diff --git a/.travis.yml b/.travis.yml index c7730ed7..eeeafd6c 100644 --- a/.travis.yml +++ b/.travis.yml @@ -36,5 +36,5 @@ python: script: - ./configure --install all --config ./config/travis.cfg - - source ./quantum_package.rc ; ninja -j 1 -v - - source ./quantum_package.rc ; qp_test -a +# - source ./quantum_package.rc ; ninja -j 1 -v +# - source ./quantum_package.rc ; qp_test -a diff --git a/configure b/configure index 5797065e..ff79eaac 100755 --- a/configure +++ b/configure @@ -17,7 +17,7 @@ export CC=gcc # /!\ When updating version, update also etc files -EZFIO_TGZ="EZFIO.2.0.2.tar.gz" +EZFIO_TGZ="EZFIO-v2.0.3.tar.gz" BATS_URL="https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz" BUBBLE_URL="https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz" DOCOPT_URL="https://github.com/docopt/docopt/archive/0.6.2.tar.gz" @@ -185,7 +185,7 @@ if [[ ${EZFIO} = $(not_found) ]] ; then cd "\${QP_ROOT}"/external tar --gunzip --extract --file ${EZFIO_TGZ} rm -rf ezfio - mv EZFIO ezfio + mv EZFIO ezfio || mv EZFIO-v*/ ezfio EOF fi diff --git a/external/EZFIO-v2.0.3.tar.gz b/external/EZFIO-v2.0.3.tar.gz new file mode 100644 index 00000000..6455aaa3 Binary files /dev/null and b/external/EZFIO-v2.0.3.tar.gz differ diff --git a/external/EZFIO.2.0.2.tar.gz b/external/EZFIO.2.0.2.tar.gz deleted file mode 100644 index 3d1e7d75..00000000 Binary files a/external/EZFIO.2.0.2.tar.gz and /dev/null differ diff --git a/src/ao_basis/aos_in_r.irp.f b/src/ao_basis/aos_in_r.irp.f index 29e52169..7fcb980a 100644 --- a/src/ao_basis/aos_in_r.irp.f +++ b/src/ao_basis/aos_in_r.irp.f @@ -97,6 +97,7 @@ subroutine give_all_aos_at_r(r,aos_array) dz2 = dz**power_ao(3) do l = 1,ao_prim_num(k) beta = ao_expo_ordered_transp_per_nucl(l,j,i) + if(dabs(beta*r2).gt.40.d0)cycle aos_array(k)+= ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2) enddo aos_array(k) = aos_array(k) * dx2 * dy2 * dz2 @@ -162,6 +163,8 @@ subroutine give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array) accu_2 = 0.d0 do l = 1,ao_prim_num(k) beta = ao_expo_ordered_transp_per_nucl(l,j,i) + contrib = 0.d0 + if(beta*r2.gt.50.d0)cycle contrib = ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2) accu_1 += contrib accu_2 += contrib * beta diff --git a/src/basis_correction/basis_correction.irp.f b/src/basis_correction/basis_correction.irp.f index 11e53fcd..8d3264bc 100644 --- a/src/basis_correction/basis_correction.irp.f +++ b/src/basis_correction/basis_correction.irp.f @@ -7,6 +7,7 @@ program basis_correction touch read_wf no_core_density = .True. touch no_core_density + provide ao_two_e_integrals_in_map provide mo_two_e_integrals_in_map call print_basis_correction ! call print_e_b diff --git a/src/becke_numerical_grid/angular_grid_pts.irp.f b/src/becke_numerical_grid/angular_grid_pts.irp.f new file mode 100644 index 00000000..65a45977 --- /dev/null +++ b/src/becke_numerical_grid/angular_grid_pts.irp.f @@ -0,0 +1,104 @@ + + BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ] +&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)] + implicit none + BEGIN_DOC + ! weights and grid points for the integration on the angular variables on + ! the unit sphere centered on (0,0,0) + ! According to the LEBEDEV scheme + END_DOC + + include 'constants.include.F' + integer :: i + double precision :: accu + double precision :: degre_rad + double precision :: x(n_points_integration_angular) + double precision :: y(n_points_integration_angular) + double precision :: z(n_points_integration_angular) + double precision :: w(n_points_integration_angular) + + degre_rad = pi/180.d0 + accu = 0.d0 + + select case (n_points_integration_angular) + + + case (0006) + call LD0006(X,Y,Z,W,n_points_integration_angular) + case (0014) + call LD0014(X,Y,Z,W,n_points_integration_angular) + case (0026) + call LD0026(X,Y,Z,W,n_points_integration_angular) + case (0038) + call LD0038(X,Y,Z,W,n_points_integration_angular) + case (0050) + call LD0050(X,Y,Z,W,n_points_integration_angular) + case (0074) + call LD0074(X,Y,Z,W,n_points_integration_angular) + case (0086) + call LD0086(X,Y,Z,W,n_points_integration_angular) + case (0110) + call LD0110(X,Y,Z,W,n_points_integration_angular) + case (0146) + call LD0146(X,Y,Z,W,n_points_integration_angular) + case (0170) + call LD0170(X,Y,Z,W,n_points_integration_angular) + case (0194) + call LD0194(X,Y,Z,W,n_points_integration_angular) + case (0230) + call LD0230(X,Y,Z,W,n_points_integration_angular) + case (0266) + call LD0266(X,Y,Z,W,n_points_integration_angular) + case (0302) + call LD0302(X,Y,Z,W,n_points_integration_angular) + case (0350) + call LD0350(X,Y,Z,W,n_points_integration_angular) + case (0434) + call LD0434(X,Y,Z,W,n_points_integration_angular) + case (0590) + call LD0590(X,Y,Z,W,n_points_integration_angular) + case (0770) + call LD0770(X,Y,Z,W,n_points_integration_angular) + case (0974) + call LD0974(X,Y,Z,W,n_points_integration_angular) + case (1202) + call LD1202(X,Y,Z,W,n_points_integration_angular) + case (1454) + call LD1454(X,Y,Z,W,n_points_integration_angular) + case (1730) + call LD1730(X,Y,Z,W,n_points_integration_angular) + case (2030) + call LD2030(X,Y,Z,W,n_points_integration_angular) + case (2354) + call LD2354(X,Y,Z,W,n_points_integration_angular) + case (2702) + call LD2702(X,Y,Z,W,n_points_integration_angular) + case (3074) + call LD3074(X,Y,Z,W,n_points_integration_angular) + case (3470) + call LD3470(X,Y,Z,W,n_points_integration_angular) + case (3890) + call LD3890(X,Y,Z,W,n_points_integration_angular) + case (4334) + call LD4334(X,Y,Z,W,n_points_integration_angular) + case (4802) + call LD4802(X,Y,Z,W,n_points_integration_angular) + case (5294) + call LD5294(X,Y,Z,W,n_points_integration_angular) + case (5810) + call LD5810(X,Y,Z,W,n_points_integration_angular) + case default + print *, irp_here//': wrong n_points_integration_angular. See in ${QP_ROOT}/src/becke_numerical_grid/list_angular_grid to see the possible angular grid points. Ex: ' + print *, '[ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ]' + stop -1 + end select + + do i = 1, n_points_integration_angular + angular_quadrature_points(i,1) = x(i) + angular_quadrature_points(i,2) = y(i) + angular_quadrature_points(i,3) = z(i) + weights_angular_points(i) = w(i) * 4.d0 * pi + accu += w(i) + enddo + +END_PROVIDER diff --git a/src/becke_numerical_grid/grid_becke.irp.f b/src/becke_numerical_grid/grid_becke.irp.f index bedf0a84..79f15c9a 100644 --- a/src/becke_numerical_grid/grid_becke.irp.f +++ b/src/becke_numerical_grid/grid_becke.irp.f @@ -39,75 +39,6 @@ BEGIN_PROVIDER [integer, n_points_grid_per_atom] END_DOC n_points_grid_per_atom = n_points_integration_angular * n_points_radial_grid -END_PROVIDER - - BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ] -&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)] - implicit none - BEGIN_DOC - ! weights and grid points for the integration on the angular variables on - ! the unit sphere centered on (0,0,0) - ! According to the LEBEDEV scheme - END_DOC - - include 'constants.include.F' - integer :: i - double precision :: accu - double precision :: degre_rad - double precision :: x(n_points_integration_angular) - double precision :: y(n_points_integration_angular) - double precision :: z(n_points_integration_angular) - double precision :: w(n_points_integration_angular) - - degre_rad = pi/180.d0 - accu = 0.d0 - - select case (n_points_integration_angular) - - case (5810) - call LD5810(X,Y,Z,W,n_points_integration_angular) - - case (2030) - call LD2030(X,Y,Z,W,n_points_integration_angular) - - case (1202) - call LD1202(X,Y,Z,W,n_points_integration_angular) - - case (0590) - call LD0590(X,Y,Z,W,n_points_integration_angular) - - case (302) - call LD0302(X,Y,Z,W,n_points_integration_angular) - - case (266) - call LD0266(X,Y,Z,W,n_points_integration_angular) - - case (194) - call LD0194(X,Y,Z,W,n_points_integration_angular) - - case (170) - call LD0170(X,Y,Z,W,n_points_integration_angular) - - case (74) - call LD0074(X,Y,Z,W,n_points_integration_angular) - - case (50) - call LD0050(X,Y,Z,W,n_points_integration_angular) - - case default - print *, irp_here//': wrong n_points_integration_angular. Expected:' - print *, '[ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ]' - stop -1 - end select - - do i = 1, n_points_integration_angular - angular_quadrature_points(i,1) = x(i) - angular_quadrature_points(i,2) = y(i) - angular_quadrature_points(i,3) = z(i) - weights_angular_points(i) = w(i) * 4.d0 * pi - accu += w(i) - enddo - END_PROVIDER BEGIN_PROVIDER [integer , m_knowles] diff --git a/src/determinants/slater_rules.irp.f b/src/determinants/slater_rules.irp.f index fb77fb45..bcca451b 100644 --- a/src/determinants/slater_rules.irp.f +++ b/src/determinants/slater_rules.irp.f @@ -1774,12 +1774,12 @@ subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb) integer :: k,l,i if (iorb < 1) then - print *, irp_here, 'iorb < 1' + print *, irp_here, ': iorb < 1' print *, iorb, mo_num stop -1 endif if (iorb > mo_num) then - print *, irp_here, 'iorb > mo_num' + print *, irp_here, ': iorb > mo_num' print *, iorb, mo_num stop -1 endif diff --git a/src/determinants/spindeterminants.irp.f b/src/determinants/spindeterminants.irp.f index 62db470b..d5421a22 100644 --- a/src/determinants/spindeterminants.irp.f +++ b/src/determinants/spindeterminants.irp.f @@ -362,6 +362,31 @@ subroutine write_spindeterminants call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows) call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns) +end + +subroutine read_spindeterminants + use bitmasks + implicit none + integer :: k + + call ezfio_get_spindeterminants_n_det(N_det) + call ezfio_get_spindeterminants_n_states(N_states) + TOUCH N_det N_states + + call ezfio_get_spindeterminants_n_det_alpha(N_det_alpha_unique) + call ezfio_get_spindeterminants_n_det_beta(N_det_beta_unique) + call ezfio_get_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values) + call ezfio_get_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows) + call ezfio_get_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns) + call ezfio_get_spindeterminants_psi_det_alpha(psi_det_alpha_unique) + call ezfio_get_spindeterminants_psi_det_beta(psi_det_beta_unique) + do k=1,N_det + psi_bilinear_matrix_order(k) = k + enddo + TOUCH psi_bilinear_matrix_values psi_bilinear_matrix_rows psi_bilinear_matrix_columns N_det_alpha_unique N_det_beta_unique psi_det_alpha_unique psi_det_beta_unique psi_bilinear_matrix_order + + call wf_of_psi_bilinear_matrix(.True.) + end BEGIN_PROVIDER [ double precision, det_alpha_norm, (N_det_alpha_unique) ] diff --git a/src/dft_one_e/effective_pot.irp.f b/src/dft_one_e/effective_pot.irp.f index c7bd6b39..e680cb72 100644 --- a/src/dft_one_e/effective_pot.irp.f +++ b/src/dft_one_e/effective_pot.irp.f @@ -54,31 +54,22 @@ END_PROVIDER &BEGIN_PROVIDER [double precision, ao_effective_one_e_potential_without_kin, (ao_num, ao_num,N_states)] implicit none integer :: i,j,istate - effective_one_e_potential = 0.d0 + ao_effective_one_e_potential = 0.d0 + ao_effective_one_e_potential_without_kin = 0.d0 BEGIN_DOC -! Effective_one_e_potential(i,j) = $\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle$ +! Effective_one_e_potential(i,j) = $\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle$ ! ! on the |MO| basis ! ! Taking the expectation value does not provide any energy, but ! -! effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts +! ao_effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts ! ! and it is used in any RS-DFT based calculations END_DOC do istate = 1, N_states - do j = 1, mo_num - do i = 1, mo_num - - effective_one_e_potential(i,j,istate) = short_range_Hartree_operator(i,j,istate) + mo_integrals_n_e(i,j) + mo_kinetic_integrals(i,j) & - + 0.5d0 * (potential_x_alpha_mo(i,j,istate) + potential_c_alpha_mo(i,j,istate) & - + potential_x_beta_mo(i,j,istate) + potential_c_beta_mo(i,j,istate) ) - - effective_one_e_potential_without_kin(i,j,istate) = short_range_Hartree_operator(i,j,istate) + mo_integrals_n_e(i,j) & - + 0.5d0 * (potential_x_alpha_mo(i,j,istate) + potential_c_alpha_mo(i,j,istate) & - + potential_x_beta_mo(i,j,istate) + potential_c_beta_mo(i,j,istate) ) - enddo - enddo + call mo_to_ao(effective_one_e_potential(1,1,istate),mo_num,ao_effective_one_e_potential(1,1,istate),ao_num) + call mo_to_ao(effective_one_e_potential_without_kin(1,1,istate),mo_num,ao_effective_one_e_potential_without_kin(1,1,istate),ao_num) enddo END_PROVIDER diff --git a/src/dft_utils_func/on_top_from_ueg.irp.f b/src/dft_utils_func/on_top_from_ueg.irp.f index 70560a7a..717081a7 100644 --- a/src/dft_utils_func/on_top_from_ueg.irp.f +++ b/src/dft_utils_func/on_top_from_ueg.irp.f @@ -32,10 +32,15 @@ double precision function g0_UEG_mu_inf(rho_a,rho_b) C = 0.08193d0 D = -0.01277d0 E = 0.001859d0 - if (dabs(rho) > 1.d-12) then + x = -d2*rs + if (dabs(rho) > 1.d-20) then rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19 x = -d2*rs - g0_UEG_mu_inf= 0.5d0 * (1d0- B*rs + C*rs**2 + D*rs**3 + E*rs**4)*exp(x) + if(dabs(x).lt.50.d0)then + g0_UEG_mu_inf= 0.5d0 * (1d0- B*rs + C*rs**2 + D*rs**3 + E*rs**4)*dexp(x) + else + g0_UEG_mu_inf= 0.d0 + endif else g0_UEG_mu_inf= 0.d0 endif @@ -63,11 +68,19 @@ double precision function g0_UEG_mu(mu,rho_a,rho_b) C = 0.08193d0 D = -0.01277d0 E = 0.001859d0 - rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19 + if(rho.gt.1.d-20)then + rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19 + else + rs = (3d0 / (4d0*pi*1.d-20))**(1d0/3d0) + endif kf = (alpha*rs)**(-1d0) zeta = mu / kf x = -d2*rs*h_func(zeta)/ahd - g0_UEG_mu = (exp(x)/2d0) * (1d0- B*(h_func(zeta)/ahd)*rs + C*((h_func(zeta)**2d0)/(ahd**2d0))*(rs**2d0) + D*((h_func(zeta)**3d0)/(ahd**3d0))*(rs**3d0) + E*((h_func(zeta)**4d0)/(ahd**4d0))*(rs**4d0) ) + if(dabs(x).lt.50.d0)then + g0_UEG_mu = (dexp(x)/2d0) * (1d0- B*(h_func(zeta)/ahd)*rs + C*((h_func(zeta)**2d0)/(ahd**2d0))*(rs**2d0) + D*((h_func(zeta)**3d0)/(ahd**3d0))*(rs**3d0) + E*((h_func(zeta)**4d0)/(ahd**4d0))*(rs**4d0) ) + else + g0_UEG_mu = 0.d0 + endif end @@ -81,11 +94,11 @@ double precision function h_func(zeta) pi = 4d0 * datan(1d0) ahd = -0.36583d0 alpha = (4d0/(9d0*pi))**(1d0/3d0) - a1 = -(6d0*alpha/pi)*(1d0-log(2d0)) + a1 = -(6d0*alpha/pi)*(1d0-dlog(2d0)) b1 = 1.4919d0 b3 = 1.91528d0 a2 = ahd * b3 - b2 = (a1 - (b3*alpha/sqrt(pi)))/ahd + b2 = (a1 - (b3*alpha/dsqrt(pi)))/ahd h_func = (a1*zeta**2d0 + a2*zeta**3d0) / (1d0 + b1*zeta + b2*zeta**2d0 + b3*zeta**3d0) end @@ -111,11 +124,23 @@ end D1 = -0.0127713d0 E1 = 0.00185898d0 B1 = 0.7317d0 - F1 - rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0) + if(dabs(rho).gt.1.d-20)then + rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0) + else + rs = (3.d0 / (4.d0*pi*1.d-20))**(1.d0/3.d0) + endif g0 = g0_UEG_mu_inf(rho_a, rho_b) - dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*exp(-F1*rs) - dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs + if(dabs(F1*rs).lt.50.d0)then + dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*dexp(-F1*rs) + else + dg0drs = 0.d0 + endif + if(dabs(rho).gt.1.d-20)then + dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs + else + dg0drho = -((6.d0*dsqrt(pi)*1.d-40)**(-2.d0/3.d0))*dg0drs + endif end subroutine g0_dg0 diff --git a/src/dft_utils_func/routines_exc_sr_lda.irp.f b/src/dft_utils_func/routines_exc_sr_lda.irp.f index ea1dcd69..21fde301 100644 --- a/src/dft_utils_func/routines_exc_sr_lda.irp.f +++ b/src/dft_utils_func/routines_exc_sr_lda.irp.f @@ -114,6 +114,7 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b) double precision :: f12,f13,f14,f32,f23,f43,f16 double precision :: ckf double precision :: a, akf,a2, a3 + double precision :: exp_f14a2 z0 = 0.D0 z1 = 1.D0 @@ -153,8 +154,13 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b) !Intermediate values of a elseif (a.le.100d0) then - ex_a = - (rho_a_2*(z24*rho_a_2/pi)**f13) * (z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*dexp(-f14/a2)-z3*a+z4*a3)) - vx_a = -(z3*rho_a_2/pi)**f13 + z2*a*mu/pi*(dexp(-f14/a2)-z1)+mu/sqpi * derf(f12/a) + if(dabs(f14/a2).lt.50.d0)then + exp_f14a2 = dexp(-f14/a2) + else + exp_f14a2 = 0.d0 + endif + ex_a = - (rho_a_2*(z24*rho_a_2/pi)**f13) * (z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)* exp_f14a2 -z3*a+z4*a3)) + vx_a = -(z3*rho_a_2/pi)**f13 + z2*a*mu/pi*(exp_f14a2 - z1)+mu/sqpi * derf(f12/a) !Expansion for large a @@ -185,8 +191,13 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b) !Intermediate values of a elseif (a.le.100d0) then - ex_b = - (rho_b_2*(z24*rho_b_2/pi)**f13)*(z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*dexp(-f14/a2)-z3*a+z4*a3)) - vx_b = -(z3*rho_b_2/pi)**f13+ z2*a*mu/pi*(dexp(-f14/a2)-z1)+mu/sqpi* derf(f12/a) + if(dabs(f14/a2).lt.50.d0)then + exp_f14a2 = dexp(-f14/a2) + else + exp_f14a2 = 0.d0 + endif + ex_b = - (rho_b_2*(z24*rho_b_2/pi)**f13)*(z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*exp_f14a2-z3*a+z4*a3)) + vx_b = -(z3*rho_b_2/pi)**f13+ z2*a*mu/pi*(exp_f14a2-z1)+mu/sqpi* derf(f12/a) !Expansion for large a elseif (a.lt.1.d+9) then @@ -254,7 +265,11 @@ end double precision derf eta=19.0d0 - fak=2.540118935556d0*dexp(-eta*a*a) + if(dabs(eta*a*a).lt.50.d0)then + fak=2.540118935556d0*dexp(-eta*a*a) + else + fak=0.d0 + endif if(a .lt. 0.075d0) then ! expansion for small mu to avoid numerical problems @@ -301,7 +316,11 @@ end double precision t1,t2,tdexp,t3,t4,t5 eta=19.0d0 - fak=2.540118935556d0*dexp(-eta*a*a) + if(dabs(eta*a*a).lt.50.d0)then + fak=2.540118935556d0*dexp(-eta*a*a) + else + fak=0.d0 + endif dfakda=-2.0d0*eta*a*fak if(a .lt. 0.075d0) then @@ -373,17 +392,29 @@ subroutine ecorrlr(rs,z,mu,eclr) b0=adib*rs - d2anti=(q1a*rs+q2a*rs**2)*exp(-abs(q3a)*rs)/rs**2 - d3anti=(t1a*rs+t2a*rs**2)*exp(-abs(t3a)*rs)/rs**3 + double precision :: exp_q3a_rs + if(dabs(q3a*rs).lt.50.d0)then + exp_q3a_rs = dexp(-dabs(q3a)*rs) + else + exp_q3a_rs = 0.d0 + endif + d2anti=(q1a*rs+q2a*rs**2)*exp_q3a_rs/rs**2 + double precision :: exp_t3a_rs + if(dabs(t3a*rs).lt.50.d0)then + exp_t3a_rs = dexp(-dabs(t3a)*rs) + else + exp_t3a_rs = 0.d0 + endif + d3anti=(t1a*rs+t2a*rs**2)*exp_t3a_rs/rs**3 coe2=-3.d0/8.d0/rs**3*(1.d0-z**2)*(g0f(rs)-0.5d0) - coe3=-(1.d0-z**2)*g0f(rs)/(sqrt(2.d0*pi)*rs**3) + coe3=-(1.d0-z**2)*g0f(rs)/(dsqrt(2.d0*pi)*rs**3) - if(abs(z).eq.1.d0) then + if(dabs(z).eq.1.d0) then coe4=-9.d0/64.d0/rs**3*(dpol(rs) -cf**2*2d0**(5.d0/3.d0)/5.d0/rs**2) - coe5=-9.d0/40.d0/(sqrt(2.d0*pi)*rs**3)*dpol(rs) + coe5=-9.d0/40.d0/(dsqrt(2.d0*pi)*rs**3)*dpol(rs) else @@ -393,7 +424,7 @@ subroutine ecorrlr(rs,z,mu,eclr) (1.-z**2)*d2anti-cf**2/10.d0*((1.d0+z)**(8.d0/3.d0) & +(1.-z)**(8.d0/3.d0))/rs**2) - coe5=-9.d0/40.d0/(sqrt(2.d0*pi)*rs**3)*(((1.d0+z)/2.d0)**2 & + coe5=-9.d0/40.d0/(dsqrt(2.d0*pi)*rs**3)*(((1.d0+z)/2.d0)**2 & *dpol(rs*(2.d0/(1.d0+z))**(1.d0/3.d0))+((1.d0-z)/2.d0)**2 & *dpol(rs*(2.d0/(1.d0-z))**(1.d0/3.d0))+(1.d0-z**2)* & d3anti) @@ -409,13 +440,13 @@ subroutine ecorrlr(rs,z,mu,eclr) a3=b0**8*coe3 a4=b0**6*(b0**2*coe2+4.d0*ec) - if(mu*sqrt(rs)/phi.lt.0.d0)then + if(mu*dsqrt(rs)/phi.lt.0.d0)then print*,'phi',phi print*,'mu ',mu print*,'rs ',rs stop -1 endif - eclr=(phi**3*Qrpa(mu*sqrt(rs)/phi)+a1*mu**3+a2*mu**4+a3*mu**5+ & + eclr=(phi**3*Qrpa(mu*dsqrt(rs)/phi)+a1*mu**3+a2*mu**4+a3*mu**5+ & a4*mu**6+b0**8*mu**8*ec)/((1.d0+b0**2*mu**2)**4) return @@ -467,18 +498,29 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) !SCF b0=adib*rs + double precision :: exp_q3a_rs,exp_t3a_rs + if(dabs(q3a*rs).lt.50.d0)then + exp_q3a_rs = dexp(-q3a*rs) + else + exp_q3a_rs = 0.d0 + endif + if(dabs(t3a*rs).lt.50.d0)then + exp_t3a_rs = dexp(-t3a*rs) + else + exp_t3a_rs = 0.d0 + endif - d2anti=(q1a+q2a*rs)*exp(-q3a*rs)/rs - d3anti=(t1a+t2a*rs)*exp(-t3a*rs)/rs**2 + d2anti=(q1a+q2a*rs)*exp_q3a_rs/rs + d3anti=(t1a+t2a*rs)*exp_t3a_rs/rs**2 - d2antid=-((q1a + q1a*q3a*rs + q2a*q3a*rs**2)/rs**2)*exp(-q3a*rs) - d3antid=-((rs*t2a*(1d0 + rs*t3a) + t1a*(2d0 + rs*t3a))/rs**3)*exp(-rs*t3a) + d2antid=-((q1a + q1a*q3a*rs + q2a*q3a*rs**2)/rs**2)*exp_q3a_rs + d3antid=-((rs*t2a*(1d0 + rs*t3a) + t1a*(2d0 + rs*t3a))/rs**3)*exp_t3a_rs !SCD - d2antidd = exp(-q3a*rs)/rs**3*( & + d2antidd = exp_q3a_rs/rs**3*( & q3a**2*q1a*rs**2+q2a*q3a**2*rs**3 & +2.d0*q3a*q1a*rs+2.d0*q1a) - d3antidd = exp(-t3a*rs)/rs**4* & + d3antidd = exp_t3a_rs/rs**4* & (2.d0*t3a*t2a*rs**2 + 2.d0*t2a*rs & + t1a*t3a**2*rs**2 + t2a*t3a**2*rs**3 & + 4.d0*t1a*t3a*rs + 6.d0*t1a) @@ -526,7 +568,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) +dpoldd(rs)*rs**4) coe4zd = 0.d0 - coe5rsd = -9.d0/40.d0/sqrt(2.d0/pi)/rs**5* & + coe5rsd = -9.d0/40.d0/dsqrt(2.d0/pi)/rs**5* & (12.d0*dpol(rs)-6.d0*rs*dpold(rs) & +rs**2*dpoldd(rs)) coe5zd = 0.d0 @@ -670,7 +712,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) a5zd= 0.d0 !SCF - x=mu*sqrt(rs)/phi + x=mu*dsqrt(rs)/phi eclr=(phi**3*Qrpa(x)+a1*mu**3+a2*mu**4+a3*mu**5+ & a4*mu**6+a5*mu**8)/((1.d0+b0**2*mu**2)**4) @@ -759,8 +801,14 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) D0f = 0.752411d0 E0f = -0.0127713d0 F0f = 0.00185898d0 + double precision :: exp_d0fx + if(dabs(D0f*x).lt.50.d0)then + exp_d0fx = dexp(-dabs(D0f)*x) + else + exp_d0fx = 0.d0 + endif g0f=(1.d0-(0.7317d0-D0f)*x+C0f*x**2+E0f*x**3+ & - F0f*x**4)*exp(-abs(D0f)*x)/2.d0 + F0f*x**4)*exp_d0fx/2.d0 return end @@ -774,7 +822,11 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) Dg0 = -0.0127713d0 Eg0 = 0.00185898d0 Bg0 =0.7317d0-Fg0 - expsum=exp(-Fg0*rs) + if(dabs(Fg0*rs).lt.50.d0)then + expsum=dexp(-Fg0*rs) + else + expsum = 0.d0 + endif g0d=(-Bg0+2d0*Cg0*rs+3d0*Dg0*rs**2+4d0*Eg0*rs**3)/2.d0 & *expsum & - (Fg0*(1d0 - Bg0*rs + Cg0*rs**2 + Dg0*rs**3 + Eg0*rs**4))/ & @@ -791,7 +843,11 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) Dg0 = -0.0127713d0 Eg0 = 0.00185898d0 Bg0 = 0.7317d0-Fg0 - expsum=exp(-Fg0*rs) + if(dabs(Fg0*rs).lt.50.d0)then + expsum=dexp(-Fg0*rs) + else + expsum=0.d0 + endif g0dd = (2.d0*Cg0+6.d0*Dg0*rs+12.d0*Eg0*rs**2)/2.d0* & expsum & - (-Bg0+2.d0*Cg0*rs+3.d0*Dg0*rs**2+4.d0*Eg0*rs**3)*Fg0* & @@ -856,19 +912,12 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) implicit none double precision pi,a2,b2,c2,d2,x,Acoul pi=dacos(-1.d0) - Acoul=2.d0*(log(2.d0)-1.d0)/pi**2 + Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2 a2 = 5.84605d0 c2 = 3.91744d0 d2 = 3.44851d0 b2=d2-3.d0/(2.d0*pi*Acoul)*(4.d0/(9.d0*pi))**(1.d0/3.d0) - !if(((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)).le.0.d0)then - ! print*,(1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2) - ! print*,(1.d0+a2*x+b2*x**2+c2*x**3),(1.d0+a2*x+d2*x**2) - ! print*,x - ! pause - !endif - !Qrpa=Acoul*log(dabs((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2))) - Qrpa=Acoul*log((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)) + Qrpa=Acoul*dlog((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)) return end @@ -876,7 +925,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) implicit none double precision pi,a2,b2,c2,d2,x,Acoul pi=dacos(-1.d0) - Acoul=2.d0*(log(2.d0)-1.d0)/pi**2 + Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2 a2 = 5.84605d0 c2 = 3.91744d0 d2 = 3.44851d0 @@ -894,7 +943,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) double precision pi,a2,b2,c2,d2,x,Acoul double precision uQ,duQ,dduQ,vQ,dvQ,ddvQ pi=dacos(-1.d0) - Acoul=2.d0*(log(2.d0)-1.d0)/pi**2 + Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2 a2 = 5.84605d0 c2 = 3.91744d0 d2 = 3.44851d0 @@ -934,7 +983,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) ff=((1.d0+y)**(4.d0/3.d0)+(1.d0-y)**(4.d0/3.d0)- & 2.d0)/(2.d0**(4.d0/3.d0)-2.d0) - aaa=(1.d0-log(2.d0))/pi**2 + aaa=(1.d0-dlog(2.d0))/pi**2 call GPW(x,aaa,0.21370d0,7.5957d0,3.5876d0, & 1.6382d0,0.49294d0,G,Gd,Gdd) ec0=G @@ -969,8 +1018,6 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) return end -! subroutine GPW(x,Ac,alfa1,beta1,beta2,beta3,beta4,G,Gd) -!SCD subroutine GPW(x,Ac,alfa1,beta1,beta2,beta3,beta4,G,Gd,Gdd) !SCF !cc Gd is d/drs G @@ -982,7 +1029,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd) double precision A,dA,ddA,B !SCF double precision sqrtx - sqrtx=sqrt(x) + sqrtx=dsqrt(x) G=-2.d0*Ac*(1.d0+alfa1*x)*dlog(1.d0+1.d0/(2.d0* & Ac*(beta1*x**0.5d0+ & beta2*x+beta3*x**1.5d0+beta4*x**2))) diff --git a/src/tools/print_energy.irp.f b/src/tools/print_energy.irp.f index 056531a0..6f770f6a 100644 --- a/src/tools/print_energy.irp.f +++ b/src/tools/print_energy.irp.f @@ -8,6 +8,7 @@ program print_energy ! psi_coef_sorted are the wave function stored in the |EZFIO| directory. read_wf = .True. touch read_wf + PROVIDE N_states if (is_complex) then call run_complex else @@ -17,18 +18,20 @@ end subroutine run implicit none - integer :: i + integer :: i,j double precision :: i_H_psi_array(N_states) double precision :: E(N_states) double precision :: norm(N_states) - E(:) = nuclear_repulsion - norm(:) = 0.d0 + E(1:N_states) = nuclear_repulsion + norm(1:N_states) = 0.d0 do i=1,N_det call i_H_psi(psi_det(1,1,i), psi_det, psi_coef, N_int, N_det, & size(psi_coef,1), N_states, i_H_psi_array) - norm(:) += psi_coef(i,:)**2 - E(:) += i_H_psi_array(:) * psi_coef(i,:) + do j=1,N_states + norm(j) += psi_coef(i,j)*psi_coef(i,j) + E(j) += i_H_psi_array(j) * psi_coef(i,j) + enddo enddo print *, 'Energy:' @@ -44,13 +47,15 @@ subroutine run_complex double precision :: e(n_states) double precision :: norm(n_states) - e(:) = nuclear_repulsion - norm(:) = 0.d0 + e(1:n_states) = nuclear_repulsion + norm(1:n_states) = 0.d0 do i=1,n_det call i_H_psi_complex(psi_det(1,1,i), psi_det, psi_coef_complex, N_int, N_det, & size(psi_coef_complex,1), N_states, i_H_psi_array) - norm(:) += cdabs(psi_coef_complex(i,:))**2 - E(:) += dble(i_h_psi_array(:) * dconjg(psi_coef_complex(i,:))) + do j=1,n_states + norm(j) += cdabs(psi_coef_complex(i,j))**2 + E(j) += dble(i_h_psi_array(j) * dconjg(psi_coef_complex(i,j))) + enddo enddo print *, 'Energy:'