mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 04:16:14 +01:00
Fixed Conf
This commit is contained in:
commit
c731e5d627
@ -156,6 +156,53 @@ end function overlap_gauss_r12_ao
|
||||
|
||||
! --
|
||||
|
||||
double precision function overlap_abs_gauss_r12_ao(D_center, delta, i, j)
|
||||
|
||||
BEGIN_DOC
|
||||
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i, j
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
|
||||
integer :: power_A(3), power_B(3), l, k
|
||||
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
||||
|
||||
double precision, external :: overlap_abs_gauss_r12
|
||||
|
||||
overlap_abs_gauss_r12_ao = 0.d0
|
||||
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12) then
|
||||
return
|
||||
endif
|
||||
|
||||
power_A(1:3) = ao_power(i,1:3)
|
||||
power_B(1:3) = ao_power(j,1:3)
|
||||
|
||||
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
||||
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp (l,i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||
|
||||
do k = 1, ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||
|
||||
if(dabs(coef) .lt. 1d-12) cycle
|
||||
|
||||
analytical_j = overlap_abs_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
||||
|
||||
overlap_abs_gauss_r12_ao += dabs(coef * analytical_j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end function overlap_gauss_r12_ao
|
||||
|
||||
! --
|
||||
|
||||
subroutine overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
|
@ -1,4 +1,396 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision :: int_gauss,dsqpi_3_2,int_j1b
|
||||
double precision :: factor_ij_1s,beta_ij,center_ij_1s(3),sq_pi_3_2
|
||||
sq_pi_3_2 = (dacos(-1.d0))**(3/2)
|
||||
|
||||
provide mu_erf final_grid_points_transp j1b_pen List_comb_thr_b3_coef
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2_test(:,:,:) = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_gauss,int_j1b,factor_ij_1s,beta_ij,center_ij_1s) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points,List_comb_thr_b3_size,&
|
||||
!$OMP final_grid_points_transp, ng_fit_jast, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
|
||||
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_j1b2_test, ao_abs_comb_b3_j1b,&
|
||||
!$OMP ao_overlap_abs,sq_pi_3_2)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i_1s = 1, List_comb_thr_b3_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
!DIR$ FORCEINLINE
|
||||
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
! if(dabs(coef_fit*factor_ij_1s*int_j1b).lt.1.d-10)cycle ! old version
|
||||
if(dabs(coef_fit*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-3/2)).lt.1.d-10)cycle
|
||||
|
||||
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
|
||||
! expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
int_gauss = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) += coef_fit * int_gauss
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao_num, n_points_final_grid)]
|
||||
!
|
||||
! BEGIN_DOC
|
||||
! !
|
||||
! ! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
|
||||
! !
|
||||
! END_DOC
|
||||
!
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, allocatable :: int_fit_v(:),big_array(:,:,:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
double precision :: int_j1b
|
||||
big_array(:,:,:) = 0.d0
|
||||
allocate(big_array(n_points_final_grid,ao_num, ao_num))
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_j1b) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size,&
|
||||
!$OMP final_grid_points_transp, ng_fit_jast, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
|
||||
!$OMP List_comb_thr_b3_cent, big_array,&
|
||||
!$OMP ao_abs_comb_b3_j1b,ao_overlap_abs)
|
||||
!
|
||||
allocate(int_fit_v(n_points_final_grid))
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i_1s = 1, List_comb_thr_b3_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
! if(dabs(coef)*dabs(int_j1b).lt.1.d-15)cycle
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, size(final_grid_points_transp,1),&
|
||||
expo_fit, i, j, int_fit_v, size(int_fit_v,1),n_points_final_grid)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
big_array(ipoint,j,i) += coef_fit * int_fit_v(ipoint)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(int_fit_v)
|
||||
!$OMP END PARALLEL
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
int2_grad1u2_grad2u2_j1b2_test_v(j,i,ipoint) = big_array(ipoint,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
int2_grad1u2_grad2u2_j1b2_test_v(j,i,ipoint) = big_array(ipoint,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test_v', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), int_fit, expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3), tmp
|
||||
double precision :: wall0, wall1,int_j1b
|
||||
|
||||
double precision, external :: overlap_gauss_r12_ao
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision :: factor_ij_1s,beta_ij,center_ij_1s(3),sq_pi_3_2
|
||||
sq_pi_3_2 = (dacos(-1.d0))**(3/2)
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_u2_j1b2_test = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp, int_j1b,factor_ij_1s,beta_ij,center_ij_1s) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo,sq_pi_3_2, &
|
||||
!$OMP List_comb_thr_b3_cent, int2_u2_j1b2_test,ao_abs_comb_b3_j1b)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
|
||||
tmp = 0.d0
|
||||
do i_1s = 1, List_comb_thr_b3_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_x_2(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_x_2(i_fit)
|
||||
!DIR$ FORCEINLINE
|
||||
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
|
||||
! if(dabs(coef_fit*coef*factor_ij_1s*int_j1b).lt.1.d-10)cycle ! old version
|
||||
if(dabs(coef_fit*coef*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-3/2)).lt.1.d-10)cycle
|
||||
|
||||
! ---
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
tmp += coef * coef_fit * int_fit
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
enddo
|
||||
|
||||
int2_u2_j1b2_test(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
int2_u2_j1b2_test(j,i,ipoint) = int2_u2_j1b2_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_u2_j1b2_test', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (3, ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), int_fit(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3), dist
|
||||
double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, coef_tmp
|
||||
double precision :: tmp_x, tmp_y, tmp_z, int_j1b
|
||||
double precision :: wall0, wall1, sq_pi_3_2,sq_alpha
|
||||
sq_pi_3_2 = dacos(-1.D0)**(3/2)
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_u_grad1u_x_j1b2_test = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
||||
!$OMP tmp_x, tmp_y, tmp_z,int_j1b,sq_alpha) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
|
||||
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_x_j1b2_test,ao_abs_comb_b3_j1b,sq_pi_3_2)
|
||||
!$OMP DO
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
tmp_x = 0.d0
|
||||
tmp_y = 0.d0
|
||||
tmp_z = 0.d0
|
||||
do i_1s = 1, List_comb_thr_b3_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||
|
||||
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
||||
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||
|
||||
alpha_1s = beta + expo_fit
|
||||
alpha_1s_inv = 1.d0 / alpha_1s
|
||||
|
||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
sq_alpha = alpha_1s_inv * dsqrt(alpha_1s_inv)
|
||||
! if(dabs(coef_tmp*int_j1b) .lt. 1d-10) cycle ! old version
|
||||
if(dabs(coef_tmp*int_j1b*sq_pi_3_2*sq_alpha) .lt. 1d-10) cycle
|
||||
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
||||
|
||||
tmp_x += coef_tmp * int_fit(1)
|
||||
tmp_y += coef_tmp * int_fit(2)
|
||||
tmp_z += coef_tmp * int_fit(3)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
enddo
|
||||
|
||||
int2_u_grad1u_x_j1b2_test(1,j,i,ipoint) = tmp_x
|
||||
int2_u_grad1u_x_j1b2_test(2,j,i,ipoint) = tmp_y
|
||||
int2_u_grad1u_x_j1b2_test(3,j,i,ipoint) = tmp_z
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
int2_u_grad1u_x_j1b2_test(1,j,i,ipoint) = int2_u_grad1u_x_j1b2_test(1,i,j,ipoint)
|
||||
int2_u_grad1u_x_j1b2_test(2,j,i,ipoint) = int2_u_grad1u_x_j1b2_test(2,i,j,ipoint)
|
||||
int2_u_grad1u_x_j1b2_test(3,j,i,ipoint) = int2_u_grad1u_x_j1b2_test(3,i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_u_grad1u_x_j1b2_test', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
@ -30,7 +422,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
|
||||
!$OMP beta_ij,center_ij_1s,factor_ij_1s, &
|
||||
!$OMP int_j1b,alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_b3_size_thr, &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP ao_prod_dist_grid, ao_prod_sigma, ao_overlap_abs_grid,ao_prod_center,dsqpi_3_2, &
|
||||
@ -46,7 +438,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
|
||||
tmp = 0.d0
|
||||
do i_1s = 1, List_comb_b3_size_thr(j,i)
|
||||
do i_1s = 1, List_comb_thr_b3_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
@ -63,7 +455,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
|
||||
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
|
||||
! if(factor_ij_1s*dabs(coef*int_j1b)*dsqpi_3_2*beta_ij**(-3/2).lt.1.d-15)cycle
|
||||
if(factor_ij_1s*dabs(coef*int_j1b)*dsqpi_3_2*beta_ij**(-3/2).lt.1.d-15)cycle
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||
|
||||
alpha_1s = beta + expo_fit
|
||||
@ -104,181 +496,3 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_no_v, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision :: factor_ij_1s,beta_ij,center_ij_1s(3),int_j1b,int_gauss,dsqpi_3_2
|
||||
dsqpi_3_2 = (dacos(-1.d0))**(3/2)
|
||||
|
||||
provide mu_erf final_grid_points_transp j1b_pen List_comb_thr_b3_coef
|
||||
call wall_time(wall0)
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2_test_no_v(:,:,:) = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_gauss,int_j1b,factor_ij_1s,beta_ij,center_ij_1s) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points,List_comb_b3_size_thr,&
|
||||
!$OMP final_grid_points_transp, ng_fit_jast, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
|
||||
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_j1b2_test_no_v, ao_abs_comb_b3_j1b,&
|
||||
!$OMP ao_overlap_abs,dsqpi_3_2)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i_1s = 1, List_comb_b3_size_thr(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
! if(dabs(coef)*dabs(int_j1b).lt.1.d-15)cycle
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
! call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
! if(dabs(coef_fit)*factor_ij_1s*dabs(int_j1b).lt.1.d-15)cycle
|
||||
|
||||
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
|
||||
! expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
int_gauss = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint) += coef_fit * int_gauss
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2_test_no_v(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test_no_v', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
|
||||
!
|
||||
! BEGIN_DOC
|
||||
! !
|
||||
! ! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
|
||||
! !
|
||||
! END_DOC
|
||||
!
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s, i_fit
|
||||
double precision :: r(3), expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
double precision :: int_j1b
|
||||
int2_grad1u2_grad2u2_j1b2_test(:,:,:) = 0.d0
|
||||
!
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_j1b) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_b3_size_thr,&
|
||||
!$OMP final_grid_points_transp, ng_fit_jast, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
|
||||
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_j1b2_test,&
|
||||
!$OMP ao_abs_comb_b3_j1b,ao_overlap_abs)
|
||||
!
|
||||
allocate(int_fit_v(n_points_final_grid))
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i_1s = 1, List_comb_b3_size_thr(j,i)
|
||||
|
||||
coef = List_comb_thr_b3_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b3_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
|
||||
! if(dabs(coef)*dabs(int_j1b).lt.1.d-15)cycle
|
||||
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
|
||||
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, size(final_grid_points_transp,1),&
|
||||
expo_fit, i, j, int_fit_v, size(int_fit_v,1),n_points_final_grid)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(int_fit_v)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -51,7 +51,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
|
||||
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
|
||||
tmp += -0.25d0 * coef_fit * int_fit
|
||||
if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
|
||||
|
||||
! ---
|
||||
|
||||
@ -143,7 +143,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
||||
|
||||
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
|
||||
tmp += coef_fit * int_fit
|
||||
if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
! if(dabs(coef_fit*int_fit) .lt. 1d-12) cycle
|
||||
|
||||
! ---
|
||||
|
||||
@ -241,7 +241,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
tmp_x += coef_fit * int_fit(1)
|
||||
tmp_y += coef_fit * int_fit(2)
|
||||
tmp_z += coef_fit * int_fit(3)
|
||||
if( (dabs(int_fit(1)) + dabs(int_fit(2)) + dabs(int_fit(3))) .lt. 3d-10 ) cycle
|
||||
! if( dabs(coef_fit)*(dabs(int_fit(1)) + dabs(int_fit(2)) + dabs(int_fit(3))) .lt. 3d-10 ) cycle
|
||||
|
||||
! ---
|
||||
|
||||
@ -265,7 +265,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||
! if(dabs(coef_tmp) .lt. 1d-12) cycle
|
||||
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
||||
|
||||
@ -351,7 +351,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
! ---
|
||||
|
||||
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
|
||||
! if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
! if(dabs(coef_fit)*dabs(int_fit) .lt. 1d-12) cycle
|
||||
|
||||
tmp += coef_fit * int_fit
|
||||
|
||||
@ -375,9 +375,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||
|
||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||
! if(expo_coef_1s .gt. 80.d0) cycle
|
||||
if(expo_coef_1s .gt. 80.d0) cycle
|
||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||
! if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||
if(dabs(coef_tmp) .lt. 1d-12) cycle
|
||||
|
||||
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
|
||||
|
||||
|
@ -25,7 +25,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp, int_j1b)&
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_b2_size_thr, final_grid_points, &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points, &
|
||||
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent,ao_abs_comb_b2_j1b, &
|
||||
!$OMP v_ij_erf_rk_cst_mu_j1b_test, mu_erf, &
|
||||
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
|
||||
@ -41,7 +41,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
|
||||
|
||||
tmp = 0.d0
|
||||
do i_1s = 1, List_comb_b2_size_thr(j,i)
|
||||
do i_1s = 1, List_comb_thr_b2_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b2_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b2_expo (i_1s,j,i)
|
||||
@ -50,7 +50,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
|
||||
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
|
||||
|
||||
! TODO :: cycle on the 1 - erf(mur12)
|
||||
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
|
||||
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
|
||||
|
||||
@ -94,9 +94,9 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_tmp_j1b(1,j,i,ipoint)
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_tmp_j1b(2,j,i,ipoint)
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_tmp_j1b(3,j,i,ipoint)
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_tmp_j1b_test(1,j,i,ipoint)
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_tmp_j1b_test(2,j,i,ipoint)
|
||||
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_tmp_j1b_test(3,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -119,22 +119,23 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b_test, (3, ao_num
|
||||
double precision :: coef, beta, B_center(3), r(3), ints(3), ints_coulomb(3)
|
||||
double precision :: tmp_x, tmp_y, tmp_z
|
||||
double precision :: wall0, wall1
|
||||
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2,int_j1b
|
||||
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2,int_j1b,factor_ij_1s,beta_ij,center_ij_1s
|
||||
dsqpi_3_2 = (dacos(-1.d0))**(3/2)
|
||||
|
||||
provide expo_erfc_mu_gauss ao_prod_sigma ao_prod_center
|
||||
call wall_time(wall0)
|
||||
|
||||
x_v_ij_erf_rk_cst_mu_tmp_j1b_test = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
|
||||
!$OMP int_j1b, tmp_x, tmp_y, tmp_z) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_b2_size_thr, final_grid_points,&
|
||||
!$OMP int_j1b, tmp_x, tmp_y, tmp_z,factor_ij_1s,beta_ij,center_ij_1s) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points,&
|
||||
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent, &
|
||||
!$OMP x_v_ij_erf_rk_cst_mu_tmp_j1b_test, mu_erf,ao_abs_comb_b2_j1b, &
|
||||
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
|
||||
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma)
|
||||
! !$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,expo_erfc_mu_gauss)
|
||||
!$OMP DO
|
||||
!do ipoint = 1, 10
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
@ -142,12 +143,12 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b_test, (3, ao_num
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-10)cycle
|
||||
|
||||
tmp_x = 0.d0
|
||||
tmp_y = 0.d0
|
||||
tmp_z = 0.d0
|
||||
do i_1s = 1, List_comb_b2_size_thr(j,i)
|
||||
do i_1s = 1, List_comb_thr_b2_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b2_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b2_expo (i_1s,j,i)
|
||||
@ -157,6 +158,14 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b_test, (3, ao_num
|
||||
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
|
||||
|
||||
! if(ao_prod_center(1,j,i).ne.10000.d0)then
|
||||
! ! approximate 1 - erf(mu r12) by a gaussian * 10
|
||||
! !DIR$ FORCEINLINE
|
||||
! call gaussian_product(expo_erfc_mu_gauss,r, &
|
||||
! ao_prod_sigma(j,i),ao_prod_center(1,j,i), &
|
||||
! factor_ij_1s,beta_ij,center_ij_1s)
|
||||
! if(dabs(coef * factor_ij_1s*int_j1b*10.d0 * dsqpi_3_2 * beta_ij**(-3/2)).lt.1.d-10)cycle
|
||||
! endif
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
|
||||
|
||||
@ -223,7 +232,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
|
||||
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_b2_size_thr, &
|
||||
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
|
||||
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_test,ao_abs_comb_b2_j1b, &
|
||||
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
|
||||
!$OMP DO
|
||||
@ -238,7 +247,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
|
||||
|
||||
tmp = 0.d0
|
||||
do i_1s = 1, List_comb_b2_size_thr(j,i)
|
||||
do i_1s = 1, List_comb_thr_b2_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b2_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b2_expo (i_1s,j,i)
|
||||
@ -285,3 +294,96 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12) with u(mu,r12) \approx 1/2 mu e^{-2.5 * mu (r12)^2}
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s
|
||||
double precision :: r(3), int_fit, expo_fit, coef_fit
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2,int_j1b
|
||||
dsqpi_3_2 = (dacos(-1.d0))**(3/2)
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
v_ij_u_cst_mu_j1b_ng_1_test = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
|
||||
!$OMP beta_ij_u, factor_ij_1s_u, center_ij_1s_u, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp,coeftot,int_j1b) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, &
|
||||
!$OMP final_grid_points, expo_good_j_mu_1gauss,coef_good_j_mu_1gauss, &
|
||||
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
|
||||
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
|
||||
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_ng_1_test,ao_abs_comb_b2_j1b, &
|
||||
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
|
||||
!$OMP DO
|
||||
!do ipoint = 1, 10
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
|
||||
|
||||
tmp = 0.d0
|
||||
do i_1s = 1, List_comb_thr_b2_size(j,i)
|
||||
|
||||
coef = List_comb_thr_b2_coef (i_1s,j,i)
|
||||
beta = List_comb_thr_b2_expo (i_1s,j,i)
|
||||
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
|
||||
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
|
||||
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
|
||||
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
|
||||
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
|
||||
|
||||
! do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_good_j_mu_1gauss
|
||||
coef_fit = 1.d0
|
||||
coeftot = coef * coef_fit
|
||||
if(dabs(coeftot).lt.1.d-15)cycle
|
||||
double precision :: beta_ij_u, factor_ij_1s_u, center_ij_1s_u(3),coeftot
|
||||
call gaussian_product(beta,B_center,expo_fit,r,factor_ij_1s_u,beta_ij_u,center_ij_1s_u)
|
||||
if(factor_ij_1s_u*ao_overlap_abs_grid(j,i).lt.1.d-15)cycle
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
|
||||
tmp += coef * coef_fit * int_fit
|
||||
! enddo
|
||||
enddo
|
||||
|
||||
v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint) = v_ij_u_cst_mu_j1b_ng_1_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for v_ij_u_cst_mu_j1b_ng_1_test', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -49,7 +49,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
|
||||
|
||||
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
|
||||
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
|
||||
if(dabs(int_mu - int_coulomb) .lt. 1d-10) cycle
|
||||
! if(dabs(coef)*dabs(int_mu - int_coulomb) .lt. 1d-12) cycle
|
||||
|
||||
tmp += coef * (int_mu - int_coulomb)
|
||||
|
||||
@ -169,7 +169,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
|
||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
|
||||
|
||||
if( (dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
|
||||
! if( dabs(coef)*(dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
|
||||
|
||||
tmp_x += coef * (ints(1) - ints_coulomb(1))
|
||||
tmp_y += coef * (ints(2) - ints_coulomb(2))
|
||||
@ -277,7 +277,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
|
||||
B_center(3) = List_all_comb_b2_cent(3,1)
|
||||
|
||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
||||
if(dabs(int_fit) .lt. 1d-10) cycle
|
||||
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
|
||||
|
||||
tmp += coef * coef_fit * int_fit
|
||||
|
||||
|
59
src/ao_many_one_e_ints/list_grid.irp.f
Normal file
59
src/ao_many_one_e_ints/list_grid.irp.f
Normal file
@ -0,0 +1,59 @@
|
||||
BEGIN_PROVIDER [ integer, n_pts_grid_ao_prod, (ao_num, ao_num)]
|
||||
&BEGIN_PROVIDER [ integer, max_n_pts_grid_ao_prod]
|
||||
implicit none
|
||||
integer :: i,j,ipoint
|
||||
double precision :: overlap, r(3),thr, overlap_abs_gauss_r12_ao,overlap_gauss_r12_ao
|
||||
double precision :: sigma,dist,center_ij(3),fact_gauss, alpha, center(3)
|
||||
n_pts_grid_ao_prod = 0
|
||||
thr = 1.d-11
|
||||
print*,' expo_good_j_mu_1gauss = ',expo_good_j_mu_1gauss
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, r, overlap, thr,fact_gauss, alpha, center,dist,sigma,center_ij) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, ao_overlap_abs_grid,n_pts_grid_ao_prod,expo_good_j_mu_1gauss,&
|
||||
!$OMP final_grid_points,ao_prod_center,ao_prod_sigma,ao_nucl)
|
||||
!$OMP DO
|
||||
do i = 1, ao_num
|
||||
! do i = 3,3
|
||||
do j = 1, ao_num
|
||||
! do i = 22,22
|
||||
! do j = 9,9
|
||||
center_ij(1:3) = ao_prod_center(1:3,j,i)
|
||||
sigma = ao_prod_sigma(j,i)
|
||||
sigma *= sigma
|
||||
sigma = 0.5d0 /sigma
|
||||
! if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-10)cycle
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
dist = (center_ij(1) - r(1))*(center_ij(1) - r(1))
|
||||
dist += (center_ij(2) - r(2))*(center_ij(2) - r(2))
|
||||
dist += (center_ij(3) - r(3))*(center_ij(3) - r(3))
|
||||
dist = dsqrt(dist)
|
||||
call gaussian_product(sigma, center_ij, expo_good_j_mu_1gauss, r, fact_gauss, alpha, center)
|
||||
! print*,''
|
||||
! print*,j,i,ao_overlap_abs_grid(j,i),ao_overlap_abs(j,i)
|
||||
! print*,r
|
||||
! print*,dist,sigma
|
||||
! print*,fact_gauss
|
||||
if( fact_gauss*ao_overlap_abs_grid(j,i).lt.1.d-11)cycle
|
||||
if(ao_nucl(i) == ao_nucl(j))then
|
||||
overlap = overlap_abs_gauss_r12_ao(r, expo_good_j_mu_1gauss, i, j)
|
||||
else
|
||||
overlap = overlap_gauss_r12_ao(r, expo_good_j_mu_1gauss, i, j)
|
||||
endif
|
||||
! print*,overlap
|
||||
if(dabs(overlap).lt.thr)cycle
|
||||
n_pts_grid_ao_prod(j,i) += 1
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
integer :: list(ao_num)
|
||||
do i = 1, ao_num
|
||||
list(i) = maxval(n_pts_grid_ao_prod(:,i))
|
||||
enddo
|
||||
max_n_pts_grid_ao_prod = maxval(list)
|
||||
END_PROVIDER
|
@ -1,74 +1,74 @@
|
||||
|
||||
BEGIN_PROVIDER [ integer, List_comb_b2_size_thr, (ao_num, ao_num)]
|
||||
&BEGIN_PROVIDER [ integer, max_List_comb_b2_size_thr]
|
||||
BEGIN_PROVIDER [ integer, List_comb_thr_b2_size, (ao_num, ao_num)]
|
||||
&BEGIN_PROVIDER [ integer, max_List_comb_thr_b2_size]
|
||||
implicit none
|
||||
integer :: i_1s,i,j,ipoint
|
||||
double precision :: coef,beta,center(3),int_j1b,thr
|
||||
double precision :: r(3),weight,dist
|
||||
thr = 1.d-10
|
||||
List_comb_b2_size_thr = 0
|
||||
thr = 1.d-15
|
||||
List_comb_thr_b2_size = 0
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
do i_1s = 1, List_all_comb_b2_size
|
||||
coef = List_all_comb_b2_coef (i_1s)
|
||||
if(dabs(coef).lt.1.d-10)cycle
|
||||
if(dabs(coef).lt.1.d-15)cycle
|
||||
beta = List_all_comb_b2_expo (i_1s)
|
||||
beta = max(beta,1.d-10)
|
||||
beta = max(beta,1.d-12)
|
||||
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
|
||||
int_j1b = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
r(1:3) = final_grid_points_extra(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector_extra(ipoint)
|
||||
dist = ( center(1) - r(1) )*( center(1) - r(1) )
|
||||
dist += ( center(2) - r(2) )*( center(2) - r(2) )
|
||||
dist += ( center(3) - r(3) )*( center(3) - r(3) )
|
||||
int_j1b += dabs(aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
enddo
|
||||
if(dabs(coef)*dabs(int_j1b).gt.thr)then
|
||||
List_comb_b2_size_thr(j,i) += 1
|
||||
List_comb_thr_b2_size(j,i) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
List_comb_b2_size_thr(j,i) = List_comb_b2_size_thr(i,j)
|
||||
List_comb_thr_b2_size(j,i) = List_comb_thr_b2_size(i,j)
|
||||
enddo
|
||||
enddo
|
||||
integer :: list(ao_num)
|
||||
do i = 1, ao_num
|
||||
list(i) = maxval(List_comb_b2_size_thr(:,i))
|
||||
list(i) = maxval(List_comb_thr_b2_size(:,i))
|
||||
enddo
|
||||
max_List_comb_b2_size_thr = maxval(list)
|
||||
max_List_comb_thr_b2_size = maxval(list)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, List_comb_thr_b2_coef, ( max_List_comb_b2_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_expo, ( max_List_comb_b2_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_cent, (3, max_List_comb_b2_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b2_j1b, ( max_List_comb_b2_size_thr ,ao_num, ao_num)]
|
||||
BEGIN_PROVIDER [ double precision, List_comb_thr_b2_coef, ( max_List_comb_thr_b2_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_expo, ( max_List_comb_thr_b2_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_cent, (3, max_List_comb_thr_b2_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b2_j1b, ( max_List_comb_thr_b2_size ,ao_num, ao_num)]
|
||||
implicit none
|
||||
integer :: i_1s,i,j,ipoint,icount
|
||||
double precision :: coef,beta,center(3),int_j1b,thr
|
||||
double precision :: r(3),weight,dist
|
||||
thr = 1.d-10
|
||||
thr = 1.d-15
|
||||
ao_abs_comb_b2_j1b = 10000000.d0
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
icount = 0
|
||||
do i_1s = 1, List_all_comb_b2_size
|
||||
coef = List_all_comb_b2_coef (i_1s)
|
||||
if(dabs(coef).lt.1.d-10)cycle
|
||||
if(dabs(coef).lt.1.d-12)cycle
|
||||
beta = List_all_comb_b2_expo (i_1s)
|
||||
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
|
||||
int_j1b = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
r(1:3) = final_grid_points_extra(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector_extra(ipoint)
|
||||
dist = ( center(1) - r(1) )*( center(1) - r(1) )
|
||||
dist += ( center(2) - r(2) )*( center(2) - r(2) )
|
||||
dist += ( center(3) - r(3) )*( center(3) - r(3) )
|
||||
int_j1b += dabs(aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
enddo
|
||||
if(dabs(coef)*dabs(int_j1b).gt.thr)then
|
||||
icount += 1
|
||||
@ -83,7 +83,7 @@ END_PROVIDER
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
do icount = 1, List_comb_b2_size_thr(j,i)
|
||||
do icount = 1, List_comb_thr_b2_size(j,i)
|
||||
List_comb_thr_b2_coef(icount,j,i) = List_comb_thr_b2_coef(icount,i,j)
|
||||
List_comb_thr_b2_expo(icount,j,i) = List_comb_thr_b2_expo(icount,i,j)
|
||||
List_comb_thr_b2_cent(1:3,icount,j,i) = List_comb_thr_b2_cent(1:3,icount,i,j)
|
||||
@ -94,14 +94,14 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, List_comb_b3_size_thr, (ao_num, ao_num)]
|
||||
&BEGIN_PROVIDER [ integer, max_List_comb_b3_size_thr]
|
||||
BEGIN_PROVIDER [ integer, List_comb_thr_b3_size, (ao_num, ao_num)]
|
||||
&BEGIN_PROVIDER [ integer, max_List_comb_thr_b3_size]
|
||||
implicit none
|
||||
integer :: i_1s,i,j,ipoint
|
||||
double precision :: coef,beta,center(3),int_j1b,thr
|
||||
double precision :: r(3),weight,dist
|
||||
thr = 1.d-10
|
||||
List_comb_b3_size_thr = 0
|
||||
thr = 1.d-15
|
||||
List_comb_thr_b3_size = 0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do i_1s = 1, List_all_comb_b3_size
|
||||
@ -110,43 +110,43 @@ END_PROVIDER
|
||||
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
|
||||
if(dabs(coef).lt.thr)cycle
|
||||
int_j1b = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
r(1:3) = final_grid_points_extra(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector_extra(ipoint)
|
||||
dist = ( center(1) - r(1) )*( center(1) - r(1) )
|
||||
dist += ( center(2) - r(2) )*( center(2) - r(2) )
|
||||
dist += ( center(3) - r(3) )*( center(3) - r(3) )
|
||||
int_j1b += dabs(aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
enddo
|
||||
if(dabs(coef)*dabs(int_j1b).gt.thr)then
|
||||
List_comb_b3_size_thr(j,i) += 1
|
||||
List_comb_thr_b3_size(j,i) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! do i = 1, ao_num
|
||||
! do j = 1, i-1
|
||||
! List_comb_b3_size_thr(j,i) = List_comb_b3_size_thr(i,j)
|
||||
! List_comb_thr_b3_size(j,i) = List_comb_thr_b3_size(i,j)
|
||||
! enddo
|
||||
! enddo
|
||||
integer :: list(ao_num)
|
||||
do i = 1, ao_num
|
||||
list(i) = maxval(List_comb_b3_size_thr(:,i))
|
||||
list(i) = maxval(List_comb_thr_b3_size(:,i))
|
||||
enddo
|
||||
max_List_comb_b3_size_thr = maxval(list)
|
||||
print*,'max_List_comb_b3_size_thr = ',max_List_comb_b3_size_thr
|
||||
max_List_comb_thr_b3_size = maxval(list)
|
||||
print*,'max_List_comb_thr_b3_size = ',max_List_comb_thr_b3_size
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, List_comb_thr_b3_coef, ( max_List_comb_b3_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b3_expo, ( max_List_comb_b3_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b3_cent, (3, max_List_comb_b3_size_thr,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b3_j1b, ( max_List_comb_b3_size_thr ,ao_num, ao_num)]
|
||||
BEGIN_PROVIDER [ double precision, List_comb_thr_b3_coef, ( max_List_comb_thr_b3_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b3_expo, ( max_List_comb_thr_b3_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, List_comb_thr_b3_cent, (3, max_List_comb_thr_b3_size,ao_num, ao_num )]
|
||||
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b3_j1b, ( max_List_comb_thr_b3_size ,ao_num, ao_num)]
|
||||
implicit none
|
||||
integer :: i_1s,i,j,ipoint,icount
|
||||
double precision :: coef,beta,center(3),int_j1b,thr
|
||||
double precision :: r(3),weight,dist
|
||||
thr = 1.d-10
|
||||
thr = 1.d-15
|
||||
ao_abs_comb_b3_j1b = 10000000.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
@ -154,17 +154,17 @@ END_PROVIDER
|
||||
do i_1s = 1, List_all_comb_b3_size
|
||||
coef = List_all_comb_b3_coef (i_1s)
|
||||
beta = List_all_comb_b3_expo (i_1s)
|
||||
beta = max(beta,1.d-10)
|
||||
beta = max(beta,1.d-12)
|
||||
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
|
||||
if(dabs(coef).lt.thr)cycle
|
||||
int_j1b = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
r(1:3) = final_grid_points_extra(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector_extra(ipoint)
|
||||
dist = ( center(1) - r(1) )*( center(1) - r(1) )
|
||||
dist += ( center(2) - r(2) )*( center(2) - r(2) )
|
||||
dist += ( center(3) - r(3) )*( center(3) - r(3) )
|
||||
int_j1b += dabs(aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
|
||||
enddo
|
||||
if(dabs(coef)*dabs(int_j1b).gt.thr)then
|
||||
icount += 1
|
||||
@ -179,7 +179,7 @@ END_PROVIDER
|
||||
|
||||
! do i = 1, ao_num
|
||||
! do j = 1, i-1
|
||||
! do icount = 1, List_comb_b3_size_thr(j,i)
|
||||
! do icount = 1, List_comb_thr_b3_size(j,i)
|
||||
! List_comb_thr_b3_coef(icount,j,i) = List_comb_thr_b3_coef(icount,i,j)
|
||||
! List_comb_thr_b3_expo(icount,j,i) = List_comb_thr_b3_expo(icount,i,j)
|
||||
! List_comb_thr_b3_cent(1:3,icount,j,i) = List_comb_thr_b3_cent(1:3,icount,i,j)
|
||||
|
@ -32,16 +32,17 @@ double precision function overlap_gauss_r12(D_center, delta, A_center, B_center,
|
||||
dim1 = 100
|
||||
thr = 1.d-10
|
||||
d(:) = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
overlap_gauss_r12 = 0.d0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian( A_new, A_center_new , alpha_new, fact_a_new, iorder_a_new &
|
||||
, delta, alpha, d, power_A, D_center, A_center, n_pt_max_integrals)
|
||||
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new ,&
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
if(fact_a_new.lt.thr)return
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx) .lt. thr) cycle
|
||||
coefx = A_new(lx,1)*fact_a_new
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
|
||||
do ly = 0, iorder_a_new(2)
|
||||
@ -63,9 +64,70 @@ double precision function overlap_gauss_r12(D_center, delta, A_center, B_center,
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
overlap_gauss_r12 = accu
|
||||
end
|
||||
|
||||
overlap_gauss_r12 = fact_a_new * accu
|
||||
!---
|
||||
double precision function overlap_abs_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math ::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) |(x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )|
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr,dx,lower_exp_val
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
||||
dim1=50
|
||||
lower_exp_val = 40.d0
|
||||
thr = 1.d-12
|
||||
d(:) = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
overlap_abs_gauss_r12 = 0.d0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new ,&
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
if(fact_a_new.lt.thr)return
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)*fact_a_new
|
||||
! if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_x_abs(A_center_new(1),B_center(1),alpha_new,beta,iorder_tmp(1),power_B(1),overlap_x,lower_exp_val,dx,dim1)
|
||||
call overlap_x_abs(A_center_new(2),B_center(2),alpha_new,beta,iorder_tmp(2),power_B(2),overlap_y,lower_exp_val,dx,dim1)
|
||||
call overlap_x_abs(A_center_new(3),B_center(3),alpha_new,beta,iorder_tmp(3),power_B(3),overlap_z,lower_exp_val,dx,dim1)
|
||||
accu += dabs(coefxyz * overlap_x * overlap_y * overlap_z)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
overlap_abs_gauss_r12= accu
|
||||
>>>>>>> f7e58e4a636af0ab066aa644a74ab56cb4de6041
|
||||
end
|
||||
|
||||
!---
|
||||
|
@ -1,5 +1,40 @@
|
||||
BEGIN_PROVIDER [ double precision, expo_j_xmu_1gauss ]
|
||||
&BEGIN_PROVIDER [ double precision, coef_j_xmu_1gauss ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Upper bound long range fit of F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)
|
||||
!
|
||||
! with a single gaussian.
|
||||
!
|
||||
! Such a function can be used to screen integrals with F(x).
|
||||
END_DOC
|
||||
expo_j_xmu_1gauss = 0.5d0
|
||||
coef_j_xmu_1gauss = 1.d0
|
||||
END_PROVIDER
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, expo_erfc_gauss ]
|
||||
implicit none
|
||||
expo_erfc_gauss = 1.41211d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, expo_erfc_mu_gauss ]
|
||||
implicit none
|
||||
expo_erfc_mu_gauss = expo_erfc_gauss * mu_erf * mu_erf
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, expo_good_j_mu_1gauss ]
|
||||
&BEGIN_PROVIDER [ double precision, coef_good_j_mu_1gauss ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! exponent of Gaussian in order to obtain an upper bound of J(r12,mu)
|
||||
!
|
||||
! Can be used to scree integrals with J(r12,mu)
|
||||
END_DOC
|
||||
expo_good_j_mu_1gauss = 2.D0 * mu_erf * expo_j_xmu_1gauss
|
||||
coef_good_j_mu_1gauss = 0.5d0/mu_erf * coef_j_xmu_1gauss
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -108,15 +108,27 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
|
||||
double precision :: wall0, wall1
|
||||
|
||||
call wall_time(wall0)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(1,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(2,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(3,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
if(test_cycle_tc)then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao_test(1,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao_test(2,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao_test(3,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(1,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(2,j,i,ipoint)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(3,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for int2_grad1_u12_ao_transp ', wall1 - wall0
|
||||
|
||||
|
@ -96,7 +96,6 @@ subroutine filter_not_connected(key1,key2,Nint,sze,idx)
|
||||
idx(0) = l-1
|
||||
end
|
||||
|
||||
|
||||
subroutine filter_connected(key1,key2,Nint,sze,idx)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
164
src/determinants/sparse_mat.irp.f
Normal file
164
src/determinants/sparse_mat.irp.f
Normal file
@ -0,0 +1,164 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine filter_connected_array(key1,key2,ld,Nint,sze,idx)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Filters out the determinants that are not connected by H
|
||||
!
|
||||
! returns the array idx which contains the index of the
|
||||
!
|
||||
! determinants in the array key1 that interact
|
||||
!
|
||||
! via the H operator with key2.
|
||||
!
|
||||
! idx(0) is the number of determinants that interact with key1
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint, ld,sze
|
||||
integer(bit_kind), intent(in) :: key1(Nint,2,ld)
|
||||
integer(bit_kind), intent(in) :: key2(Nint,2)
|
||||
integer, intent(out) :: idx(0:sze)
|
||||
|
||||
integer :: i,j,l
|
||||
integer :: degree_x2
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (sze >= 0)
|
||||
|
||||
l=1
|
||||
|
||||
if (Nint==1) then
|
||||
|
||||
!DIR$ LOOP COUNT (1000)
|
||||
do i=1,sze
|
||||
degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) &
|
||||
+ popcnt( xor( key1(1,2,i), key2(1,2)))
|
||||
! print*,degree_x2
|
||||
if (degree_x2 > 4) then
|
||||
cycle
|
||||
else
|
||||
idx(l) = i
|
||||
l = l+1
|
||||
endif
|
||||
enddo
|
||||
|
||||
else if (Nint==2) then
|
||||
|
||||
!DIR$ LOOP COUNT (1000)
|
||||
do i=1,sze
|
||||
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
||||
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
||||
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
||||
popcnt(xor( key1(2,2,i), key2(2,2)))
|
||||
if (degree_x2 > 4) then
|
||||
cycle
|
||||
else
|
||||
idx(l) = i
|
||||
l = l+1
|
||||
endif
|
||||
enddo
|
||||
|
||||
else if (Nint==3) then
|
||||
|
||||
!DIR$ LOOP COUNT (1000)
|
||||
do i=1,sze
|
||||
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
||||
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
||||
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
||||
popcnt(xor( key1(2,2,i), key2(2,2))) + &
|
||||
popcnt(xor( key1(3,1,i), key2(3,1))) + &
|
||||
popcnt(xor( key1(3,2,i), key2(3,2)))
|
||||
if (degree_x2 > 4) then
|
||||
cycle
|
||||
else
|
||||
idx(l) = i
|
||||
l = l+1
|
||||
endif
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
!DIR$ LOOP COUNT (1000)
|
||||
do i=1,sze
|
||||
degree_x2 = 0
|
||||
!DIR$ LOOP COUNT MIN(4)
|
||||
do j=1,Nint
|
||||
degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +&
|
||||
popcnt(xor( key1(j,2,i), key2(j,2)))
|
||||
if (degree_x2 > 4) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (degree_x2 <= 5) then
|
||||
idx(l) = i
|
||||
l = l+1
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
idx(0) = l-1
|
||||
! print*,'idx(0) = ',idx(0)
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_sparse_mat]
|
||||
&BEGIN_PROVIDER [ integer, n_connected_per_det, (N_det)]
|
||||
&BEGIN_PROVIDER [ integer, n_max_connected_per_det]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_sparse_mat = total number of connections in the CI matrix
|
||||
!
|
||||
! n_connected_per_det(i) = number of connected determinants to the determinant psi_det(1,1,i)
|
||||
!
|
||||
! n_max_connected_per_det = maximum number of connected determinants
|
||||
END_DOC
|
||||
integer, allocatable :: idx(:)
|
||||
allocate(idx(0:N_det))
|
||||
integer :: i
|
||||
n_sparse_mat = 0
|
||||
do i = 1, N_det
|
||||
call filter_connected_array(psi_det_sorted,psi_det_sorted(1,1,i),psi_det_size,N_int,N_det,idx)
|
||||
n_connected_per_det(i) = idx(0)
|
||||
n_sparse_mat += idx(0)
|
||||
enddo
|
||||
n_max_connected_per_det = maxval(n_connected_per_det)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), connected_det_per_det, (N_int,2,n_max_connected_per_det,N_det)]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), list_connected_det_per_det, (n_max_connected_per_det,N_det)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! connected_det_per_det(:,:,j,i) = jth connected determinant to the determinant psi_det(:,:,i)
|
||||
!
|
||||
! list_connected_det_per_det(j,i) = index of jth determinant in psi_det which is connected to psi_det(:,:,i)
|
||||
END_DOC
|
||||
integer, allocatable :: idx(:)
|
||||
allocate(idx(0:N_det))
|
||||
integer :: i,j
|
||||
do i = 1, N_det
|
||||
call filter_connected_array(psi_det_sorted,psi_det_sorted(1,1,i),psi_det_size,N_int,N_det,idx)
|
||||
do j = 1, idx(0)
|
||||
connected_det_per_det(1:N_int,1:2,j,i) = psi_det_sorted(1:N_int,1:2,idx(j))
|
||||
list_connected_det_per_det(j,i) = idx(j)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, sparse_h_mat, (n_max_connected_per_det, N_det)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! sparse matrix format
|
||||
!
|
||||
! sparse_h_mat(j,i) = matrix element between the jth connected determinant and psi_det(:,:,i)
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: hij
|
||||
do i = 1, N_det
|
||||
do j = 1, n_connected_per_det(i)
|
||||
call i_H_j(psi_det(1,1,i),connected_det_per_det(1,1,j,i),N_int,hij)
|
||||
sparse_h_mat(j,i) = hij
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -40,6 +40,47 @@
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_in_r_array_extra, (ao_num,n_points_extra_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_extra(i,j) = value of the ith ao on the jth grid point
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,aos_array,j) &
|
||||
!$OMP SHARED(aos_in_r_array_extra,n_points_extra_final_grid,ao_num,final_grid_points_extra)
|
||||
do i = 1, n_points_extra_final_grid
|
||||
r(1) = final_grid_points_extra(1,i)
|
||||
r(2) = final_grid_points_extra(2,i)
|
||||
r(3) = final_grid_points_extra(3,i)
|
||||
call give_all_aos_at_r(r,aos_array)
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_extra(j,i) = aos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_in_r_array_extra_transp, (n_points_extra_final_grid,ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_extra_transp(i,j) = value of the jth ao on the ith grid point
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
do i = 1, n_points_extra_final_grid
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_extra_transp(i,j) = aos_in_r_array_extra(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
|
||||
implicit none
|
||||
|
@ -1,5 +1,28 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_abs_int_grid, (ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! ao_abs_int_grid(i) = \int dr |phi_i(r) |
|
||||
END_DOC
|
||||
integer :: i,j,ipoint
|
||||
double precision :: contrib, weight,r(3)
|
||||
ao_abs_int_grid = 0.D0
|
||||
do ipoint = 1,n_points_final_grid
|
||||
r(:) = final_grid_points(:,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do i = 1, ao_num
|
||||
contrib = dabs(aos_in_r_array(i,ipoint)) * weight
|
||||
ao_abs_int_grid(i) += contrib
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_overlap_abs_grid, (ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! ao_overlap_abs_grid(j,i) = \int dr |phi_i(r) phi_j(r)|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint
|
||||
double precision :: contrib, weight,r(3)
|
||||
ao_overlap_abs_grid = 0.D0
|
||||
@ -21,7 +44,7 @@ BEGIN_PROVIDER [ double precision, ao_prod_center, (3, ao_num, ao_num)]
|
||||
BEGIN_DOC
|
||||
! ao_prod_center(1:3,j,i) = \int dr |phi_i(r) phi_j(r)| x/y/z / \int |phi_i(r) phi_j(r)|
|
||||
!
|
||||
! if \int |phi_i(r) phi_j(r)| < 1.d-15 then ao_prod_center = 0.
|
||||
! if \int |phi_i(r) phi_j(r)| < 1.d-10 then ao_prod_center = 10000.
|
||||
END_DOC
|
||||
integer :: i,j,m,ipoint
|
||||
double precision :: contrib, weight,r(3)
|
||||
@ -44,20 +67,23 @@ BEGIN_PROVIDER [ double precision, ao_prod_center, (3, ao_num, ao_num)]
|
||||
do m = 1, 3
|
||||
ao_prod_center(m,j,i) *= 1.d0/ao_overlap_abs_grid(j,i)
|
||||
enddo
|
||||
else
|
||||
do m = 1, 3
|
||||
ao_prod_center(m,j,i) = 10000.d0
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_prod_sigma, (ao_num, ao_num)]
|
||||
BEGIN_PROVIDER [ double precision, ao_prod_abs_r, (ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! ao_prod_sigma(i,j) = \int |phi_i(r) phi_j(r)| dsqrt((x - <|i|x|j|>)^2 + (y - <|i|y|j|>)^2 +(z - <|i|z|j|>)^2) / \int |phi_i(r) phi_j(r)|
|
||||
! ao_prod_abs_r(i,j) = \int |phi_i(r) phi_j(r)| dsqrt((x - <|i|x|j|>)^2 + (y - <|i|y|j|>)^2 +(z - <|i|z|j|>)^2) / \int |phi_i(r) phi_j(r)|
|
||||
!
|
||||
! gives you a precise idea of the spatial extension of the distribution phi_i(r) phi_j(r)
|
||||
END_DOC
|
||||
ao_prod_sigma = 0.d0
|
||||
ao_prod_abs_r = 0.d0
|
||||
integer :: i,j,m,ipoint
|
||||
double precision :: contrib, weight,r(3),contrib_x2
|
||||
do ipoint = 1,n_points_final_grid
|
||||
@ -71,21 +97,34 @@ BEGIN_PROVIDER [ double precision, ao_prod_sigma, (ao_num, ao_num)]
|
||||
contrib_x2 += (r(m) - ao_prod_center(m,j,i)) * (r(m) - ao_prod_center(m,j,i))
|
||||
enddo
|
||||
contrib_x2 = dsqrt(contrib_x2)
|
||||
ao_prod_sigma(j,i) += contrib * contrib_x2
|
||||
ao_prod_abs_r(j,i) += contrib * contrib_x2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
if(dabs(ao_overlap_abs_grid(j,i)).gt.1.d-10)then
|
||||
ao_prod_sigma(j,i) *= 1.d0/ao_overlap_abs_grid(j,i)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, ao_prod_sigma, (ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gaussian exponent reproducing the product |chi_i(r) chi_j(r)|
|
||||
!
|
||||
! Therefore |chi_i(r) chi_j(r)| \approx e^{-ao_prod_sigma(j,i) (r - ao_prod_center(1:3,j,i))**2}
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: pi,alpha
|
||||
pi = dacos(-1.d0)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
! if(dabs(ao_overlap_abs_grid(j,i)).gt.1.d-5)then
|
||||
alpha = 1.d0/pi * (2.d0*ao_overlap_abs_grid(j,i)/ao_prod_abs_r(j,i))**2
|
||||
ao_prod_sigma(j,i) = alpha
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_prod_dist_grid, (ao_num, ao_num, n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -290,6 +290,7 @@ BEGIN_PROVIDER [ double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]
|
||||
|
194
src/non_h_ints_mu/grad_squared_manu.irp.f
Normal file
194
src/non_h_ints_mu/grad_squared_manu.irp.f
Normal file
@ -0,0 +1,194 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, tc_grad_square_ao_test, (ao_num, ao_num, ao_num, ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! tc_grad_square_ao_test(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j, k, l
|
||||
double precision :: weight1, ao_ik_r, ao_i_r,contrib,contrib2
|
||||
double precision, allocatable :: ac_mat(:,:,:,:), bc_mat(:,:,:,:)
|
||||
double precision :: wall1, wall0
|
||||
provide u12sq_j1bsq_test u12_grad1_u12_j1b_grad1_j1b_test grad12_j12_test
|
||||
call wall_time(wall0)
|
||||
|
||||
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
|
||||
ac_mat = 0.d0
|
||||
allocate(bc_mat(ao_num,ao_num,ao_num,ao_num))
|
||||
bc_mat = 0.d0
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
contrib = u12sq_j1bsq_test(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b_test(l,j,ipoint)
|
||||
contrib2=grad12_j12_test(l,j,ipoint)
|
||||
do i = 1, ao_num
|
||||
ao_i_r = weight1 * aos_in_r_array(i,ipoint)
|
||||
|
||||
do k = 1, ao_num
|
||||
ao_ik_r = ao_i_r * aos_in_r_array(k,ipoint)
|
||||
|
||||
ac_mat(k,i,l,j) += ao_ik_r * contrib
|
||||
bc_mat(k,i,l,j) += ao_ik_r * contrib2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
tc_grad_square_ao_test(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) + bc_mat(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for tc_grad_square_ao_test',wall1 - wall0
|
||||
|
||||
deallocate(ac_mat)
|
||||
deallocate(bc_mat)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, u12sq_j1bsq_test, (ao_num, ao_num, n_points_final_grid) ]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j
|
||||
double precision :: tmp_x, tmp_y, tmp_z
|
||||
double precision :: tmp1
|
||||
double precision :: time0, time1
|
||||
|
||||
print*, ' providing u12sq_j1bsq_test ...'
|
||||
call wall_time(time0)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp_x = v_1b_grad(1,ipoint)
|
||||
tmp_y = v_1b_grad(2,ipoint)
|
||||
tmp_z = v_1b_grad(3,ipoint)
|
||||
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
u12sq_j1bsq_test(i,j,ipoint) = tmp1 * int2_u2_j1b2_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' Wall time for u12sq_j1bsq_test = ', time1 - time0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b_test, (ao_num, ao_num, n_points_final_grid) ]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j, m, igauss
|
||||
double precision :: x, y, z
|
||||
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
|
||||
double precision :: tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
|
||||
double precision :: time0, time1
|
||||
double precision, external :: overlap_gauss_r12_ao
|
||||
|
||||
provide int2_u_grad1u_x_j1b2_test
|
||||
print*, ' providing u12_grad1_u12_j1b_grad1_j1b_test ...'
|
||||
call wall_time(time0)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
x = final_grid_points(1,ipoint)
|
||||
y = final_grid_points(2,ipoint)
|
||||
z = final_grid_points(3,ipoint)
|
||||
tmp_v = v_1b (ipoint)
|
||||
tmp_x = v_1b_grad(1,ipoint)
|
||||
tmp_y = v_1b_grad(2,ipoint)
|
||||
tmp_z = v_1b_grad(3,ipoint)
|
||||
|
||||
tmp3 = tmp_v * tmp_x
|
||||
tmp4 = tmp_v * tmp_y
|
||||
tmp5 = tmp_v * tmp_z
|
||||
|
||||
tmp6 = -x * tmp3
|
||||
tmp7 = -y * tmp4
|
||||
tmp8 = -z * tmp5
|
||||
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
|
||||
tmp9 = int2_u_grad1u_j1b2_test(i,j,ipoint)
|
||||
|
||||
u12_grad1_u12_j1b_grad1_j1b_test(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2_test(1,i,j,ipoint) &
|
||||
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2_test(2,i,j,ipoint) &
|
||||
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2_test(3,i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b_test = ', time1 - time0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, grad12_j12_test, (ao_num, ao_num, n_points_final_grid) ]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j, m, igauss
|
||||
double precision :: r(3), delta, coef
|
||||
double precision :: tmp1
|
||||
double precision :: time0, time1
|
||||
double precision, external :: overlap_gauss_r12_ao
|
||||
provide int2_grad1u2_grad2u2_j1b2_test
|
||||
print*, ' providing grad12_j12_test ...'
|
||||
call wall_time(time0)
|
||||
|
||||
PROVIDE j1b_type
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp1 = v_1b(ipoint)
|
||||
tmp1 = tmp1 * tmp1
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
grad12_j12_test(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
grad12_j12_test = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do igauss = 1, n_max_fit_slat
|
||||
delta = expo_gauss_1_erf_x_2(igauss)
|
||||
coef = coef_gauss_1_erf_x_2(igauss)
|
||||
grad12_j12_test(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' Wall time for grad12_j12_test = ', time1 - time0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
@ -253,3 +253,4 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
152
src/non_h_ints_mu/new_grad_tc_manu.irp.f
Normal file
152
src/non_h_ints_mu/new_grad_tc_manu.irp.f
Normal file
@ -0,0 +1,152 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_test, (3, ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int2_grad1_u12_ao_test(:,i,j,ipoint) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
|
||||
!
|
||||
! where r1 = r(ipoint)
|
||||
!
|
||||
! if J(r1,r2) = u12:
|
||||
!
|
||||
! int2_grad1_u12_ao_test(:,i,j,ipoint) = 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r2) \phi_j(r2)
|
||||
! = 0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,:) ]
|
||||
!
|
||||
! if J(r1,r2) = u12 x v1 x v2
|
||||
!
|
||||
! int2_grad1_u12_ao_test(:,i,j,ipoint) = v1 x [ 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] v2 \phi_i(r2) \phi_j(r2) ]
|
||||
! - \grad_1 v1 x [ \int dr2 u12 v2 \phi_i(r2) \phi_j(r2) ]
|
||||
! = 0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:)
|
||||
! - 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:)
|
||||
! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint)
|
||||
!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j
|
||||
double precision :: x, y, z, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
|
||||
|
||||
PROVIDE j1b_type
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
x = final_grid_points(1,ipoint)
|
||||
y = final_grid_points(2,ipoint)
|
||||
z = final_grid_points(3,ipoint)
|
||||
|
||||
tmp0 = 0.5d0 * v_1b(ipoint)
|
||||
tmp_x = v_1b_grad(1,ipoint)
|
||||
tmp_y = v_1b_grad(2,ipoint)
|
||||
tmp_z = v_1b_grad(3,ipoint)
|
||||
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
|
||||
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint)
|
||||
tmp2 = v_ij_u_cst_mu_j1b_test(i,j,ipoint)
|
||||
|
||||
int2_grad1_u12_ao_test(1,i,j,ipoint) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b_test(1,i,j,ipoint) - tmp2 * tmp_x
|
||||
int2_grad1_u12_ao_test(2,i,j,ipoint) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b_test(2,i,j,ipoint) - tmp2 * tmp_y
|
||||
int2_grad1_u12_ao_test(3,i,j,ipoint) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b_test(3,i,j,ipoint) - tmp2 * tmp_z
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
x = final_grid_points(1,ipoint)
|
||||
y = final_grid_points(2,ipoint)
|
||||
z = final_grid_points(3,ipoint)
|
||||
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint)
|
||||
|
||||
int2_grad1_u12_ao_test(1,i,j,ipoint) = tmp1 * x - x_v_ij_erf_rk_cst_mu_tmp(1,i,j,ipoint)
|
||||
int2_grad1_u12_ao_test(2,i,j,ipoint) = tmp1 * y - x_v_ij_erf_rk_cst_mu_tmp(2,i,j,ipoint)
|
||||
int2_grad1_u12_ao_test(3,i,j,ipoint) = tmp1 * z - x_v_ij_erf_rk_cst_mu_tmp(3,i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
int2_grad1_u12_ao_test *= 0.5d0
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_test, (ao_num, ao_num, ao_num, ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! tc_grad_and_lapl_ao_test(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) | ij >
|
||||
!
|
||||
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||
!
|
||||
! This is obtained by integration by parts.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j, k, l
|
||||
double precision :: weight1, contrib_x, contrib_y, contrib_z, tmp_x, tmp_y, tmp_z
|
||||
double precision :: ao_k_r, ao_i_r, ao_i_dx, ao_i_dy, ao_i_dz
|
||||
double precision, allocatable :: ac_mat(:,:,:,:)
|
||||
double precision :: wall0, wall1
|
||||
|
||||
provide int2_grad1_u12_ao_test
|
||||
call wall_time(wall0)
|
||||
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
|
||||
ac_mat = 0.d0
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
contrib_x = int2_grad1_u12_ao_test(1,l,j,ipoint)
|
||||
contrib_y = int2_grad1_u12_ao_test(2,l,j,ipoint)
|
||||
contrib_z = int2_grad1_u12_ao_test(3,l,j,ipoint)
|
||||
do i = 1, ao_num
|
||||
ao_i_r = weight1 * aos_in_r_array (i,ipoint)
|
||||
ao_i_dx = weight1 * aos_grad_in_r_array_transp(1,i,ipoint)
|
||||
ao_i_dy = weight1 * aos_grad_in_r_array_transp(2,i,ipoint)
|
||||
ao_i_dz = weight1 * aos_grad_in_r_array_transp(3,i,ipoint)
|
||||
|
||||
do k = 1, ao_num
|
||||
ao_k_r = aos_in_r_array(k,ipoint)
|
||||
|
||||
tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array_transp(1,k,ipoint)
|
||||
tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array_transp(2,k,ipoint)
|
||||
tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array_transp(3,k,ipoint)
|
||||
|
||||
tmp_x *= contrib_x
|
||||
tmp_y *= contrib_y
|
||||
tmp_z *= contrib_z
|
||||
|
||||
ac_mat(k,i,l,j) += tmp_x + tmp_y + tmp_z
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
tc_grad_and_lapl_ao_test(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for tc_grad_and_lapl_ao_test',wall1 - wall0
|
||||
deallocate(ac_mat)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
@ -8,16 +8,20 @@ BEGIN_PROVIDER [double precision, ao_tc_int_chemist, (ao_num, ao_num, ao_num, ao
|
||||
double precision :: wall1, wall0
|
||||
|
||||
call wall_time(wall0)
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
ao_tc_int_chemist(k,i,l,j) = tc_grad_square_ao(k,i,l,j) + tc_grad_and_lapl_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if(test_cycle_tc)then
|
||||
ao_tc_int_chemist = ao_tc_int_chemist_test
|
||||
else
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
ao_tc_int_chemist(k,i,l,j) = tc_grad_square_ao(k,i,l,j) + tc_grad_and_lapl_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for ao_tc_int_chemist ', wall1 - wall0
|
||||
@ -26,6 +30,29 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, ao_tc_int_chemist_test, (ao_num, ao_num, ao_num, ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
double precision :: wall1, wall0
|
||||
|
||||
call wall_time(wall0)
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
ao_tc_int_chemist_test(k,i,l,j) = tc_grad_square_ao_test(k,i,l,j) + tc_grad_and_lapl_ao_test(k,i,l,j) + ao_two_e_coul(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for ao_tc_int_chemist_test ', wall1 - wall0
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, ao_two_e_coul, (ao_num, ao_num, ao_num, ao_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
|
@ -15,7 +15,8 @@ program test_tc_fock
|
||||
!call routine_2
|
||||
! call routine_3()
|
||||
|
||||
call test_3e
|
||||
! call test_3e
|
||||
call routine_tot
|
||||
end
|
||||
|
||||
! ---
|
||||
@ -84,8 +85,8 @@ subroutine routine_3()
|
||||
print*, i, a
|
||||
stop
|
||||
endif
|
||||
!print*, ' excited det'
|
||||
!call debug_det(det_i, N_int)
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
@ -116,3 +117,78 @@ subroutine routine_3()
|
||||
end subroutine routine_3
|
||||
|
||||
! ---
|
||||
subroutine routine_tot()
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: i, a, i_ok, s1,other_spin(2)
|
||||
double precision :: hmono, htwoe, hthree, htilde_ij
|
||||
double precision :: err_ai, err_tot, ref, new
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
|
||||
allocate(det_i(N_int,2))
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
err_tot = 0.d0
|
||||
|
||||
! do s1 = 1, 2
|
||||
s1 = 2
|
||||
det_i = ref_bitmask
|
||||
call debug_det(det_i, N_int)
|
||||
print*, ' HF det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
! do i = 1, elec_num_tab(s1)
|
||||
! do a = elec_num_tab(s1)+1, mo_num ! virtual
|
||||
do i = 1, elec_beta_num
|
||||
do a = elec_beta_num+1, elec_alpha_num! virtual
|
||||
! do i = elec_beta_num+1, elec_alpha_num
|
||||
! do a = elec_alpha_num+1, mo_num! virtual
|
||||
print*,i,a
|
||||
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i, i, a, s1, i_ok)
|
||||
if(i_ok == -1) then
|
||||
print*, 'PB !!'
|
||||
print*, i, a
|
||||
stop
|
||||
endif
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
print*,htilde_ij
|
||||
if(dabs(htilde_ij).lt.1.d-10)cycle
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
if(s1 == 1)then
|
||||
new = Fock_matrix_tc_mo_alpha(a,i)
|
||||
else
|
||||
new = Fock_matrix_tc_mo_beta(a,i)
|
||||
endif
|
||||
ref = htilde_ij
|
||||
! if(s1 == 1)then
|
||||
! new = fock_a_tot_3e_bi_orth(a,i)
|
||||
! else if(s1 == 2)then
|
||||
! new = fock_b_tot_3e_bi_orth(a,i)
|
||||
! endif
|
||||
err_ai = dabs(dabs(ref) - dabs(new))
|
||||
if(err_ai .gt. 1d-7) then
|
||||
print*,'s1 = ',s1
|
||||
print*, ' warning on', i, a
|
||||
print*, ref,new,err_ai
|
||||
endif
|
||||
print*, ref,new,err_ai
|
||||
err_tot += err_ai
|
||||
|
||||
write(22, *) htilde_ij
|
||||
enddo
|
||||
enddo
|
||||
! enddo
|
||||
|
||||
print *, ' err_tot = ', err_tot
|
||||
|
||||
deallocate(det_i)
|
||||
|
||||
end subroutine routine_3
|
||||
|
@ -166,3 +166,9 @@ doc: Thresholds on the Imag part of energy
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-7
|
||||
|
||||
[test_cycle_tc]
|
||||
type: logical
|
||||
doc: If |true|, the integrals of the three-body jastrow are computed with cycles
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
@ -73,6 +73,29 @@
|
||||
+ (Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
|
||||
enddo
|
||||
enddo
|
||||
if(three_body_h_tc)then
|
||||
! C-O
|
||||
do j = 1, elec_beta_num
|
||||
do i = elec_beta_num+1, elec_alpha_num
|
||||
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
|
||||
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
|
||||
enddo
|
||||
enddo
|
||||
! C-V
|
||||
do j = 1, elec_beta_num
|
||||
do i = elec_alpha_num+1, mo_num
|
||||
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
|
||||
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
|
||||
enddo
|
||||
enddo
|
||||
! O-V
|
||||
do j = elec_beta_num+1, elec_alpha_num
|
||||
do i = elec_alpha_num+1, mo_num
|
||||
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
|
||||
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
|
@ -128,6 +128,8 @@ BEGIN_PROVIDER [double precision, diag_three_elem_hf]
|
||||
call give_abb_contrib(integral_abb)
|
||||
call give_bbb_contrib(integral_bbb)
|
||||
diag_three_elem_hf = integral_aaa + integral_aab + integral_abb + integral_bbb
|
||||
! print*,'integral_aaa + integral_aab + integral_abb + integral_bbb'
|
||||
! print*,integral_aaa , integral_aab , integral_abb , integral_bbb
|
||||
|
||||
endif
|
||||
|
||||
|
@ -6,24 +6,44 @@ program test_ints
|
||||
|
||||
implicit none
|
||||
|
||||
print *, 'starting ...'
|
||||
print *, ' starting test_ints ...'
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
! my_n_pt_r_grid = 10 ! small grid for quick debug
|
||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||
! my_n_pt_r_grid = 15 ! small grid for quick debug
|
||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
!call routine_int2_u_grad1u_j1b2
|
||||
!call routine_v_ij_erf_rk_cst_mu_j1b
|
||||
!call routine_x_v_ij_erf_rk_cst_mu_tmp_j1b
|
||||
!call routine_v_ij_u_cst_mu_j1b
|
||||
|
||||
!
|
||||
! call routine_test_j1b
|
||||
my_extra_grid_becke = .True.
|
||||
my_n_pt_r_extra_grid = 30
|
||||
my_n_pt_a_extra_grid = 50 ! small extra_grid for quick debug
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
!call routine_int2_grad1u2_grad2u2_j1b2
|
||||
!! OK
|
||||
!call routine_int2_u_grad1u_j1b2
|
||||
!! OK
|
||||
!call routine_v_ij_erf_rk_cst_mu_j1b
|
||||
!! OK
|
||||
! call routine_x_v_ij_erf_rk_cst_mu_tmp_j1b
|
||||
!! OK
|
||||
! call routine_v_ij_u_cst_mu_j1b
|
||||
|
||||
!! OK
|
||||
!call routine_int2_u2_j1b2
|
||||
|
||||
!! OK
|
||||
!call routine_int2_u_grad1u_x_j1b2
|
||||
|
||||
!! OK
|
||||
! call routine_int2_grad1u2_grad2u2_j1b2
|
||||
! call routine_int2_u_grad1u_j1b2
|
||||
! call test_total_grad_lapl
|
||||
! call test_total_grad_square
|
||||
! call test_ao_tc_int_chemist
|
||||
! call test_grid_points_ao
|
||||
! call test_tc_scf
|
||||
call test_int_gauss
|
||||
|
||||
!call test_fock_3e_uhf_ao()
|
||||
call test_fock_3e_uhf_mo()
|
||||
@ -32,6 +52,32 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_tc_scf
|
||||
implicit none
|
||||
integer :: i
|
||||
! provide int2_u_grad1u_x_j1b2_test
|
||||
provide x_v_ij_erf_rk_cst_mu_tmp_j1b_test
|
||||
! do i = 1, ng_fit_jast
|
||||
! print*,expo_gauss_1_erf_x_2(i),coef_gauss_1_erf_x_2(i)
|
||||
! enddo
|
||||
! provide tc_grad_square_ao_test
|
||||
! provide tc_grad_and_lapl_ao_test
|
||||
! provide int2_u_grad1u_x_j1b2_test
|
||||
! provide x_v_ij_erf_rk_cst_mu_tmp_j1b_test
|
||||
! print*,'TC_HF_energy = ',TC_HF_energy
|
||||
! print*,'grad_non_hermit = ',grad_non_hermit
|
||||
end
|
||||
|
||||
subroutine test_ao_tc_int_chemist
|
||||
implicit none
|
||||
provide ao_tc_int_chemist
|
||||
! provide ao_tc_int_chemist_test
|
||||
! provide tc_grad_square_ao_test
|
||||
! provide tc_grad_and_lapl_ao_test
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine routine_test_j1b
|
||||
implicit none
|
||||
integer :: i,icount,j
|
||||
@ -49,7 +95,7 @@ subroutine routine_test_j1b
|
||||
print*,'List_all_comb_b3_coef,icount = ',List_all_comb_b3_size,icount
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do icount = 1, List_comb_b3_size_thr(j,i)
|
||||
do icount = 1, List_comb_thr_b3_size(j,i)
|
||||
print*,'',j,i
|
||||
print*,List_comb_thr_b3_expo(icount,j,i),List_comb_thr_b3_coef(icount,j,i)
|
||||
print*,List_comb_thr_b3_cent(1:3,icount,j,i)
|
||||
@ -58,7 +104,7 @@ subroutine routine_test_j1b
|
||||
! enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'max_List_comb_b3_size_thr = ',max_List_comb_b3_size_thr,List_all_comb_b3_size
|
||||
print*,'max_List_comb_thr_b3_size = ',max_List_comb_thr_b3_size,List_all_comb_b3_size
|
||||
|
||||
end
|
||||
|
||||
@ -228,7 +274,7 @@ end
|
||||
|
||||
|
||||
|
||||
subroutine routine_v_ij_u_cst_mu_j1b
|
||||
subroutine routine_v_ij_u_cst_mu_j1b_test
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
@ -289,6 +335,7 @@ end
|
||||
subroutine routine_int2_grad1u2_grad2u2_j1b2
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
integer :: ii , jj
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
double precision, allocatable :: array(:,:,:,:), array_ref(:,:,:,:)
|
||||
double precision, allocatable :: ints(:,:,:)
|
||||
@ -311,20 +358,90 @@ subroutine routine_int2_grad1u2_grad2u2_j1b2
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
array(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! !array(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! !array(j,i,l,k) += ints(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! !array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! !array_ref(j,i,l,k) += ints(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint)).gt.1.d-6)then
|
||||
if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint)).gt.1.d-6)then
|
||||
print*,j,i,ipoint
|
||||
print*,int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) , int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test_no_v(j,i,ipoint))
|
||||
! print*,int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) , int2_grad1u2_grad2u2_j1b2_test_no_v(i,j,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) - int2_grad1u2_grad2u2_j1b2_test_no_v(i,j,ipoint))
|
||||
stop
|
||||
endif
|
||||
endif
|
||||
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array_ref(j,i,l,k) += ints(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
! if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint)).gt.1.d-6)then
|
||||
! if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint)).gt.1.d-6)then
|
||||
! print*,j,i,ipoint
|
||||
! print*,int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) , int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint))
|
||||
! print*,int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) , int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) - int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint))
|
||||
! stop
|
||||
! endif
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
double precision :: e_ref, e_new
|
||||
accu_relat = 0.d0
|
||||
accu_abs = 0.d0
|
||||
e_ref = 0.d0
|
||||
e_new = 0.d0
|
||||
do ii = 1, elec_alpha_num
|
||||
do jj = ii, elec_alpha_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
e_ref += mo_coef(j,ii) * mo_coef(i,ii) * array_ref(j,i,l,k) * mo_coef(l,jj) * mo_coef(k,jj)
|
||||
e_new += mo_coef(j,ii) * mo_coef(i,ii) * array(j,i,l,k) * mo_coef(l,jj) * mo_coef(k,jj)
|
||||
contrib = dabs(array(j,i,l,k) - array_ref(j,i,l,k))
|
||||
accu_abs += contrib
|
||||
! if(dabs(array_ref(j,i,l,k)).gt.1.d-10)then
|
||||
! accu_relat += contrib/dabs(array_ref(j,i,l,k))
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
print*,'e_ref = ',e_ref
|
||||
print*,'e_new = ',e_new
|
||||
! print*,'accu_abs = ',accu_abs/dble(ao_num)**4
|
||||
! print*,'accu_relat = ',accu_relat/dble(ao_num)**4
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_int2_u2_j1b2
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
double precision, allocatable :: array(:,:,:,:), array_ref(:,:,:,:)
|
||||
! print*,'ao_overlap_abs = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_overlap_abs(i,:)
|
||||
! enddo
|
||||
! print*,'center = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_prod_center(2,i,:)
|
||||
! enddo
|
||||
! print*,'sigma = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_prod_sigma(i,:)
|
||||
! enddo
|
||||
|
||||
|
||||
allocate(array(ao_num, ao_num, ao_num, ao_num))
|
||||
array = 0.d0
|
||||
allocate(array_ref(ao_num, ao_num, ao_num, ao_num))
|
||||
array_ref = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
array(j,i,l,k) += int2_u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array_ref(j,i,l,k) += int2_u2_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -350,6 +467,110 @@ subroutine routine_int2_grad1u2_grad2u2_j1b2
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine routine_int2_u_grad1u_x_j1b2
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l,m
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
double precision, allocatable :: array(:,:,:,:), array_ref(:,:,:,:)
|
||||
! print*,'ao_overlap_abs = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_overlap_abs(i,:)
|
||||
! enddo
|
||||
! print*,'center = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_prod_center(2,i,:)
|
||||
! enddo
|
||||
! print*,'sigma = '
|
||||
! do i = 1, ao_num
|
||||
! write(*,'(100(F10.5,X))')ao_prod_sigma(i,:)
|
||||
! enddo
|
||||
|
||||
|
||||
allocate(array(ao_num, ao_num, ao_num, ao_num))
|
||||
array = 0.d0
|
||||
allocate(array_ref(ao_num, ao_num, ao_num, ao_num))
|
||||
array_ref = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
array(j,i,l,k) += int2_u_grad1u_x_j1b2_test(m,j,i,ipoint) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array_ref(j,i,l,k) += int2_u_grad1u_x_j1b2(m,j,i,ipoint) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
accu_relat = 0.d0
|
||||
accu_abs = 0.d0
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
contrib = dabs(array(j,i,l,k) - array_ref(j,i,l,k))
|
||||
accu_abs += contrib
|
||||
if(dabs(array_ref(j,i,l,k)).gt.1.d-10)then
|
||||
accu_relat += contrib/dabs(array_ref(j,i,l,k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
|
||||
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_v_ij_u_cst_mu_j1b
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
double precision, allocatable :: array(:,:,:,:), array_ref(:,:,:,:)
|
||||
|
||||
allocate(array(ao_num, ao_num, ao_num, ao_num))
|
||||
array = 0.d0
|
||||
allocate(array_ref(ao_num, ao_num, ao_num, ao_num))
|
||||
array_ref = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
accu_relat = 0.d0
|
||||
accu_abs = 0.d0
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
contrib = dabs(array(j,i,l,k) - array_ref(j,i,l,k))
|
||||
accu_abs += contrib
|
||||
if(dabs(array_ref(j,i,l,k)).gt.1.d-10)then
|
||||
accu_relat += contrib/dabs(array_ref(j,i,l,k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
|
||||
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
@ -491,7 +712,139 @@ end subroutine test_fock_3e_uhf_mo()
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_total_grad_lapl
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
accu_relat = 0.d0
|
||||
accu_abs = 0.d0
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
contrib = dabs(tc_grad_and_lapl_ao_test(j,i,l,k) - tc_grad_and_lapl_ao(j,i,l,k))
|
||||
accu_abs += contrib
|
||||
if(dabs(tc_grad_and_lapl_ao(j,i,l,k)).gt.1.d-10)then
|
||||
accu_relat += contrib/dabs(tc_grad_and_lapl_ao(j,i,l,k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
|
||||
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine test_total_grad_square
|
||||
implicit none
|
||||
integer :: i,j,ipoint,k,l
|
||||
double precision :: weight,accu_relat, accu_abs, contrib
|
||||
accu_relat = 0.d0
|
||||
accu_abs = 0.d0
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
contrib = dabs(tc_grad_square_ao_test(j,i,l,k) - tc_grad_square_ao(j,i,l,k))
|
||||
accu_abs += contrib
|
||||
if(dabs(tc_grad_square_ao(j,i,l,k)).gt.1.d-10)then
|
||||
accu_relat += contrib/dabs(tc_grad_square_ao(j,i,l,k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
|
||||
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grid_points_ao
|
||||
implicit none
|
||||
integer :: i,j,ipoint,icount,icount_good, icount_bad,icount_full
|
||||
double precision :: thr
|
||||
thr = 1.d-10
|
||||
! print*,'max_n_pts_grid_ao_prod = ',max_n_pts_grid_ao_prod
|
||||
! print*,'n_pts_grid_ao_prod'
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
icount = 0
|
||||
icount_good = 0
|
||||
icount_bad = 0
|
||||
icount_full = 0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
! if(dabs(int2_u_grad1u_x_j1b2_test(1,j,i,ipoint)) &
|
||||
! + dabs(int2_u_grad1u_x_j1b2_test(2,j,i,ipoint)) &
|
||||
! + dabs(int2_u_grad1u_x_j1b2_test(2,j,i,ipoint)) )
|
||||
! if(dabs(int2_u2_j1b2_test(j,i,ipoint)).gt.thr)then
|
||||
! icount += 1
|
||||
! endif
|
||||
if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
|
||||
icount_full += 1
|
||||
endif
|
||||
if(dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint)).gt.thr)then
|
||||
icount += 1
|
||||
if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
|
||||
icount_good += 1
|
||||
else
|
||||
print*,j,i,ipoint
|
||||
print*,dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint)),dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)),dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint))/dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint))
|
||||
icount_bad += 1
|
||||
endif
|
||||
endif
|
||||
! if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr)then
|
||||
! endif
|
||||
enddo
|
||||
print*,''
|
||||
print*,j,i
|
||||
print*,icount,icount_full, icount_bad!,n_pts_grid_ao_prod(j,i)
|
||||
print*,dble(icount)/dble(n_points_final_grid),dble(icount_full)/dble(n_points_final_grid)
|
||||
! dble(n_pts_grid_ao_prod(j,i))/dble(n_points_final_grid)
|
||||
! if(icount.gt.n_pts_grid_ao_prod(j,i))then
|
||||
! print*,'pb !!'
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine test_int_gauss
|
||||
implicit none
|
||||
integer :: i,j
|
||||
print*,'center'
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
print*,j,i
|
||||
print*,ao_prod_sigma(j,i),ao_overlap_abs_grid(j,i)
|
||||
print*,ao_prod_center(1:3,j,i)
|
||||
enddo
|
||||
enddo
|
||||
print*,''
|
||||
double precision :: weight, r(3),integral_1,pi,center(3),f_r,alpha,distance,integral_2
|
||||
center = 0.d0
|
||||
pi = dacos(-1.d0)
|
||||
integral_1 = 0.d0
|
||||
integral_2 = 0.d0
|
||||
alpha = 0.75d0
|
||||
do i = 1, n_points_final_grid
|
||||
! you get x, y and z of the ith grid point
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
weight = final_weight_at_r_vector(i)
|
||||
distance = dsqrt( (r(1) - center(1))**2 + (r(2) - center(2))**2 + (r(3) - center(3))**2 )
|
||||
f_r = dexp(-alpha * distance*distance)
|
||||
! you add the contribution of the grid point to the integral
|
||||
integral_1 += f_r * weight
|
||||
integral_2 += f_r * distance * weight
|
||||
enddo
|
||||
print*,'integral_1 =',integral_1
|
||||
print*,'(pi/alpha)**1.5 =',(pi / alpha)**1.5
|
||||
print*,'integral_2 =',integral_2
|
||||
print*,'(pi/alpha)**1.5 =',2.d0*pi / (alpha)**2
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
90
src/tools/print_hmat.irp.f
Normal file
90
src/tools/print_hmat.irp.f
Normal file
@ -0,0 +1,90 @@
|
||||
program print_h_mat
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! program that prints out the CI matrix in sparse form
|
||||
END_DOC
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
call print_wf_dets
|
||||
call print_wf_coef
|
||||
call sparse_mat
|
||||
call full_mat
|
||||
call test_sparse_mat
|
||||
end
|
||||
|
||||
subroutine print_wf_dets
|
||||
implicit none
|
||||
integer :: i,j
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.wf_det'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
write(i_unit_output,*)N_det,N_int
|
||||
do i = 1, N_det
|
||||
write(i_unit_output,*)psi_det_sorted(1:N_int,1,i)
|
||||
write(i_unit_output,*)psi_det_sorted(1:N_int,2,i)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine print_wf_coef
|
||||
implicit none
|
||||
integer :: i,j
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.wf_coef'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
write(i_unit_output,*)N_det,N_states
|
||||
do i = 1, N_det
|
||||
write(i_unit_output,*)psi_coef_sorted(i,1:N_states)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine sparse_mat
|
||||
implicit none
|
||||
integer :: i,j
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.hmat_sparse'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
do i = 1, N_det
|
||||
write(i_unit_output,*)i,n_connected_per_det(i)
|
||||
do j =1, n_connected_per_det(i)
|
||||
write(i_unit_output,*)list_connected_det_per_det(j,i),sparse_h_mat(j,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine full_mat
|
||||
implicit none
|
||||
integer :: i,j
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.hmat_full'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
do i = 1, N_det
|
||||
do j = i, N_det
|
||||
write(i_unit_output,*)i,j,H_matrix_all_dets(j,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine test_sparse_mat
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision, allocatable :: eigvec(:,:), eigval(:), hmat(:,:)
|
||||
allocate(eigval(N_det), eigvec(N_det,N_det),hmat(N_det,N_det))
|
||||
hmat = 0.d0
|
||||
do i = 1, N_det
|
||||
do j =1, n_connected_per_det(i)
|
||||
hmat(list_connected_det_per_det(j,i),i) = sparse_h_mat(j,i)
|
||||
enddo
|
||||
enddo
|
||||
call lapack_diag(eigval,eigvec,hmat,N_det,N_det)
|
||||
print*,'The two energies should be the same '
|
||||
print*,'eigval(1) = ',eigval(1)
|
||||
print*,'psi_energy= ',CI_electronic_energy(1)
|
||||
|
||||
|
||||
end
|
Loading…
Reference in New Issue
Block a user