mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
trying to fix the casscf
This commit is contained in:
commit
c8cd161162
@ -52,7 +52,7 @@ END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_orb+n_act_orb,n_core_inact_orb+n_act_orb, mo_num)]
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
@ -153,4 +153,3 @@ BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -4,13 +4,13 @@
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q,pp
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,pp,d,f) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
|
||||
|
||||
@ -36,8 +36,7 @@
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
bielec_PQxx_no(list_act(p),j,k,l)=d(pp,j,k)
|
||||
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -54,9 +53,8 @@
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,list_act(p),k,l)=d(pp,j,k)
|
||||
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -83,10 +81,9 @@
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,pp)
|
||||
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -110,10 +107,9 @@
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,pp)
|
||||
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -133,11 +129,11 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inac
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q,pp
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,pp,d,f) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
|
||||
|
||||
@ -163,8 +159,7 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inac
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
bielec_PxxQ_no(list_act(p),k,l,j)=d(pp,k,l)
|
||||
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -193,8 +188,7 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inac
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(pp,j,l)
|
||||
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -221,10 +215,9 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inac
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,pp)
|
||||
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -248,10 +241,9 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inac
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,pp)
|
||||
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -269,11 +261,11 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q,pp
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,pp,d,f) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
|
||||
|
||||
@ -298,8 +290,7 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
bielecCI_no(p,j,k,l)=d(pp,j,k)
|
||||
bielecCI_no(p,j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -316,9 +307,8 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,p,k,l)=d(pp,j,k)
|
||||
bielecCI_no(j,p,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -337,10 +327,9 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,p,l)=d(j,k,pp)
|
||||
bielecCI_no(j,k,p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -363,10 +352,9 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,l,list_act(p))=d(j,k,pp)
|
||||
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
@ -80,8 +80,45 @@ program casscf
|
||||
endif
|
||||
read_wf = .False.
|
||||
touch read_wf
|
||||
pt2_max = 0.015d0
|
||||
pt2_max = 0.0d0
|
||||
touch pt2_max
|
||||
call run_cipsi_scf
|
||||
! call run_cipsi_scf
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
double precision :: energy_old, energy
|
||||
logical :: converged
|
||||
integer :: iteration
|
||||
converged = .False.
|
||||
|
||||
energy = 0.d0
|
||||
mo_label = "MCSCF"
|
||||
iteration = 1
|
||||
do while (.not.converged)
|
||||
call run_stochastic_cipsi
|
||||
energy_old = energy
|
||||
energy = eone+etwo+ecore
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration')
|
||||
call write_double(6,energy,'CAS-SCF energy')
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement')
|
||||
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
! pt2_max = dabs(energy_improvement / pt2_relative_error)
|
||||
|
||||
mo_coef = NewOrbs
|
||||
call save_mos
|
||||
iteration += 1
|
||||
N_det = N_det/2
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
read_wf = .True.
|
||||
call clear_mo_map
|
||||
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
|
||||
|
||||
enddo
|
||||
|
||||
end
|
||||
|
@ -25,7 +25,8 @@ subroutine cisd_guess_wf
|
||||
generators_type = "HF"
|
||||
touch generators_type
|
||||
call run_cisd
|
||||
touch N_det psi_coef psi_det psi_coef_sorted psi_det_sorted
|
||||
touch N_det psi_coef psi_det psi_coef_sorted psi_det_sorted psi_det_sorted_order psi_average_norm_contrib_sorted
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -5,8 +5,9 @@ program print_2rdm
|
||||
!
|
||||
! useful to test the active part of the spin trace 2 rdms
|
||||
END_DOC
|
||||
no_vvvv_integrals = .True.
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch read_wf no_vvvv_integrals
|
||||
call routine
|
||||
end
|
||||
|
||||
@ -52,4 +53,5 @@ subroutine routine
|
||||
print*,'accu = ',accu(1)
|
||||
print*,'psi_energy_two_e = ',psi_energy_two_e
|
||||
|
||||
print *, psi_energy_with_nucl_rep
|
||||
end
|
||||
|
@ -189,7 +189,7 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
@ -203,9 +203,14 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
indx=1
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
@ -214,31 +219,31 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(indx,jndx)=hessmat_itja(i,t,j,a)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(indx,jndx)=hessmat_itua(i,t,u,a)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
indx+=1
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
@ -247,24 +252,25 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(indx,jndx)=hessmat_iajb(i,a,j,b)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat2(indx,jndx)=hessmat_iatb(i,a,t,b)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
indx+=1
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
do t=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
@ -273,14 +279,22 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(indx,jndx)=hessmat_taub(t,a,u,b)
|
||||
hessmat2(jndx,indx)=hessmat2(indx,jndx)
|
||||
hessmat2(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
indx+=1
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat2(indx,jndx) = hessmat2(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -522,68 +536,99 @@ real*8 function hessmat_taub(t,a,u,b)
|
||||
integer :: v3,x3
|
||||
real*8 :: term,t1,t2,t3
|
||||
|
||||
double precision,allocatable :: P0tuvx_no_t(:,:,:)
|
||||
double precision :: bielec_pqxx_no_2(n_act_orb,n_act_orb)
|
||||
double precision :: bielec_pxxq_no_2(n_act_orb,n_act_orb)
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
if (t.eq.u) then
|
||||
if (a.eq.b) then
|
||||
if (t == u) then
|
||||
if (a == b) then
|
||||
! ta/ta
|
||||
t1=occnum(tt)*Fipq(aa,aa)
|
||||
t2=0.D0
|
||||
t3=0.D0
|
||||
t1-=occnum(tt)*Fipq(tt,tt)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
t2+=P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3)
|
||||
end do
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(aa,x3,v3,aa))
|
||||
do y=1,n_act_orb
|
||||
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
t2+=(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(aa,x3,v3,aa)
|
||||
end do
|
||||
end do
|
||||
do y=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
do v=1,n_act_orb
|
||||
t3-=P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
term=t1+t2+t3
|
||||
term=t1+2.d0*(t2+t3)
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ta/tb b/=a
|
||||
term=occnum(tt)*Fipq(aa,bb)
|
||||
term=0.5d0*occnum(tt)*Fipq(aa,bb)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
term = term + P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3)
|
||||
end do
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
term= term + (P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb)
|
||||
end do
|
||||
end do
|
||||
term += term
|
||||
end if
|
||||
else
|
||||
! ta/ub t/=u
|
||||
uu=list_act(u)
|
||||
bb=list_virt(b)
|
||||
term=0.D0
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
allocate(P0tuvx_no_t(n_act_orb,n_act_orb,n_act_orb))
|
||||
P0tuvx_no_t(:,:,:) = P0tuvx_no(t,:,:,:)
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
do v=1,n_act_orb
|
||||
v3=v+n_core_inact_orb
|
||||
bielec_pqxx_no_2(v,x) = bielec_pqxx_no(aa,bb,v3,x3)
|
||||
bielec_pxxq_no_2(v,x) = bielec_pxxq_no(aa,v3,x3,bb)
|
||||
end do
|
||||
end do
|
||||
term=0.D0
|
||||
do x=1,n_act_orb
|
||||
do v=1,n_act_orb
|
||||
term += P0tuvx_no_t(u,v,x)*bielec_pqxx_no_2(v,x)
|
||||
term += bielec_pxxq_no_2(x,v) * (P0tuvx_no_t(x,v,u)+P0tuvx_no_t(x,u,v))
|
||||
end do
|
||||
end do
|
||||
term = 6.d0*term
|
||||
if (a.eq.b) then
|
||||
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
|
||||
do y=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
term-=P0tuvx_no_t(v,x,y)*bielecCI_no(x,y,v,uu)
|
||||
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
|
||||
end do
|
||||
end do
|
||||
@ -602,29 +647,41 @@ BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
||||
! the diagonal of the Hessian, needed for the Davidson procedure
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx
|
||||
integer :: i,t,a,indx,indx_shift
|
||||
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
|
||||
|
||||
indx=0
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,t,a,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx+=1
|
||||
indx = t + (i-1)*n_act_orb
|
||||
hessdiag(indx)=hessmat_itju(i,t,i,t)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_iajb(i,a,i,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
do t=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_taub(t,a,t,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -11,7 +11,7 @@
|
||||
end do
|
||||
|
||||
do i=1,n_act_orb
|
||||
occnum(list_act(i))=occ_act(n_act_orb-i+1)
|
||||
occnum(list_act(i))=occ_act(i)
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
@ -31,8 +31,10 @@ END_PROVIDER
|
||||
! Natural orbitals of CI
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
double precision :: Vt(n_act_orb,n_act_orb)
|
||||
|
||||
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||||
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||||
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' found occupation numbers as '
|
||||
@ -70,7 +72,7 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
BEGIN_DOC
|
||||
! 4-index transformation of 2part matrices
|
||||
END_DOC
|
||||
integer :: i,j,k,l,p,q,pp
|
||||
integer :: i,j,k,l,p,q
|
||||
real*8 :: d(n_act_orb)
|
||||
|
||||
! index per index
|
||||
@ -84,9 +86,8 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||||
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -103,9 +104,8 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||||
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -122,9 +122,8 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||||
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -141,9 +140,8 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||||
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -162,7 +160,7 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
BEGIN_DOC
|
||||
! Transformed one-e integrals
|
||||
END_DOC
|
||||
integer :: i,j, p, pp, q
|
||||
integer :: i,j, p, q
|
||||
real*8 :: d(n_act_orb)
|
||||
one_ints_no(:,:)=mo_one_e_integrals(:,:)
|
||||
|
||||
@ -172,9 +170,8 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||||
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -188,9 +185,8 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||||
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
@ -200,29 +196,36 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Rotation matrix from current MOs to the CI natural MOs
|
||||
END_DOC
|
||||
integer :: p,q
|
||||
|
||||
NatOrbsCI_mos(:,:) = 0.d0
|
||||
|
||||
do q = 1,mo_num
|
||||
NatOrbsCI_mos(q,q) = 1.d0
|
||||
enddo
|
||||
|
||||
do q = 1,n_act_orb
|
||||
do p = 1,n_act_orb
|
||||
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! FCI natural orbitals
|
||||
END_DOC
|
||||
integer :: i,j, p, pp, q
|
||||
real*8 :: d(n_act_orb)
|
||||
|
||||
NatOrbsFCI(:,:)=mo_coef(:,:)
|
||||
|
||||
do j=1,ao_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
pp=n_act_orb-p+1
|
||||
do q=1,n_act_orb
|
||||
d(pp)+=NatOrbsFCI(j,list_act(q))*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
NatOrbsFCI(j,list_act(p))=d(p)
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1))
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -11,24 +11,3 @@ interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_mo
|
||||
|
||||
[no_vvvv_integrals]
|
||||
type: logical
|
||||
doc: If `True`, computes all integrals except for the integrals having 4 virtual indices
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvvv_integrals
|
||||
|
||||
[no_ivvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual indices and 1 belonging to the core inactive active orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_ivvv_integrals
|
||||
|
||||
[no_vvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvv_integrals
|
||||
|
||||
|
180
src/mo_two_e_ints/four_idx_novvvv.irp.f
Normal file
180
src/mo_two_e_ints/four_idx_novvvv.irp.f
Normal file
@ -0,0 +1,180 @@
|
||||
BEGIN_PROVIDER [ logical, no_vvvv_integrals ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If `True`, computes all integrals except for the integrals having 3 or 4 virtual indices
|
||||
END_DOC
|
||||
|
||||
no_vvvv_integrals = .False.
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_coef_novirt, (ao_num,n_core_inact_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO coefficients without virtual MOs
|
||||
END_DOC
|
||||
integer :: j,jj
|
||||
|
||||
do j=1,n_core_inact_act_orb
|
||||
jj = list_core_inact_act(j)
|
||||
mo_coef_novirt(:,j) = mo_coef(:,jj)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ao_to_mo_novirt(A_ao,LDA_ao,A_mo,LDA_mo)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
|
||||
!
|
||||
! $C^\dagger.A_{ao}.C$
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA_ao,LDA_mo
|
||||
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
|
||||
double precision, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
|
||||
double precision, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num,n_core_inact_act_orb) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
|
||||
call dgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
|
||||
1.d0, A_ao,LDA_ao, &
|
||||
mo_coef_novirt, size(mo_coef_novirt,1), &
|
||||
0.d0, T, size(T,1))
|
||||
|
||||
call dgemm('T','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
|
||||
1.d0, mo_coef_novirt,size(mo_coef_novirt,1), &
|
||||
T, ao_num, &
|
||||
0.d0, A_mo, size(A_mo,1))
|
||||
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
|
||||
subroutine four_idx_novvvv
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Retransform MO integrals for next CAS-SCF step
|
||||
END_DOC
|
||||
integer :: i,j,k,l,n_integrals
|
||||
double precision, allocatable :: f(:,:,:), f2(:,:,:), d(:,:), T(:,:,:,:), T2(:,:,:,:)
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
integer(key_kind), allocatable :: idx(:)
|
||||
real(integral_kind), allocatable :: values(:)
|
||||
|
||||
integer :: p,q,r,s
|
||||
double precision :: c
|
||||
allocate( T(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) , &
|
||||
T2(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) )
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(mo_num,ao_num,T,n_core_inact_act_orb, mo_coef_transp, &
|
||||
!$OMP mo_integrals_threshold,mo_coef,mo_integrals_map, &
|
||||
!$OMP list_core_inact_act,T2,ao_integrals_map) &
|
||||
!$OMP PRIVATE(i,j,k,l,p,q,r,s,idx,values,n_integrals, &
|
||||
!$OMP f,f2,d,c)
|
||||
allocate(f(ao_num,ao_num,ao_num), f2(ao_num,ao_num,ao_num), d(mo_num,mo_num), &
|
||||
idx(mo_num*mo_num), values(mo_num*mo_num) )
|
||||
|
||||
! <aa|vv>
|
||||
!$OMP DO
|
||||
do s=1,ao_num
|
||||
do r=1,ao_num
|
||||
do q=1,ao_num
|
||||
do p=1,r
|
||||
f (p,q,r) = get_ao_two_e_integral(p,q,r,s,ao_integrals_map)
|
||||
f (r,q,p) = f(p,q,r)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do r=1,ao_num
|
||||
do q=1,ao_num
|
||||
do p=1,ao_num
|
||||
f2(p,q,r) = f(p,r,q)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! f (p,q,r) = <pq|rs>
|
||||
! f2(p,q,r) = <pr|qs>
|
||||
|
||||
do r=1,ao_num
|
||||
call ao_to_mo_novirt(f (1,1,r),size(f ,1),T (1,1,r,s),size(T,1))
|
||||
call ao_to_mo_novirt(f2(1,1,r),size(f2,1),T2(1,1,r,s),size(T,1))
|
||||
enddo
|
||||
! T (i,j,p,q) = <ij|rs>
|
||||
! T2(i,j,p,q) = <ir|js>
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do j=1,n_core_inact_act_orb
|
||||
do i=1,n_core_inact_act_orb
|
||||
do s=1,ao_num
|
||||
do r=1,ao_num
|
||||
f (r,s,1) = T (i,j,r,s)
|
||||
f2(r,s,1) = T2(i,j,r,s)
|
||||
enddo
|
||||
enddo
|
||||
call ao_to_mo(f ,size(f ,1),d,size(d,1))
|
||||
n_integrals = 0
|
||||
do l=1,mo_num
|
||||
do k=1,mo_num
|
||||
n_integrals+=1
|
||||
call two_e_integrals_index(list_core_inact_act(i),list_core_inact_act(j),k,l,idx(n_integrals))
|
||||
values(n_integrals) = d(k,l)
|
||||
enddo
|
||||
enddo
|
||||
call map_append(mo_integrals_map, idx, values, n_integrals)
|
||||
|
||||
call ao_to_mo(f2,size(f2,1),d,size(d,1))
|
||||
n_integrals = 0
|
||||
do l=1,mo_num
|
||||
do k=1,mo_num
|
||||
n_integrals+=1
|
||||
call two_e_integrals_index(list_core_inact_act(i),k,list_core_inact_act(j),l,idx(n_integrals))
|
||||
values(n_integrals) = d(k,l)
|
||||
enddo
|
||||
enddo
|
||||
call map_append(mo_integrals_map, idx, values, n_integrals)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(f,f2,d,idx,values)
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(T,T2)
|
||||
|
||||
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
call map_shrink(mo_integrals_map,real(mo_integrals_threshold,integral_kind))
|
||||
|
||||
end
|
||||
|
||||
subroutine four_idx_novvvv2
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer :: i
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
|
||||
print*, '<ix|ix>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = full_ijkl_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = full_ijkl_bitmask_4(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
print*, '<ii|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
end
|
@ -22,16 +22,13 @@ end
|
||||
BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
use map_module
|
||||
implicit none
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer(bit_kind) :: mask_ijk(N_int,3)
|
||||
|
||||
BEGIN_DOC
|
||||
! If True, the map of MO two-electron integrals is provided
|
||||
END_DOC
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer(bit_kind) :: mask_ijk(N_int,3)
|
||||
double precision :: cpu_1, cpu_2, wall_1, wall_2
|
||||
|
||||
! The following line avoids a subsequent crash when the memory used is more
|
||||
! than half of the virtual memory, due to a fork in zcat when reading arrays
|
||||
! with EZFIO
|
||||
PROVIDE mo_class
|
||||
|
||||
mo_two_e_integrals_in_map = .True.
|
||||
@ -49,106 +46,28 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
print *, '---------------------------------'
|
||||
print *, ''
|
||||
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
if(no_vvvv_integrals)then
|
||||
integer :: i,j,k,l
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 4
|
||||
! <ii|ii>
|
||||
print*, ''
|
||||
print*, '<ii|ii>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 2 (virt) ^2
|
||||
! <iv|iv> = J_iv
|
||||
print*, ''
|
||||
print*, '<iv|iv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
! (core+inact+act) ^ 2 (virt) ^2
|
||||
! <ii|vv> = (iv|iv)
|
||||
print*, ''
|
||||
print*, '<ii|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
|
||||
if(.not.no_vvv_integrals)then
|
||||
print*, ''
|
||||
print*, '<rv|sv> and <rv|vs>'
|
||||
do i = 1,N_int
|
||||
mask_ijk(i,1) = virt_bitmask(i,1)
|
||||
mask_ijk(i,2) = virt_bitmask(i,1)
|
||||
mask_ijk(i,3) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map_three_indices(mask_ijk)
|
||||
endif
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 3 (virt) ^1
|
||||
! <iv|ii>
|
||||
print*, ''
|
||||
print*, '<iv|ii>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 1 (virt) ^3
|
||||
! <iv|vv>
|
||||
if(.not.no_ivvv_integrals)then
|
||||
print*, ''
|
||||
print*, '<iv|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map_no_exit_34(mask_ijkl)
|
||||
endif
|
||||
|
||||
call four_idx_novvvv
|
||||
else
|
||||
call add_integrals_to_map(full_ijkl_bitmask_4)
|
||||
|
||||
! call four_index_transform_zmq(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
!
|
||||
! call four_index_transform_block(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
!
|
||||
! call four_index_transform(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
|
||||
integer*8 :: get_mo_map_size, mo_map_size
|
||||
mo_map_size = get_mo_map_size()
|
||||
|
||||
print*,'Molecular integrals provided'
|
||||
endif
|
||||
|
||||
call wall_time(wall_2)
|
||||
call cpu_time(cpu_2)
|
||||
|
||||
integer*8 :: get_mo_map_size, mo_map_size
|
||||
mo_map_size = get_mo_map_size()
|
||||
|
||||
double precision, external :: map_mb
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
if (write_mo_two_e_integrals.and.mpi_master) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
@ -185,7 +104,7 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
integer :: size_buffer
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
double precision :: map_mb
|
||||
double precision, external :: map_mb
|
||||
|
||||
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
|
||||
integer :: i2,i3,i4
|
||||
@ -201,10 +120,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
|
||||
character*(2048) :: output(1)
|
||||
print *, 'i'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,1), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,1))
|
||||
@ -213,9 +128,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'j'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,2), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,2))
|
||||
@ -224,9 +136,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'k'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,3), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,3))
|
||||
@ -235,9 +144,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'l'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,4), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,4))
|
||||
@ -247,14 +153,12 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
endif
|
||||
|
||||
size_buffer = min(ao_num*ao_num*ao_num,16000000)
|
||||
print*, 'Providing the molecular integrals '
|
||||
print*, 'Buffers : ', 8.*(mo_num*(n_j)*(n_k+1) + mo_num+&
|
||||
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
|
||||
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
double precision :: accu_bis
|
||||
accu_bis = 0.d0
|
||||
call wall_time(wall_1)
|
||||
|
||||
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
|
||||
!$OMP two_e_tmp_0_idx, two_e_tmp_0, two_e_tmp_1,two_e_tmp_2,two_e_tmp_3,&
|
||||
@ -452,12 +356,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
deallocate(list_ijkl)
|
||||
|
||||
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
end
|
||||
|
||||
|
||||
@ -504,10 +402,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
call bitstring_to_list( mask_ijk(1,1), list_ijkl(1,1), n_i, N_int )
|
||||
call bitstring_to_list( mask_ijk(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijk(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
character*(2048) :: output(1)
|
||||
print*, 'i'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,1), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,1))
|
||||
@ -516,9 +410,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'j'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,2), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,2))
|
||||
@ -527,9 +418,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'k'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,3), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,3))
|
||||
|
Loading…
Reference in New Issue
Block a user