
tmp = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END DO
!$OMP END PARALLEL
if(.not.read_tc_integ) then
int2_grad1_u12_ao = 0.d0
do m = 1, 3
!call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, +1.d0 &
@ -108,7 +132,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
, 0.d0, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num)
enddo
!! these dgemm are equivalen to
!! these dgemm are equivalent to
!!$OMP PARALLEL &
!!$OMP DEFAULT (NONE) &
!!$OMP PRIVATE (j, i, ipoint, jpoint, w) &
@ -132,15 +156,14 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!enddo
!!$OMP END DO
!!$OMP END PARALLEL
deallocate(tmp)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
deallocate(tmp)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
if(write_tc_integ.and.mpi_master) then
@ -176,20 +199,43 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
PROVIDE j1b_type
if(j1b_type .eq. 3) then
if(j1b_type .eq. 0) then
PROVIDE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
PROVIDE int2_grad1u2_grad2u2
int2_grad1_u12_square_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_j1bsq, u12_grad1_u12_j1b_grad1_j1b, grad12_j12)
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, int2_grad1u2_grad2u2)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_j1bsq(i,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
int2_grad1_u12_square_ao(i,j,ipoint) = int2_grad1u2_grad2u2(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
! the term u12_grad1_u12_j1b_grad1_j1b is added directly for performance
!PROVIDE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
PROVIDE u12sq_j1bsq grad12_j12
int2_grad1_u12_square_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_j1bsq, grad12_j12)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
!int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_j1bsq(i,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_j1bsq(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo

View File

@ -1,15 +1,25 @@
program test_non_h
implicit none
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 50
my_n_pt_a_grid = 74
!my_n_pt_r_grid = 400
!my_n_pt_a_grid = 974
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_grad_squared
call routine_fit
!call routine_grad_squared
!call routine_fit
call test_ipp()
end
! ---
subroutine routine_lapl_grad
implicit none
integer :: i,j,k,l
@ -100,3 +110,445 @@ subroutine routine_fit
enddo
end
subroutine test_ipp()
implicit none
integer :: i, j, k, l, ipoint
double precision :: accu, norm, diff, old, new, eps, int_num
double precision :: weight1, ao_i_r, ao_k_r
double precision, allocatable :: b_mat(:,:,:), I1(:,:,:,:), I2(:,:,:,:)
eps = 1d-7
allocate(b_mat(n_points_final_grid,ao_num,ao_num))
b_mat = 0.d0
! ---
! first way
allocate(I1(ao_num,ao_num,ao_num,ao_num))
I1 = 0.d0
PROVIDE u12_grad1_u12_j1b_grad1_j1b
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
b_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, u12_grad1_u12_j1b_grad1_j1b(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, I1, ao_num*ao_num)
! ---
! 2nd way
allocate(I2(ao_num,ao_num,ao_num,ao_num))
I2 = 0.d0
PROVIDE int2_u2_j1b2
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector, &
!$OMP v_1b_square_grad, v_1b_square_lapl, aos_grad_in_r_array_transp_bis)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i) = weight1 * ( ao_k_r * ao_i_r * v_1b_square_lapl(ipoint) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_j1b2(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, I2, ao_num*ao_num)
! ---
deallocate(b_mat)
accu = 0.d0
norm = 0.d0
do i = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
do j = 1, ao_num
old = I1(j,l,k,i)
new = I2(j,l,k,i)
!print*, l, k, j, i
!print*, old, new
diff = new - old
if(dabs(diff) .gt. eps) then
print*, ' problem on :', j, l, k, i
print*, ' diff = ', diff
print*, ' old value = ', old
print*, ' new value = ', new
call I_grade_gradu_naive1(i, j, k, l, int_num)
print*, ' full num1 = ', int_num
call I_grade_gradu_naive2(i, j, k, l, int_num)
print*, ' full num2 = ', int_num
call I_grade_gradu_naive3(i, j, k, l, int_num)
print*, ' full num3 = ', int_num
call I_grade_gradu_naive4(i, j, k, l, int_num)
print*, ' full num4 = ', int_num
call I_grade_gradu_seminaive(i, j, k, l, int_num)
print*, ' semi num = ', int_num
endif
accu += dabs(diff)
norm += dabs(old)
enddo
enddo
enddo
enddo
deallocate(I1, I2)
print*, ' accu = ', accu
print*, ' norm = ', norm
return
end subroutine test_ipp
! ---
subroutine I_grade_gradu_naive1(i, j, k, l, int)
implicit none
integer, intent(in) :: i, j, k, l
double precision, intent(out) :: int
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: weight1_x, weight1_y, weight1_z
double precision :: weight2_x, weight2_y, weight2_z
double precision :: aor_i, aor_j, aor_k, aor_l
double precision :: e1_val, e2_val, e1_der(3), u12_val, u12_der(3)
double precision, external :: j1b_nucl, j12_mu
int = 0.d0
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
aor_i = aos_in_r_array_transp(ipoint,i)
aor_k = aos_in_r_array_transp(ipoint,k)
e1_val = j1b_nucl(r1)
call grad1_j1b_nucl(r1, e1_der)
weight1_x = aor_i * aor_k * e1_val * final_weight_at_r_vector(ipoint) * e1_der(1)
weight1_y = aor_i * aor_k * e1_val * final_weight_at_r_vector(ipoint) * e1_der(2)
weight1_z = aor_i * aor_k * e1_val * final_weight_at_r_vector(ipoint) * e1_der(3)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
aor_j = aos_in_r_array_extra_transp(jpoint,j)
aor_l = aos_in_r_array_extra_transp(jpoint,l)
e2_val = j1b_nucl(r2)
u12_val = j12_mu(r1, r2)
call grad1_j12_mu(r1, r2, u12_der)
weight2_x = aor_j * aor_l * e2_val * e2_val * u12_val * final_weight_at_r_vector_extra(jpoint) * u12_der(1)
weight2_y = aor_j * aor_l * e2_val * e2_val * u12_val * final_weight_at_r_vector_extra(jpoint) * u12_der(2)
weight2_z = aor_j * aor_l * e2_val * e2_val * u12_val * final_weight_at_r_vector_extra(jpoint) * u12_der(3)
int = int - (weight1_x * weight2_x + weight1_y * weight2_y + weight1_z * weight2_z)
enddo
enddo
return
end subroutine I_grade_gradu_naive1
! ---
subroutine I_grade_gradu_naive2(i, j, k, l, int)
implicit none
integer, intent(in) :: i, j, k, l
double precision, intent(out) :: int
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: weight1_x, weight1_y, weight1_z
double precision :: weight2_x, weight2_y, weight2_z
double precision :: aor_i, aor_j, aor_k, aor_l
double precision :: e1_square_der(3), e2_val, u12_square_der(3)
double precision, external :: j1b_nucl
int = 0.d0
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
aor_i = aos_in_r_array_transp(ipoint,i)
aor_k = aos_in_r_array_transp(ipoint,k)
call grad1_j1b_nucl_square_num(r1, e1_square_der)
weight1_x = aor_i * aor_k * final_weight_at_r_vector(ipoint) * e1_square_der(1)
weight1_y = aor_i * aor_k * final_weight_at_r_vector(ipoint) * e1_square_der(2)
weight1_z = aor_i * aor_k * final_weight_at_r_vector(ipoint) * e1_square_der(3)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
aor_j = aos_in_r_array_extra_transp(jpoint,j)
aor_l = aos_in_r_array_extra_transp(jpoint,l)
e2_val = j1b_nucl(r2)
call grad1_j12_mu_square_num(r1, r2, u12_square_der)
weight2_x = aor_j * aor_l * e2_val * e2_val * final_weight_at_r_vector_extra(jpoint) * u12_square_der(1)
weight2_y = aor_j * aor_l * e2_val * e2_val * final_weight_at_r_vector_extra(jpoint) * u12_square_der(2)
weight2_z = aor_j * aor_l * e2_val * e2_val * final_weight_at_r_vector_extra(jpoint) * u12_square_der(3)
int = int - 0.25d0 * (weight1_x * weight2_x + weight1_y * weight2_y + weight1_z * weight2_z)
enddo
enddo
return
end subroutine I_grade_gradu_naive2
! ---
subroutine I_grade_gradu_naive3(i, j, k, l, int)
implicit none
integer, intent(in) :: i, j, k, l
double precision, intent(out) :: int
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: weight1, weight2
double precision :: aor_j, aor_l
double precision :: grad(3), e2_val, u12_val
double precision, external :: j1b_nucl, j12_mu
int = 0.d0
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
call grad1_aos_ik_grad1_esquare(i, k, r1, grad)
weight1 = final_weight_at_r_vector(ipoint) * (grad(1) + grad(2) + grad(3))
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
aor_j = aos_in_r_array_extra_transp(jpoint,j)
aor_l = aos_in_r_array_extra_transp(jpoint,l)
e2_val = j1b_nucl(r2)
u12_val = j12_mu(r1, r2)
weight2 = aor_j * aor_l * e2_val * e2_val * u12_val * u12_val * final_weight_at_r_vector_extra(jpoint)
int = int + 0.25d0 * weight1 * weight2
enddo
enddo
return
end subroutine I_grade_gradu_naive3
! ---
subroutine I_grade_gradu_naive4(i, j, k, l, int)
implicit none
integer, intent(in) :: i, j, k, l
double precision, intent(out) :: int
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: weight1, weight2
double precision :: aor_j, aor_l, aor_k, aor_i
double precision :: grad(3), e2_val, u12_val
double precision, external :: j1b_nucl, j12_mu
int = 0.d0
do ipoint = 1, n_points_final_grid ! r1
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
aor_i = aos_in_r_array_transp(ipoint,i)
aor_k = aos_in_r_array_transp(ipoint,k)
weight1 = final_weight_at_r_vector(ipoint) * ( aor_k * aor_i * v_1b_square_lapl(ipoint) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,1) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,2) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,3) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
aor_j = aos_in_r_array_extra_transp(jpoint,j)
aor_l = aos_in_r_array_extra_transp(jpoint,l)
e2_val = j1b_nucl(r2)
u12_val = j12_mu(r1, r2)
weight2 = aor_j * aor_l * e2_val * e2_val * u12_val * u12_val * final_weight_at_r_vector_extra(jpoint)
int = int + 0.25d0 * weight1 * weight2
enddo
enddo
return
end subroutine I_grade_gradu_naive4
! ---
subroutine I_grade_gradu_seminaive(i, j, k, l, int)
implicit none
integer, intent(in) :: i, j, k, l
double precision, intent(out) :: int
integer :: ipoint
double precision :: r1(3)
double precision :: weight1
double precision :: aor_i, aor_k
int = 0.d0
do ipoint = 1, n_points_final_grid ! r1
aor_i = aos_in_r_array_transp(ipoint,i)
aor_k = aos_in_r_array_transp(ipoint,k)
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint) * ( aor_k * aor_i * v_1b_square_lapl(ipoint) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,1) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,2) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (aor_k * aos_grad_in_r_array_transp_bis(ipoint,i,3) + aor_i * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
int = int + weight1 * int2_u2_j1b2(j,l,ipoint)
enddo
return
end subroutine I_grade_gradu_seminaive
! ---
subroutine aos_ik_grad1_esquare(i, k, r1, val)
implicit none
integer, intent(in) :: i, k
double precision, intent(in) :: r1(3)
double precision, intent(out) :: val(3)
double precision :: tmp
double precision :: der(3), aos_array(ao_num), aos_grad_array(3,ao_num)
call give_all_aos_and_grad_at_r(r1, aos_array, aos_grad_array)
call grad1_j1b_nucl_square_num(r1, der)
tmp = aos_array(i) * aos_array(k)
val(1) = tmp * der(1)
val(2) = tmp * der(2)
val(3) = tmp * der(3)
return
end subroutine phi_ik_grad1_esquare
! ---
subroutine grad1_aos_ik_grad1_esquare(i, k, r1, grad)
implicit none
integer, intent(in) :: i, k
double precision, intent(in) :: r1(3)
double precision, intent(out) :: grad(3)
double precision :: r(3), eps, tmp_eps, val_p(3), val_m(3)
eps = 1d-5
tmp_eps = 0.5d0 / eps
r(1:3) = r1(1:3)
r(1) = r(1) + eps
call aos_ik_grad1_esquare(i, k, r, val_p)
r(1) = r(1) - 2.d0 * eps
call aos_ik_grad1_esquare(i, k, r, val_m)
r(1) = r(1) + eps
grad(1) = tmp_eps * (val_p(1) - val_m(1))
r(2) = r(2) + eps
call aos_ik_grad1_esquare(i, k, r, val_p)
r(2) = r(2) - 2.d0 * eps
call aos_ik_grad1_esquare(i, k, r, val_m)
r(2) = r(2) + eps
grad(2) = tmp_eps * (val_p(2) - val_m(2))
r(3) = r(3) + eps
call aos_ik_grad1_esquare(i, k, r, val_p)
r(3) = r(3) - 2.d0 * eps
call aos_ik_grad1_esquare(i, k, r, val_m)
r(3) = r(3) + eps
grad(3) = tmp_eps * (val_p(3) - val_m(3))
return
end subroutine grad1_aos_ik_grad1_esquare
! ---

View File

@ -11,6 +11,13 @@ BEGIN_PROVIDER [double precision, ao_vartc_int_chemist, (ao_num, ao_num, ao_num,
call wall_time(wall0)
if(test_cycle_tc) then
PROVIDE j1b_type
if(j1b_type .ne. 3) then
print*, ' TC integrals with cycle can not be used for j1b_type =', j1b_type
stop
endif
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
@ -20,7 +27,9 @@ BEGIN_PROVIDER [double precision, ao_vartc_int_chemist, (ao_num, ao_num, ao_num,
enddo
enddo
enddo
else
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
@ -30,6 +39,7 @@ BEGIN_PROVIDER [double precision, ao_vartc_int_chemist, (ao_num, ao_num, ao_num,
enddo
enddo
enddo
endif
call wall_time(wall1)
@ -50,6 +60,12 @@ BEGIN_PROVIDER [double precision, ao_tc_int_chemist, (ao_num, ao_num, ao_num, ao
if(test_cycle_tc) then
PROVIDE j1b_type
if(j1b_type .ne. 3) then
print*, ' TC integrals with cycle can not be used for j1b_type =', j1b_type
stop
endif
ao_tc_int_chemist = ao_tc_int_chemist_test
else

View File

@ -241,13 +241,13 @@ END_PROVIDER
enddo
character*(80) :: buffer, dummy
do
read(iunit,'(A80)',end=10) buffer
read(buffer,*) i ! First read i
read(buffer,*) i, element_name(i), dummy, element_mass(i)
enddo
10 continue
close(10)
endif
read(iunit,'(A80)',end=10) buffer
read(buffer,*) i ! First read i
read(buffer,*) i, element_name(i), dummy, element_mass(i)
enddo
10 continue
close(10)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank

View File

@ -1,2 +1,3 @@
mo_guess
bitmask
json

View File

@ -12,6 +12,7 @@ END_DOC
integer :: iteration_SCF,dim_DIIS,index_dim_DIIS
logical :: converged
integer :: i,j
logical, external :: qp_stop
double precision, allocatable :: mo_coef_save(:,:)
@ -50,10 +51,8 @@ END_DOC
!
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
converged = .False.
do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) )
! Increment cycle number
@ -144,17 +143,49 @@ END_DOC
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. &
(dabs(Delta_energy_SCF) <= thresh_SCF) )
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
! Write data in JSON file
call lock_io
if (iteration_SCF == 1) then
write(json_unit, json_dict_uopen_fmt)
else
write(json_unit, json_dict_close_uopen_fmt)
endif
write(json_unit, json_int_fmt) 'iteration', iteration_SCF
write(json_unit, json_real_fmt) 'energy', energy_SCF
write(json_unit, json_real_fmt) 'delta_energy_SCF', Delta_energy_SCF
write(json_unit, json_real_fmt) 'max_error_DIIS', max_error_DIIS
write(json_unit, json_real_fmt) 'level_shift', level_shift
write(json_unit, json_int_fmt) 'dim_DIIS', dim_DIIS
call unlock_io
if (Delta_energy_SCF < 0.d0) then
call save_mos
write(json_unit, json_true_fmt) 'saved'
else
write(json_unit, json_false_fmt) 'saved'
endif
call lock_io
if (converged) then
write(json_unit, json_true_fmtx) 'converged'
else
write(json_unit, json_false_fmtx) 'converged'
endif
call unlock_io
if (qp_stop()) exit
enddo
write(json_unit, json_dict_close_fmtx)
if (iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
@ -166,6 +197,10 @@ END_DOC
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if (converged) then
write(6,*) 'SCF converged'
endif
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &

View File

@ -152,7 +152,7 @@ subroutine H_tc_s2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishi
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t\rangle$
! Computes $v_t = H | u_t\rangle$
!
! Default should be 1,N_det,0,1
!
@ -160,7 +160,7 @@ subroutine H_tc_s2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishi
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
logical, intent(in) :: do_right
logical, intent(in) :: do_right
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
@ -193,7 +193,7 @@ subroutine H_tc_s2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,ie
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
logical, intent(in) :: do_right
logical, intent(in) :: do_right
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
double precision :: hij, sij
@ -570,7 +570,7 @@ compute_singles=.True.
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
! call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
if(do_right)then
@ -721,7 +721,7 @@ compute_singles=.True.
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
! call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
if(do_right)then

View File

@ -9,6 +9,10 @@ program print_tc_energy
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
PROVIDE j1b_type
print*, 'j1b_type = ', j1b_type
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call write_tc_energy
end

View File

@ -26,7 +26,8 @@ subroutine write_l_r_wf
integer :: i
print*,'Writing the left-right wf'
do i = 1, N_det
write(i_unit_output,*)i,psi_l_coef_sorted_bi_ortho_left(i),psi_r_coef_sorted_bi_ortho_right(i)
write(i_unit_output,*)i, psi_l_coef_sorted_bi_ortho_left(i)/psi_l_coef_sorted_bi_ortho_left(1) &
, psi_r_coef_sorted_bi_ortho_right(i)/psi_r_coef_sorted_bi_ortho_right(1)
enddo

View File

@ -124,6 +124,12 @@ doc: type of 1-body Jastrow
interface: ezfio, provider, ocaml
default: 0
[mu_r_ct]
type: double precision
doc: a parameter used to define mu(r)
interface: ezfio, provider, ocaml
default: 6.203504908994001e-1
[thr_degen_tc]
type: Threshold
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
@ -170,7 +176,7 @@ default: 1.e-7
type: logical
doc: If |true|, the integrals of the three-body jastrow are computed with cycles
interface: ezfio,provider,ocaml
default: True
default: False
[thresh_biorthog_diag]
type: Threshold

View File

@ -8,6 +8,10 @@ program print_angles
my_n_pt_a_grid = 50
touch my_n_pt_r_grid my_n_pt_a_grid
! call sort_by_tc_fock
! TODO
! check if rotations of orbitals affect the TC energy
! and refuse the step
call minimize_tc_orb_angles
end

View File

@ -53,7 +53,7 @@ program tc_scf
stop
endif
call minimize_tc_orb_angles()
!call minimize_tc_orb_angles()
endif

View File

@ -1,5 +1,5 @@
BEGIN_PROVIDER [ double precision, TC_HF_energy]
BEGIN_PROVIDER [ double precision, TC_HF_energy ]
&BEGIN_PROVIDER [ double precision, TC_HF_one_e_energy]
&BEGIN_PROVIDER [ double precision, TC_HF_two_e_energy]

View File

@ -1,80 +0,0 @@
program print_e_conv
implicit none
BEGIN_DOC
! program that prints in a human readable format the convergence of the CIPSI algorithm.
!
! for all istate, this program produces
!
! * a file "EZFIO.istate.conv" containing the variational and var+PT2 energies as a function of N_det
!
! * for istate > 1, a file EZFIO.istate.delta_e.conv containing the energy difference (both var and var+PT2) with the ground state as a function of N_det
END_DOC
provide ezfio_filename
call routine_e_conv
end
subroutine routine_e_conv
implicit none
BEGIN_DOC
! routine called by :c:func:`print_e_conv`
END_DOC
integer :: N_iter_tmp
integer :: i,istate
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
character*(128) :: filename
integer, allocatable :: n_det_tmp(:)
call ezfio_get_iterations_N_iter(N_iter_tmp)
print*,'N_iter_tmp = ',N_iter_tmp
double precision, allocatable :: e(:,:),pt2(:,:)
allocate(e(N_states, 100),pt2(N_states, 100),n_det_tmp(100))
call ezfio_get_iterations_energy_iterations(e)
call ezfio_get_iterations_pt2_iterations(pt2)
call ezfio_get_iterations_n_det_iterations(n_det_tmp)
do istate = 1, N_states
if (istate.lt.10)then
write (filename, "(I1)")istate
else
write (filename, "(I2)")istate
endif
print*,filename
output=trim(ezfio_filename)//'.'//trim(filename)//'.conv'
output=trim(output)
print*,'output = ',trim(output)
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,*)'# N_det E_var E_var + PT2'
do i = 1, N_iter_tmp
write(i_unit_output,'(I9,X,3(F16.10,X))')n_det_tmp(i),e(istate,i),e(istate,i) + pt2(istate,i)
enddo
enddo
if(N_states.gt.1)then
double precision, allocatable :: deltae(:,:),deltae_pt2(:,:)
allocate(deltae(N_states,100),deltae_pt2(N_states,100))
do i = 1, N_iter_tmp
do istate = 1, N_states
deltae(istate,i) = e(istate,i) - e(1,i)
deltae_pt2(istate,i) = e(istate,i) + pt2(istate,i) - (e(1,i) + pt2(1,i))
enddo
enddo
do istate = 2, N_states
if (istate.lt.10)then
write (filename, "(I1)")istate
else
write (filename, "(I2)")istate
endif
output=trim(ezfio_filename)//'.'//trim(filename)//'.delta_e.conv'
print*,'output = ',trim(output)
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,*)'# N_det Delta E_var Delta (E_var + PT2)'
do i = 1, N_iter_tmp
write(i_unit_output,'(I9,X,100(F16.10,X))')n_det_tmp(i),deltae(istate,i),deltae_pt2(istate,i)
enddo
enddo
endif
end

View File

@ -1,15 +1,17 @@
subroutine write_array_two_rdm(n_orb,nstates,array_tmp,name_file)
implicit none
integer, intent(in) :: n_orb,nstates
character*(128), intent(in) :: name_file
character*(128), intent(in) :: name_file
double precision, intent(in) :: array_tmp(n_orb,n_orb,n_orb,n_orb,nstates)
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
PROVIDE ezfio_filename
PROVIDE ezfio_filename
output=trim(ezfio_filename)//'/work/'//trim(name_file)
i_unit_output = getUnitAndOpen(output,'W')
call lock_io()
write(i_unit_output)array_tmp
call unlock_io()
close(unit=i_unit_output)
end
@ -18,12 +20,14 @@ subroutine read_array_two_rdm(n_orb,nstates,array_tmp,name_file)
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
integer, intent(in) :: n_orb,nstates
character*(128), intent(in) :: name_file
character*(128), intent(in) :: name_file
double precision, intent(out) :: array_tmp(n_orb,n_orb,n_orb,n_orb,N_states)
PROVIDE ezfio_filename
PROVIDE ezfio_filename
output=trim(ezfio_filename)//'/work/'//trim(name_file)
i_unit_output = getUnitAndOpen(output,'R')
call lock_io()
read(i_unit_output)array_tmp
call unlock_io()
close(unit=i_unit_output)
end

View File

@ -1,7 +1,7 @@
subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_error)
implicit none
BEGIN_DOC
! Format for double precision, value(error)
END_DOC
@ -14,7 +14,7 @@ subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_err
! out
! | format_value | character | string FX.Y for the format |
! | str_error | character | string of the error |
! | str_error | character | string of the error |
! internal
! | str_size | character | size in string format |
@ -33,6 +33,7 @@ subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_err
character(len=20) :: str_size, str_nb_digits, str_exp
integer :: nb_digits
call lock_io()
! max_nb_digit: Y max
! size_nb = Size of the double: X (FX.Y)
write(str_size,'(I3)') size_nb
@ -40,17 +41,17 @@ subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_err
! Error
write(str_exp,'(1pE20.0)') error
str_error = trim(adjustl(str_exp))
! Number of digit: Y (FX.Y) from the exponent
str_nb_digits = str_exp(19:20)
read(str_nb_digits,*) nb_digits
! If the error is 0d0
if (error <= 1d-16) then
if (error <= 1d-16) then
write(str_nb_digits,*) max_nb_digits
endif
! If the error is too small
! If the error is too small
if (nb_digits > max_nb_digits) then
write(str_nb_digits,*) max_nb_digits
str_error(1:1) = '0'
@ -65,7 +66,8 @@ subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_err
! FX.Y,A1,A1,A1 for value(str_error)
!string = 'F'//trim(adjustl(str_size))//'.'//trim(adjustl(str_nb_digits))//',A1,A1,A1'
! FX.Y just for the value
! FX.Y just for the value
format_value = 'F'//trim(adjustl(str_size))//'.'//trim(adjustl(str_nb_digits))
call unlock_io()
end

View File

@ -1854,7 +1854,7 @@ do k = 1, N
end do
! TODO: It should be possible to use only one vector of size (1:rank) as a buffer
! to do the swapping in-place
U = 0.00D+0
U(:,:) = 0.00D+0
do k = 1, N
l = piv(k)
U(l, :) = A(1:rank, k)

View File

@ -8,7 +8,9 @@ BEGIN_PROVIDER [ integer, qp_max_mem ]
qp_max_mem = 2000
call getenv('QP_MAXMEM',env)
if (trim(env) /= '') then
call lock_io()
read(env,*) qp_max_mem
call unlock_io()
endif
call write_int(6,qp_max_mem,'Target maximum memory (GB)')
@ -25,7 +27,7 @@ subroutine resident_memory(value)
character*(32) :: key
double precision, intent(out) :: value
call omp_set_lock(file_lock)
call lock_io()
call usleep(10)
value = 0.d0
@ -40,7 +42,7 @@ subroutine resident_memory(value)
20 continue
close(iunit)
value = value / (1024.d0*1024.d0)
call omp_unset_lock(file_lock)
call unlock_io()
end function
subroutine total_memory(value)
@ -53,6 +55,7 @@ subroutine total_memory(value)
character*(32) :: key
double precision, intent(out) :: value
call lock_io()
iunit = getUnitAndOpen('/proc/self/status','r')
do
read(iunit,*,err=10,end=20) key, value
@ -64,6 +67,7 @@ subroutine total_memory(value)
20 continue
close(iunit)
value = value / (1024.d0*1024.d0)
call unlock_io()
end function
double precision function memory_of_double(n)