10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-28 16:12:40 +02:00

minor modifs the minimize_tc_angles routines

This commit is contained in:
eginer 2022-10-27 13:21:53 +02:00
parent a402d509a9
commit c2a8a17572
7 changed files with 155 additions and 231 deletions

View File

@ -1281,10 +1281,10 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
, C, size(C, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) )
print *, ' eigenvec overlap bef SVD: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
enddo
! print *, ' eigenvec overlap bef SVD: '
! do i = 1, m
! write(*, '(1000(F16.10,X))') S(i,:)
! enddo
! ---
@ -1340,10 +1340,10 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
, C, size(C, 1), C, size(C, 1) &
, 0.d0, S, size(S, 1) )
print *, ' eigenvec overlap aft SVD: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
enddo
! print *, ' eigenvec overlap aft SVD: '
! do i = 1, m
! write(*, '(1000(F16.10,X))') S(i,:)
! enddo
deallocate(S)
@ -2516,7 +2516,7 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
print *, ' overlap bef SVD: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
write(*, '(1000(F25.16,X))') S(i,:)
enddo
! ---
@ -2530,6 +2530,7 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
threshold = 1.d-6
num_linear_dependencies = 0
do i = 1, m
print*,'D(i) = ',D(i)
if(abs(D(i)) <= threshold) then
D(i) = 0.d0
num_linear_dependencies += 1
@ -2585,11 +2586,18 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
! ---
allocate(S(m,m))
! call dgemm( 'T', 'N', m, m, n, 1.d0 &
! , L, size(L, 1), R, size(R, 1) &
! , 0.d0, S, size(S, 1) )
! S = C.T x overlap x C
call dgemm( 'N', 'N', n, m, n, 1.d0 &
, overlap, size(overlap, 1), R, size(R, 1) &
, 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, L, size(L, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) )
print *, ' overlap aft SVD: '
print *, ' overlap aft SVD with overlap: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
enddo

View File

@ -131,3 +131,30 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_non_hermit_left]
&BEGIN_PROVIDER [ double precision, grad_non_hermit_right]
&BEGIN_PROVIDER [ double precision, grad_non_hermit]
implicit none
integer :: i, k
grad_non_hermit_left = 0.d0
grad_non_hermit_right = 0.d0
do i = 1, elec_beta_num ! doc --> SOMO
do k = elec_beta_num+1, elec_alpha_num
grad_non_hermit_left+= dabs(Fock_matrix_tc_mo_tot(k,i))
grad_non_hermit_right+= dabs(Fock_matrix_tc_mo_tot(i,k))
enddo
enddo
do i = 1, elec_beta_num ! doc --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left+= dabs(Fock_matrix_tc_mo_tot(k,i))
grad_non_hermit_right+= dabs(Fock_matrix_tc_mo_tot(i,k))
enddo
enddo
do i = elec_beta_num+1, elec_alpha_num ! SOMO --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left+= dabs(Fock_matrix_tc_mo_tot(k,i))
grad_non_hermit_right+= dabs(Fock_matrix_tc_mo_tot(i,k))
enddo
enddo
grad_non_hermit = grad_non_hermit_left + grad_non_hermit_right
END_PROVIDER

View File

@ -0,0 +1,10 @@
program print_angles
implicit none
my_grid_becke = .True.
! my_n_pt_r_grid = 30
! my_n_pt_a_grid = 50
my_n_pt_r_grid = 10 ! small grid for quick debug
my_n_pt_a_grid = 14 ! small grid for quick debug
call minimize_tc_orb_angles
end

View File

@ -5,16 +5,5 @@ program print_angles
! my_n_pt_a_grid = 50
my_n_pt_r_grid = 10 ! small grid for quick debug
my_n_pt_a_grid = 14 ! small grid for quick debug
call routine
end
subroutine routine
implicit none
integer :: i,j
double precision :: left,right
print*,'energy,product of norms, angle between vectors'
do i = 1, mo_num
left = overlap_mo_l(i,i)
right = overlap_mo_r(i,i)
print*,Fock_matrix_tc_mo_tot(i,i),left*right,angle_left_right(i)
enddo
call print_angles_tc
end

View File

@ -1,10 +1,44 @@
subroutine routine_save_rotated_mos
subroutine minimize_tc_orb_angles
implicit none
double precision :: thr_deg
logical :: good_angles
integer :: i
good_angles = .False.
thr_deg = thr_degen_tc
call print_energy_and_mos
i = 1
do while (.not. good_angles)
print*,'iteration = ',i
call routine_save_rotated_mos(thr_deg,good_angles)
thr_deg *= 10.d0
i+=1
if(i.gt.100)then
print*,'minimize_tc_orb_angles does not seem to converge ..'
print*,'Something is weird in the tc orbitals ...'
print*,'STOPPING'
endif
enddo
print*,'Converged ANGLES MINIMIZATION !!'
call print_angles_tc
call print_energy_and_mos
end
subroutine routine_save_rotated_mos(thr_deg,good_angles)
implicit none
double precision, intent(in) :: thr_deg
logical, intent(out) :: good_angles
good_angles = .False.
integer :: i,j,k,n_degen_list,m,n,n_degen,ilast,ifirst
double precision, allocatable :: mo_r_coef_good(:,:),mo_l_coef_good(:,:)
allocate(mo_l_coef_good(ao_num, mo_num), mo_r_coef_good(ao_num,mo_num))
double precision, allocatable :: mo_r_coef_new(:,:)
double precision :: norm
print*,'***************************************'
print*,'***************************************'
print*,'THRESHOLD FOR DEGENERACIES ::: ',thr_deg
print*,'***************************************'
print*,'***************************************'
print*,'Starting with the following TC energy gradient :',grad_non_hermit
mo_r_coef_good = mo_r_coef
mo_l_coef_good = mo_l_coef
allocate(mo_r_coef_new(ao_num, mo_num))
@ -19,22 +53,19 @@ subroutine routine_save_rotated_mos
integer, allocatable :: list_degen(:,:)
allocate(list_degen(2,mo_num),s_mat(mo_num,mo_num),fock_diag(mo_num))
do i = 1, mo_num
fock_diag(i) = fock_matrix_mo(i,i)
fock_diag(i) = Fock_matrix_tc_mo_tot(i,i)
enddo
! compute the overlap between the left and rescaled right
call build_s_matrix(ao_num,mo_num,mo_r_coef_new,mo_r_coef_new,ao_overlap,s_mat)
call give_degen(fock_diag,mo_num,thr_degen_tc,list_degen,n_degen_list)
call give_degen(fock_diag,mo_num,thr_deg,list_degen,n_degen_list)
print*,'fock_matrix_mo'
do i = 1, mo_num
print*,i,fock_diag(i),angle_left_right(i)
enddo
print*,'Overlap '
do i = 1, mo_num
write(*,'(I2,X,100(F8.4,X))')i,s_mat(:,i)
enddo
do i = 1, n_degen_list
ifirst = list_degen(1,i)
! if(ifirst.ne.12)cycle
ilast = list_degen(2,i)
n_degen = ilast - ifirst +1
print*,'ifirst,n_degen = ',ifirst,n_degen
@ -48,16 +79,29 @@ subroutine routine_save_rotated_mos
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,j+ifirst-1)
enddo
! Orthogonalization of right functions
print*,'Orthogonalization of right functions'
print*,'Orthogonalization of RIGHT functions'
print*,'------------------------------------'
call orthog_functions(ao_num,n_degen,mo_r_coef_tmp,ao_overlap)
! Orthogonalization of left functions
print*,'Orthogonalization of left functions'
call orthog_functions(ao_num,n_degen,mo_r_coef_tmp,ao_overlap)
print*,'Orthogonalization of LEFT functions'
print*,'------------------------------------'
call orthog_functions(ao_num,n_degen,mo_l_coef_tmp,ao_overlap)
print*,'Overlap lef-right '
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_l_coef_tmp,ao_overlap,stmp)
do j = 1, n_degen
write(*,'(100(F8.4,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,n_degen,mo_l_coef_tmp,mo_l_coef_tmp,ao_overlap,stmp)
print*,'LEFT/LEFT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_r_coef_tmp,ao_overlap,stmp)
print*,'RIGHT/RIGHT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
if(maxovl_tc)then
T = 0.d0
Snew = 0.d0
@ -77,6 +121,16 @@ subroutine routine_save_rotated_mos
else
mo_l_coef_new = mo_l_coef_tmp
endif
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_l_coef_new,ao_overlap,stmp)
print*,'LEFT/LEFT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_r_coef_tmp,ao_overlap,stmp)
print*,'RIGHT/RIGHT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call impose_biorthog_svd_overlap(ao_num, n_degen, ao_overlap, mo_l_coef_new, mo_r_coef_tmp)
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_r_coef_tmp,ao_overlap,stmp)
print*,'LAST OVERLAP '
@ -131,6 +185,13 @@ subroutine routine_save_rotated_mos
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
double precision, allocatable :: new_angles(:)
allocate(new_angles(mo_num))
new_angles(1:mo_num) = dabs(angle_left_right(1:mo_num))
double precision :: max_angle
max_angle = maxval(new_angles)
good_angles = max_angle.lt.45.d0
end
subroutine build_s_matrix(m,n,C1,C2,overlap,smat)
@ -175,3 +236,28 @@ subroutine orthog_functions(m,n,coef,overlap)
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
end
subroutine print_angles_tc
implicit none
integer :: i,j
double precision :: left,right
print*,'product of norms, angle between vectors'
do i = 1, mo_num
left = overlap_mo_l(i,i)
right = overlap_mo_r(i,i)
! print*,Fock_matrix_tc_mo_tot(i,i),left*right,angle_left_right(i)
print*,left*right,angle_left_right(i)
enddo
end
subroutine print_energy_and_mos
implicit none
integer :: i
print*,''
print*,'TC energy = ', TC_HF_energy
print*,'TC SCF energy gradient = ',grad_non_hermit
print*,'Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num
write(*,'(I3,X,100(F16.10,X))')i,Fock_matrix_tc_mo_tot(i,i),overlap_mo_l(i,i)*overlap_mo_r(i,i),angle_left_right(i)
enddo
end

View File

@ -19,7 +19,7 @@ program tc_scf
!call orthonormalize_mos
call routine_scf()
call routine_save_rotated_mos
call minimize_tc_orb_angles
call print_energy_and_mos
@ -126,6 +126,7 @@ subroutine routine_scf()
print*,'***'
e_delta = dabs( TC_HF_energy - e_save )
print*, 'it, delta E = ', it, e_delta
print*, 'it, gradient= ',grad_non_hermit_right
e_save = TC_HF_energy
mo_l_coef = fock_tc_leigvec_ao
mo_r_coef = fock_tc_reigvec_ao
@ -181,13 +182,3 @@ end subroutine routine_scf
! ---
subroutine print_energy_and_mos
implicit none
integer :: i
print*,'Energy converged !'
print*,'Final TC energy = ', TC_HF_energy
print*,'Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num
write(*,'(I3,X,100(F16.10,X))')i,Fock_matrix_tc_mo_tot(i,i),overlap_mo_l(i,i)*overlap_mo_r(i,i),angle_left_right(i)
enddo
end

View File

@ -1,187 +0,0 @@
program print_angles
implicit none
my_grid_becke = .True.
! my_n_pt_r_grid = 30
! my_n_pt_a_grid = 50
my_n_pt_r_grid = 10 ! small grid for quick debug
my_n_pt_a_grid = 14 ! small grid for quick debug
call routine
end
subroutine routine
implicit none
integer :: i,j,k,n_degen_list,m,n,n_degen,ilast,ifirst
double precision, allocatable :: mo_r_coef_good(:,:),mo_l_coef_good(:,:)
allocate(mo_l_coef_good(ao_num, mo_num), mo_r_coef_good(ao_num,mo_num))
double precision, allocatable :: mo_r_coef_new(:,:)
double precision :: norm
mo_r_coef_good = mo_r_coef
mo_l_coef_good = mo_l_coef
allocate(mo_r_coef_new(ao_num, mo_num))
mo_r_coef_new = mo_r_coef
do i = 1, mo_num
norm = 1.d0/dsqrt(overlap_mo_r(i,i))
do j = 1, ao_num
mo_r_coef_new(j,i) *= norm
enddo
enddo
double precision, allocatable :: fock_diag(:),s_mat(:,:)
integer, allocatable :: list_degen(:,:)
allocate(list_degen(2,mo_num),s_mat(mo_num,mo_num),fock_diag(mo_num))
do i = 1, mo_num
fock_diag(i) = fock_matrix_mo(i,i)
enddo
! compute the overlap between the left and rescaled right
call build_s_matrix(ao_num,mo_num,mo_r_coef_new,mo_r_coef_new,ao_overlap,s_mat)
call give_degen(fock_diag,mo_num,thr_degen_tc,list_degen,n_degen_list)
print*,'fock_matrix_mo'
do i = 1, mo_num
print*,i,fock_diag(i),angle_left_right(i)
enddo
print*,'Overlap '
do i = 1, mo_num
write(*,'(I2,X,100(F8.4,X))')i,s_mat(:,i)
enddo
do i = 1, n_degen_list
ifirst = list_degen(1,i)
ilast = list_degen(2,i)
n_degen = ilast - ifirst +1
print*,'ifirst,n_degen = ',ifirst,n_degen
double precision, allocatable :: stmp(:,:),T(:,:),Snew(:,:),smat2(:,:)
double precision, allocatable :: mo_l_coef_tmp(:,:),mo_r_coef_tmp(:,:),mo_l_coef_new(:,:)
allocate(stmp(n_degen,n_degen),smat2(n_degen,n_degen))
allocate(mo_r_coef_tmp(ao_num,n_degen),mo_l_coef_tmp(ao_num,n_degen),mo_l_coef_new(ao_num,n_degen))
allocate(T(n_degen,n_degen),Snew(n_degen,n_degen))
do j = 1, n_degen
mo_r_coef_tmp(1:ao_num,j) = mo_r_coef_new(1:ao_num,j+ifirst-1)
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,j+ifirst-1)
enddo
! Orthogonalization of right functions
print*,'Orthogonalization of right functions'
call orthog_functions(ao_num,n_degen,mo_r_coef_tmp,ao_overlap)
! Orthogonalization of left functions
print*,'Orthogonalization of left functions'
call orthog_functions(ao_num,n_degen,mo_r_coef_tmp,ao_overlap)
print*,'Overlap lef-right '
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_l_coef_tmp,ao_overlap,stmp)
do j = 1, n_degen
write(*,'(100(F8.4,X))')stmp(:,j)
enddo
T = 0.d0
Snew = 0.d0
call maxovl(n_degen, n_degen, stmp, T, Snew)
print*,'overlap after'
do j = 1, n_degen
write(*,'(100(F16.10,X))')Snew(:,j)
enddo
! mo_l_coef_new = 0.D0
! do j = 1, n_degen
! do k = 1, n_degen
! do m = 1, ao_num
! mo_l_coef_new(m,j) += T(k,j) * mo_l_coef_tmp(m,k)
! enddo
! enddo
! enddo
call dgemm( 'N', 'N', ao_num, n_degen, n_degen, 1.d0 &
, mo_l_coef_tmp, size(mo_l_coef_tmp, 1), T(1,1), size(T, 1) &
, 0.d0, mo_l_coef_new, size(mo_l_coef_new, 1) )
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_r_coef_tmp,ao_overlap,stmp)
print*,'Overlap test'
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call impose_biorthog_svd_overlap(ao_num, n_degen, ao_overlap, mo_l_coef_new, mo_r_coef_tmp)
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_r_coef_tmp,ao_overlap,stmp)
print*,'LAST OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_l_coef_new,ao_overlap,stmp)
print*,'LEFT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_r_coef_tmp,ao_overlap,stmp)
print*,'RIGHT OVERLAP '
do j = 1, n_degen
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
do j = 1, n_degen
mo_l_coef_good(1:ao_num,j+ifirst-1) = mo_l_coef_new(1:ao_num,j)
mo_r_coef_good(1:ao_num,j+ifirst-1) = mo_r_coef_tmp(1:ao_num,j)
enddo
deallocate(stmp,smat2)
deallocate(mo_r_coef_tmp,mo_l_coef_tmp,mo_l_coef_new)
deallocate(T,Snew)
enddo
allocate(stmp(mo_num, mo_num))
print*,'l coef'
do i = 1, mo_num
write(*,'(100(F8.4,X))')mo_l_coef_good(:,i)
enddo
print*,'r coef'
do i = 1, mo_num
write(*,'(100(F8.4,X))')mo_r_coef_good(:,i)
enddo
call build_s_matrix(ao_num,mo_num,mo_l_coef_good,mo_r_coef_good,ao_overlap,stmp)
print*,'LEFT/RIGHT OVERLAP '
do j = 1, mo_num
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,mo_num,mo_l_coef_good,mo_l_coef_good,ao_overlap,stmp)
print*,'LEFT/LEFT OVERLAP '
do j = 1, mo_num
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call build_s_matrix(ao_num,mo_num,mo_r_coef_good,mo_r_coef_good,ao_overlap,stmp)
print*,'RIGHT/RIGHT OVERLAP '
do j = 1, mo_num
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef_good)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef_good)
end
subroutine build_s_matrix(m,n,C1,C2,overlap,smat)
implicit none
integer, intent(in) :: m,n
double precision, intent(in) :: C1(m,n),C2(m,n),overlap(m,m)
double precision, intent(out):: smat(n,n)
integer :: i,j,k,l
smat = 0.D0
do i = 1, n
do j = 1, n
do k = 1, m
do l = 1, m
smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j)
enddo
enddo
enddo
enddo
end
subroutine orthog_functions(m,n,coef,overlap)
implicit none
integer, intent(in) :: m,n
double precision, intent(in) :: overlap(m,m)
double precision, intent(inout) :: coef(m,n)
double precision, allocatable :: stmp(:,:)
integer :: j
allocate(stmp(n,n))
call build_s_matrix(m,n,coef,coef,overlap,stmp)
print*,'overlap before'
do j = 1, n
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
call impose_orthog_svd_overlap(m, n, coef,overlap)
call build_s_matrix(m,n,coef,coef,overlap,stmp)
do j = 1, n
coef(1,:m) *= 1.d0/dsqrt(stmp(j,j))
enddo
print*,'overlap after'
call build_s_matrix(m,n,coef,coef,overlap,stmp)
do j = 1, n
write(*,'(100(F16.10,X))')stmp(:,j)
enddo
end