mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 20:33:20 +01:00
added many files and did a lot of documentation for bi-ortho scf
This commit is contained in:
parent
b3f425f57e
commit
bdce53d8b1
5
src/ao_many_one_e_ints/NEED
Normal file
5
src/ao_many_one_e_ints/NEED
Normal file
@ -0,0 +1,5 @@
|
||||
ao_one_e_ints
|
||||
ao_two_e_ints
|
||||
becke_numerical_grid
|
||||
mo_one_e_ints
|
||||
dft_utils_in_r
|
25
src/ao_many_one_e_ints/README.rst
Normal file
25
src/ao_many_one_e_ints/README.rst
Normal file
@ -0,0 +1,25 @@
|
||||
==================
|
||||
ao_many_one_e_ints
|
||||
==================
|
||||
|
||||
This module contains A LOT of one-electron integrals of the type
|
||||
A_ij( r ) = \int dr' phi_i(r') w(r,r') phi_j(r')
|
||||
where r is a point in real space.
|
||||
|
||||
+) ao_gaus_gauss.irp.f: w(r,r') is a exp(-(r-r')^2) , and can be multiplied by x/y/z
|
||||
+) ao_erf_gauss.irp.f : w(r,r') is a exp(-(r-r')^2) erf(mu * |r-r'|)/|r-r'| , and can be multiplied by x/y/z
|
||||
+) ao_erf_gauss_grad.irp.f: w(r,r') is a exp(-(r-r')^2) erf(mu * |r-r'|)/|r-r'| , and can be multiplied by x/y/z, but evaluated with also one gradient of an AO function.
|
||||
|
||||
Fit of a Slater function and corresponding integrals
|
||||
----------------------------------------------------
|
||||
The file fit_slat_gauss.irp.f contains many useful providers/routines to fit a Slater function with 20 gaussian.
|
||||
+) coef_fit_slat_gauss : coefficients of the gaussians to fit e^(-x)
|
||||
+) expo_fit_slat_gauss : exponents of the gaussians to fit e^(-x)
|
||||
|
||||
Integrals involving Slater functions : stg_gauss_int.irp.f
|
||||
|
||||
Taylor expansion of full correlation factor
|
||||
-------------------------------------------
|
||||
In taylor_exp.irp.f you might find interesting integrals of the type
|
||||
\int dr' exp( e^{-alpha |r-r|' - beta |r-r'|^2}) phi_i(r') phi_j(r')
|
||||
evaluated as a Taylor expansion of the exponential.
|
269
src/ao_many_one_e_ints/ao_erf_gauss.irp.f
Normal file
269
src/ao_many_one_e_ints/ao_erf_gauss.irp.f
Normal file
@ -0,0 +1,269 @@
|
||||
|
||||
subroutine phi_j_erf_mu_r_xyz_phi(i,j,mu_in, C_center, xyz_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! xyz_ints(1/2/3) = int dr phi_j(r) [erf(mu |r - C|)/|r-C|] x/y/z phi_i(r)
|
||||
!
|
||||
! where phi_i and phi_j are AOs
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: xyz_ints(3)
|
||||
integer :: num_A,power_A(3), num_b, power_B(3),power_B_tmp(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
integer :: n_pt_in,l,m,mm
|
||||
xyz_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
do mm = 1, 3
|
||||
! (x phi_i ) * phi_j
|
||||
! x * (x - B_x)^b_x = b_x (x - B_x)^b_x + 1 * (x - B_x)^{b_x+1}
|
||||
!
|
||||
! first contribution :: B_x (x - B_x)^b_x :: usual integral multiplied by B_x
|
||||
power_B_tmp = power_B
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
xyz_ints(mm) += contrib * B_center(mm) * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
! second contribution :: 1 * (x - B_x)^(b_x+1) :: integral with b_x=>b_x+1
|
||||
power_B_tmp(mm) += 1
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
xyz_ints(mm) += contrib * 1.d0 * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
double precision function phi_j_erf_mu_r_phi(i,j,mu_in, C_center)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! phi_j_erf_mu_r_phi = int dr phi_j(r) [erf(mu |r - C|)/|r-C|] phi_i(r)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
integer :: num_A,power_A(3), num_b, power_B(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
integer :: n_pt_in,l,m
|
||||
phi_j_erf_mu_r_phi = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
phi_j_erf_mu_r_phi += contrib * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine erfc_mu_gauss_xyz_ij_ao(i,j,mu, C_center, delta,gauss_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gauss_ints(m) = \int dr exp(-delta (r - C)^2 ) x/y/z * ( 1 - erf(mu |r-r'|))/ |r-r'| * AO_i(r') * AO_j(r')
|
||||
!
|
||||
! with m = 1 ==> x, m = 2, m = 3 ==> z
|
||||
!
|
||||
! m = 4 ==> no x/y/z
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu, C_center(3),delta
|
||||
double precision, intent(out):: gauss_ints(4)
|
||||
|
||||
integer :: num_A,power_A(3), num_b, power_B(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
double precision :: xyz_ints(4)
|
||||
integer :: n_pt_in,l,m,mm
|
||||
gauss_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
gauss_ints = 0.d0
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
call erfc_mu_gauss_xyz(C_center,delta,mu,A_center,B_center,power_A,power_B,alpha,beta,n_pt_in,xyz_ints)
|
||||
do mm = 1, 4
|
||||
gauss_ints(mm) += xyz_ints(mm) * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine erf_mu_gauss_ij_ao(i,j,mu, C_center, delta,gauss_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gauss_ints(m) = \int dr exp(-delta (r - C)^2 ) * erf(mu |r-r'|)/ |r-r'| * AO_i(r') * AO_j(r')
|
||||
!
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu, C_center(3),delta
|
||||
double precision, intent(out):: gauss_ints
|
||||
|
||||
integer :: num_A,power_A(3), num_b, power_B(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
double precision :: integral , erf_mu_gauss
|
||||
integer :: n_pt_in,l,m,mm
|
||||
gauss_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
if(dabs(ao_coef_normalized_ordered_transp(l,j) * ao_coef_normalized_ordered_transp(m,i)).lt.1.d-12)cycle
|
||||
integral = erf_mu_gauss(C_center,delta,mu,A_center,B_center,power_A,power_B,alpha,beta,n_pt_in)
|
||||
gauss_ints += integral * ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine NAI_pol_x_mult_erf_ao(i_ao,j_ao,mu_in,C_center,ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
END_DOC
|
||||
include 'utils/constants.include.F'
|
||||
integer, intent(in) :: i_ao,j_ao
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: ints(3)
|
||||
double precision :: A_center(3), B_center(3),integral, alpha,beta
|
||||
double precision :: NAI_pol_mult_erf
|
||||
integer :: i,j,num_A,num_B, power_A(3), power_B(3), n_pt_in, power_xA(3),m
|
||||
ints = 0.d0
|
||||
if(ao_overlap_abs(j_ao,i_ao).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
num_A = ao_nucl(i_ao)
|
||||
power_A(1:3)= ao_power(i_ao,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j_ao)
|
||||
power_B(1:3)= ao_power(j_ao,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alpha = ao_expo_ordered_transp(i,i_ao)
|
||||
do m = 1, 3
|
||||
power_xA = power_A
|
||||
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
|
||||
power_xA(m) += 1
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
beta = ao_expo_ordered_transp(j,j_ao)
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
integral = NAI_pol_mult_erf(A_center,B_center,power_xA,power_B,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
ints(m) += integral * ao_coef_normalized_ordered_transp(j,j_ao)*ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
! Second term = Ax * (x-Ax)**(ax)
|
||||
integral = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
ints(m) += A_center(m) * integral * ao_coef_normalized_ordered_transp(j,j_ao)*ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine NAI_pol_x_specify_mult_erf_ao(i_ao,j_ao,mu_in,C_center,m,ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
! $\int_{-\infty}^{infty} dr X(m) * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! if m == 1 X(m) = x, m == 1 X(m) = y, m == 1 X(m) = z
|
||||
END_DOC
|
||||
include 'utils/constants.include.F'
|
||||
integer, intent(in) :: i_ao,j_ao,m
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: ints
|
||||
double precision :: A_center(3), B_center(3),integral, alpha,beta
|
||||
double precision :: NAI_pol_mult_erf
|
||||
integer :: i,j,num_A,num_B, power_A(3), power_B(3), n_pt_in, power_xA(3)
|
||||
ints = 0.d0
|
||||
if(ao_overlap_abs(j_ao,i_ao).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
num_A = ao_nucl(i_ao)
|
||||
power_A(1:3)= ao_power(i_ao,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j_ao)
|
||||
power_B(1:3)= ao_power(j_ao,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alpha = ao_expo_ordered_transp(i,i_ao)
|
||||
power_xA = power_A
|
||||
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
|
||||
power_xA(m) += 1
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
beta = ao_expo_ordered_transp(j,j_ao)
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
integral = NAI_pol_mult_erf(A_center,B_center,power_xA,power_B,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
ints += integral * ao_coef_normalized_ordered_transp(j,j_ao)*ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
! Second term = Ax * (x-Ax)**(ax)
|
||||
integral = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
ints += A_center(m) * integral * ao_coef_normalized_ordered_transp(j,j_ao)*ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
150
src/ao_many_one_e_ints/ao_erf_gauss_grad.irp.f
Normal file
150
src/ao_many_one_e_ints/ao_erf_gauss_grad.irp.f
Normal file
@ -0,0 +1,150 @@
|
||||
subroutine phi_j_erf_mu_r_dxyz_phi(i,j,mu_in, C_center, dxyz_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dxyz_ints(1/2/3) = int dr phi_i(r) [erf(mu |r - C|)/|r-C|] d/d(x/y/z) phi_i(r)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: dxyz_ints(3)
|
||||
integer :: num_A,power_A(3), num_b, power_B(3),power_B_tmp(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf,coef,thr
|
||||
integer :: n_pt_in,l,m,mm
|
||||
thr = 1.d-12
|
||||
dxyz_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.thr)then
|
||||
return
|
||||
endif
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
coef = ao_coef_normalized_ordered_transp(l,j) * ao_coef_normalized_ordered_transp(m,i)
|
||||
if(dabs(coef).lt.thr)cycle
|
||||
do mm = 1, 3
|
||||
! (d/dx phi_i ) * phi_j
|
||||
! d/dx * (x - B_x)^b_x exp(-beta * (x -B_x)^2)= [b_x * (x - B_x)^(b_x - 1) - 2 beta * (x - B_x)^(b_x + 1)] exp(-beta * (x -B_x)^2)
|
||||
!
|
||||
! first contribution :: b_x (x - B_x)^(b_x-1) :: integral with b_x=>b_x-1 multiplied by b_x
|
||||
power_B_tmp = power_B
|
||||
power_B_tmp(mm) += -1
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
dxyz_ints(mm) += contrib * dble(power_B(mm)) * coef
|
||||
|
||||
! second contribution :: - 2 beta * (x - B_x)^(b_x + 1) :: integral with b_x=> b_x+1 multiplied by -2 * beta
|
||||
power_B_tmp = power_B
|
||||
power_B_tmp(mm) += 1
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
dxyz_ints(mm) += contrib * (-2.d0 * beta ) * coef
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine phi_j_erf_mu_r_dxyz_phi_bis(i,j,mu_in, C_center, dxyz_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dxyz_ints(1/2/3) = int dr phi_j(r) [erf(mu |r - C|)/|r-C|] d/d(x/y/z) phi_i(r)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: dxyz_ints(3)
|
||||
integer :: num_A,power_A(3), num_b, power_B(3),power_B_tmp(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
double precision :: thr, coef
|
||||
integer :: n_pt_in,l,m,mm,kk
|
||||
thr = 1.d-12
|
||||
dxyz_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.thr)then
|
||||
return
|
||||
endif
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j == A
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i == B
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
dxyz_ints = 0.d0
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
do kk = 1, 2 ! loop over the extra terms induced by the d/dx/y/z * AO(i)
|
||||
do mm = 1, 3
|
||||
power_B_tmp = power_B
|
||||
power_B_tmp(mm) = power_ord_grad_transp(kk,mm,i)
|
||||
coef = ao_coef_normalized_ordered_transp(l,j) * ao_coef_ord_grad_transp(kk,mm,m,i)
|
||||
if(dabs(coef).lt.thr)cycle
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
dxyz_ints(mm) += contrib * coef
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine phi_j_erf_mu_r_xyz_dxyz_phi(i,j,mu_in, C_center, dxyz_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dxyz_ints(1/2/3) = int dr phi_j(r) x/y/z [erf(mu |r - C|)/|r-C|] d/d(x/y/z) phi_i(r)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out):: dxyz_ints(3)
|
||||
integer :: num_A,power_A(3), num_b, power_B(3),power_B_tmp(3)
|
||||
double precision :: alpha, beta, A_center(3), B_center(3),contrib,NAI_pol_mult_erf
|
||||
double precision :: thr, coef
|
||||
integer :: n_pt_in,l,m,mm,kk
|
||||
thr = 1.d-12
|
||||
dxyz_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.thr)then
|
||||
return
|
||||
endif
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
! j == A
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3)= ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
! i == B
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3)= ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
dxyz_ints = 0.d0
|
||||
do l=1,ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
do kk = 1, 4 ! loop over the extra terms induced by the x/y/z * d dx/y/z AO(i)
|
||||
do mm = 1, 3
|
||||
power_B_tmp = power_B
|
||||
power_B_tmp(mm) = power_ord_xyz_grad_transp(kk,mm,i)
|
||||
coef = ao_coef_normalized_ordered_transp(l,j) * ao_coef_ord_xyz_grad_transp(kk,mm,m,i)
|
||||
if(dabs(coef).lt.thr)cycle
|
||||
contrib = NAI_pol_mult_erf(A_center,B_center,power_A,power_B_tmp,alpha,beta,C_center,n_pt_in,mu_in)
|
||||
dxyz_ints(mm) += contrib * coef
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
136
src/ao_many_one_e_ints/ao_gaus_gauss.irp.f
Normal file
136
src/ao_many_one_e_ints/ao_gaus_gauss.irp.f
Normal file
@ -0,0 +1,136 @@
|
||||
subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gauss_ints(m) = \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2}
|
||||
!
|
||||
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
double precision, intent(out) :: gauss_ints(3)
|
||||
|
||||
integer :: num_a,num_b,power_A(3), power_B(3),l,k,m
|
||||
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,gauss_ints_tmp(3)
|
||||
gauss_ints = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
num_A = ao_nucl(i)
|
||||
power_A(1:3)= ao_power(i,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
call overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints_tmp)
|
||||
do m = 1, 3
|
||||
gauss_ints(m) += gauss_ints_tmp(m) * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
double precision function overlap_gauss_xyz_r12_ao_specific(D_center,delta,i,j,mx)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2}
|
||||
!
|
||||
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,mx
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
|
||||
integer :: num_a,num_b,power_A(3), power_B(3),l,k
|
||||
double precision :: gauss_int
|
||||
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta
|
||||
double precision :: overlap_gauss_xyz_r12_specific
|
||||
overlap_gauss_xyz_r12_ao_specific = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
num_A = ao_nucl(i)
|
||||
power_A(1:3)= ao_power(i,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
gauss_int = overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
||||
overlap_gauss_xyz_r12_ao_specific = gauss_int * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine overlap_gauss_r12_all_ao(D_center,delta,aos_ints)
|
||||
implicit none
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
double precision, intent(out):: aos_ints(ao_num,ao_num)
|
||||
|
||||
integer :: num_a,num_b,power_A(3), power_B(3),l,k,i,j
|
||||
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
|
||||
aos_ints = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)cycle
|
||||
num_A = ao_nucl(i)
|
||||
power_A(1:3)= ao_power(i,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
aos_ints(j,i) += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
double precision function overlap_gauss_r12_ao(D_center,delta,i,j)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: D_center(3), delta
|
||||
|
||||
integer :: num_a,num_b,power_A(3), power_B(3),l,k
|
||||
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
|
||||
overlap_gauss_r12_ao = 0.d0
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
num_A = ao_nucl(i)
|
||||
power_A(1:3)= ao_power(i,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j)
|
||||
power_B(1:3)= ao_power(j,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
do l=1,ao_prim_num(i)
|
||||
alpha = ao_expo_ordered_transp(l,i)
|
||||
do k=1,ao_prim_num(j)
|
||||
beta = ao_expo_ordered_transp(k,j)
|
||||
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
overlap_gauss_r12_ao += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
||||
* ao_coef_normalized_ordered_transp(k,j)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
94
src/ao_many_one_e_ints/fit_slat_gauss.irp.f
Normal file
94
src/ao_many_one_e_ints/fit_slat_gauss.irp.f
Normal file
@ -0,0 +1,94 @@
|
||||
BEGIN_PROVIDER [integer, n_max_fit_slat]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! number of gaussian to fit exp(-x)
|
||||
!
|
||||
! I took 20 gaussians from the program bassto.f
|
||||
END_DOC
|
||||
n_max_fit_slat = 20
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, coef_fit_slat_gauss, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, expo_fit_slat_gauss, (n_max_fit_slat)]
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! fit the exp(-x) as
|
||||
!
|
||||
! \sum_{i = 1, n_max_fit_slat} coef_fit_slat_gauss(i) * exp(-expo_fit_slat_gauss(i) * x**2)
|
||||
!
|
||||
! The coefficient are taken from the program bassto.f
|
||||
END_DOC
|
||||
|
||||
|
||||
expo_fit_slat_gauss(01)=30573.77073000000
|
||||
coef_fit_slat_gauss(01)=0.00338925525
|
||||
expo_fit_slat_gauss(02)=5608.45238100000
|
||||
coef_fit_slat_gauss(02)=0.00536433869
|
||||
expo_fit_slat_gauss(03)=1570.95673400000
|
||||
coef_fit_slat_gauss(03)=0.00818702846
|
||||
expo_fit_slat_gauss(04)=541.39785110000
|
||||
coef_fit_slat_gauss(04)=0.01202047655
|
||||
expo_fit_slat_gauss(05)=212.43469630000
|
||||
coef_fit_slat_gauss(05)=0.01711289568
|
||||
expo_fit_slat_gauss(06)=91.31444574000
|
||||
coef_fit_slat_gauss(06)=0.02376001022
|
||||
expo_fit_slat_gauss(07)=42.04087246000
|
||||
coef_fit_slat_gauss(07)=0.03229121736
|
||||
expo_fit_slat_gauss(08)=20.43200443000
|
||||
coef_fit_slat_gauss(08)=0.04303646818
|
||||
expo_fit_slat_gauss(09)=10.37775161000
|
||||
coef_fit_slat_gauss(09)=0.05624657578
|
||||
expo_fit_slat_gauss(10)=5.46880754500
|
||||
coef_fit_slat_gauss(10)=0.07192311571
|
||||
expo_fit_slat_gauss(11)=2.97373529200
|
||||
coef_fit_slat_gauss(11)=0.08949389001
|
||||
expo_fit_slat_gauss(12)=1.66144190200
|
||||
coef_fit_slat_gauss(12)=0.10727599240
|
||||
expo_fit_slat_gauss(13)=0.95052560820
|
||||
coef_fit_slat_gauss(13)=0.12178961750
|
||||
expo_fit_slat_gauss(14)=0.55528683970
|
||||
coef_fit_slat_gauss(14)=0.12740141870
|
||||
expo_fit_slat_gauss(15)=0.33043360020
|
||||
coef_fit_slat_gauss(15)=0.11759168160
|
||||
expo_fit_slat_gauss(16)=0.19982303230
|
||||
coef_fit_slat_gauss(16)=0.08953504394
|
||||
expo_fit_slat_gauss(17)=0.12246840760
|
||||
coef_fit_slat_gauss(17)=0.05066721317
|
||||
expo_fit_slat_gauss(18)=0.07575825322
|
||||
coef_fit_slat_gauss(18)=0.01806363869
|
||||
expo_fit_slat_gauss(19)=0.04690146243
|
||||
coef_fit_slat_gauss(19)=0.00305632563
|
||||
expo_fit_slat_gauss(20)=0.02834749861
|
||||
coef_fit_slat_gauss(20)=0.00013317513
|
||||
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
double precision function slater_fit_gam(x,gam)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,gam
|
||||
BEGIN_DOC
|
||||
! fit of the function exp(-gam * x) with gaussian functions
|
||||
END_DOC
|
||||
integer :: i
|
||||
slater_fit_gam = 0.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
slater_fit_gam += coef_fit_slat_gauss(i) * dexp(-expo_fit_slat_gauss(i) * gam * gam * x * x)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine expo_fit_slater_gam(gam,expos)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the array of the exponents of the gaussians to fit exp(-gam*x)
|
||||
END_DOC
|
||||
double precision, intent(in) :: gam
|
||||
double precision, intent(out) :: expos(n_max_fit_slat)
|
||||
integer :: i
|
||||
do i = 1, n_max_fit_slat
|
||||
expos(i) = expo_fit_slat_gauss(i) * gam * gam
|
||||
enddo
|
||||
end
|
||||
|
342
src/ao_many_one_e_ints/grad_related_ints.irp.f
Normal file
342
src/ao_many_one_e_ints/grad_related_ints.irp.f
Normal file
@ -0,0 +1,342 @@
|
||||
BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu, ( ao_num, ao_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R| - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint
|
||||
double precision :: mu,r(3),NAI_pol_mult_erf_ao
|
||||
double precision :: int_mu, int_coulomb
|
||||
provide mu_erf final_grid_points
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,ipoint,mu,r,int_mu,int_coulomb) &
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,v_ij_erf_rk_cst_mu,final_grid_points,mu_erf)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
mu = mu_erf
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
int_mu = NAI_pol_mult_erf_ao(i,j,mu,r)
|
||||
int_coulomb = NAI_pol_mult_erf_ao(i,j,1.d+9,r)
|
||||
v_ij_erf_rk_cst_mu(j,i,ipoint)= (int_mu - int_coulomb )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
v_ij_erf_rk_cst_mu(j,i,ipoint)= v_ij_erf_rk_cst_mu(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for v_ij_erf_rk_cst_mu ',wall1 - wall0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_transp, (n_points_final_grid, ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R| - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint
|
||||
double precision :: mu,r(3),NAI_pol_mult_erf_ao
|
||||
double precision :: int_mu, int_coulomb
|
||||
provide mu_erf final_grid_points
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,ipoint,mu,r,int_mu,int_coulomb) &
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,v_ij_erf_rk_cst_mu_transp,final_grid_points,mu_erf)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu = mu_erf
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
int_mu = NAI_pol_mult_erf_ao(i,j,mu,r)
|
||||
int_coulomb = NAI_pol_mult_erf_ao(i,j,1.d+9,r)
|
||||
v_ij_erf_rk_cst_mu_transp(ipoint,j,i)= (int_mu - int_coulomb )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
do ipoint = 1, n_points_final_grid
|
||||
v_ij_erf_rk_cst_mu_transp(ipoint,j,i)= v_ij_erf_rk_cst_mu_transp(ipoint,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for v_ij_erf_rk_cst_mu_transp ',wall1 - wall0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp, (3,ao_num, ao_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints(3),ints_coulomb(3)
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,ipoint,mu,r,ints,m,ints_coulomb) &
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,x_v_ij_erf_rk_cst_mu_tmp,final_grid_points,mu_erf)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
mu = mu_erf
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
call NAI_pol_x_mult_erf_ao(i,j,mu,r,ints)
|
||||
call NAI_pol_x_mult_erf_ao(i,j,1.d+9,r,ints_coulomb)
|
||||
do m = 1, 3
|
||||
x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint) = ( ints(m) - ints_coulomb(m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, i-1
|
||||
do m = 1, 3
|
||||
x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint)= x_v_ij_erf_rk_cst_mu_tmp(m,i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_v_ij_erf_rk_cst_mu_tmp',wall1 - wall0
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu, (ao_num, ao_num,n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints,ints_coulomb
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
x_v_ij_erf_rk_cst_mu(j,i,ipoint,m)= x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_v_ij_erf_rk_cst_mu',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_transp, (ao_num, ao_num,3,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints,ints_coulomb
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do m = 1, 3
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
x_v_ij_erf_rk_cst_mu_transp(j,i,m,ipoint)= x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_v_ij_erf_rk_cst_mu_transp',wall1 - wall0
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_transp_bis, (n_points_final_grid,ao_num, ao_num,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/|r - R|
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints,ints_coulomb
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
do m = 1, 3
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
x_v_ij_erf_rk_cst_mu_transp_bis(ipoint,j,i,m)= x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_v_ij_erf_rk_cst_mu_transp',wall1 - wall0
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, d_dx_v_ij_erf_rk_cst_mu_tmp, (3,n_points_final_grid,ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d_dx_v_ij_erf_rk_cst_mu_tmp(m,R,j,i) = int dr phi_j(r)) (erf(mu(R) |r - R|) - 1)/|r - R| d/dx (phi_i(r)
|
||||
!
|
||||
! with m == 1 -> d/dx , m == 2 -> d/dy , m == 3 -> d/dz
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints(3),ints_coulomb(3)
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,ipoint,mu,r,ints,m,ints_coulomb) &
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,d_dx_v_ij_erf_rk_cst_mu_tmp,final_grid_points,mu_erf)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu = mu_erf
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
call phi_j_erf_mu_r_dxyz_phi(j,i,mu, r, ints)
|
||||
call phi_j_erf_mu_r_dxyz_phi(j,i,1.d+9, r, ints_coulomb)
|
||||
do m = 1, 3
|
||||
d_dx_v_ij_erf_rk_cst_mu_tmp(m,ipoint,j,i) = ( ints(m) - ints_coulomb(m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for d_dx_v_ij_erf_rk_cst_mu_tmp',wall1 - wall0
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, d_dx_v_ij_erf_rk_cst_mu, (n_points_final_grid,ao_num, ao_num,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d_dx_v_ij_erf_rk_cst_mu_tmp(j,i,R,m) = int dr phi_j(r)) (erf(mu(R) |r - R|) - 1)/|r - R| d/dx (phi_i(r)
|
||||
!
|
||||
! with m == 1 -> d/dx , m == 2 -> d/dy , m == 3 -> d/dz
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints,ints_coulomb
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
d_dx_v_ij_erf_rk_cst_mu(ipoint,j,i,m)= d_dx_v_ij_erf_rk_cst_mu_tmp(m,ipoint,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for d_dx_v_ij_erf_rk_cst_mu',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_d_dx_v_ij_erf_rk_cst_mu_tmp, (3,n_points_final_grid,ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! x_d_dx_v_ij_erf_rk_cst_mu_tmp(m,j,i,R) = int dr x phi_j(r)) (erf(mu(R) |r - R|) - 1)/|r - R| d/dx (phi_i(r)
|
||||
!
|
||||
! with m == 1 -> d/dx , m == 2 -> d/dy , m == 3 -> d/dz
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints(3),ints_coulomb(3)
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,ipoint,mu,r,ints,m,ints_coulomb) &
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,x_d_dx_v_ij_erf_rk_cst_mu_tmp,final_grid_points,mu_erf)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu = mu_erf
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
call phi_j_erf_mu_r_xyz_dxyz_phi(j,i,mu, r, ints)
|
||||
call phi_j_erf_mu_r_xyz_dxyz_phi(j,i,1.d+9, r, ints_coulomb)
|
||||
do m = 1, 3
|
||||
x_d_dx_v_ij_erf_rk_cst_mu_tmp(m,ipoint,j,i) = ( ints(m) - ints_coulomb(m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_d_dx_v_ij_erf_rk_cst_mu_tmp',wall1 - wall0
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_d_dx_v_ij_erf_rk_cst_mu, (n_points_final_grid,ao_num, ao_num,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! x_d_dx_v_ij_erf_rk_cst_mu_tmp(j,i,R,m) = int dr x phi_j(r)) (erf(mu(R) |r - R|) - 1)/|r - R| d/dx (phi_i(r)
|
||||
!
|
||||
! with m == 1 -> d/dx , m == 2 -> d/dy , m == 3 -> d/dz
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: mu,r(3),ints,ints_coulomb
|
||||
double precision :: wall0, wall1
|
||||
call wall_time(wall0)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do m = 1, 3
|
||||
x_d_dx_v_ij_erf_rk_cst_mu(ipoint,j,i,m)= x_d_dx_v_ij_erf_rk_cst_mu_tmp(m,ipoint,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for x_d_dx_v_ij_erf_rk_cst_mu',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
195
src/ao_many_one_e_ints/prim_int_erf_gauss.irp.f
Normal file
195
src/ao_many_one_e_ints/prim_int_erf_gauss.irp.f
Normal file
@ -0,0 +1,195 @@
|
||||
double precision function NAI_pol_mult_erf_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral R^3 :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$ exp(-delta (r - D)^2 ).
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
double precision :: NAI_pol_mult_erf
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3)
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
accu += coefxyz * NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B,alpha_new,beta,C_center,n_pt_max_integrals,mu)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
NAI_pol_mult_erf_gauss_r12 = fact_a_new * accu
|
||||
end
|
||||
|
||||
subroutine erfc_mu_gauss_xyz(D_center,delta,mu,A_center,B_center,power_A,power_B,alpha,beta,n_pt_in,xyz_ints)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) x/y/z * (1 - erf(mu |r-r'|))/ |r-r'| * (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
! xyz_ints(1) = x , xyz_ints(2) = y, xyz_ints(3) = z, xyz_ints(4) = x^0
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta,mu ! pure gaussian "D" and mu parameter
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3),n_pt_in
|
||||
double precision, intent(out) :: xyz_ints(4)
|
||||
|
||||
double precision :: NAI_pol_mult_erf
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr,contrib,contrib_inf,mu_inf
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1,mm
|
||||
integer :: power_B_tmp(3)
|
||||
dim1=100
|
||||
mu_inf = 1.d+10
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
xyz_ints = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
power_B_tmp = power_B
|
||||
contrib = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu)
|
||||
contrib_inf = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu_inf)
|
||||
xyz_ints(4) += (contrib_inf - contrib) * coefxyz ! usual term with no x/y/z
|
||||
|
||||
do mm = 1, 3
|
||||
! (x phi_i ) * phi_j
|
||||
! x * (x - B_x)^b_x = B_x (x - B_x)^b_x + 1 * (x - B_x)^{b_x+1}
|
||||
|
||||
!
|
||||
! first contribution :: B_x (x - B_x)^b_x :: usual integral multiplied by B_x
|
||||
power_B_tmp = power_B
|
||||
contrib_inf = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu_inf)
|
||||
contrib = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu)
|
||||
xyz_ints(mm) += (contrib_inf - contrib) * B_center(mm) * coefxyz
|
||||
|
||||
!
|
||||
! second contribution :: (x - B_x)^(b_x+1) :: integral with b_x=>b_x+1
|
||||
power_B_tmp(mm) += 1
|
||||
contrib = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu)
|
||||
contrib_inf = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B_tmp,alpha_new,beta,D_center,n_pt_in,mu_inf)
|
||||
xyz_ints(mm) += (contrib_inf - contrib) * coefxyz
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
xyz_ints *= fact_a_new
|
||||
end
|
||||
|
||||
|
||||
double precision function erf_mu_gauss(D_center,delta,mu,A_center,B_center,power_A,power_B,alpha,beta,n_pt_in)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) erf(mu*|r-r'|)/ |r-r'| * (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta,mu ! pure gaussian "D" and mu parameter
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3),n_pt_in
|
||||
|
||||
double precision :: NAI_pol_mult_erf
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr,contrib,contrib_inf,mu_inf
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1,mm
|
||||
dim1=100
|
||||
mu_inf = 1.d+10
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
erf_mu_gauss = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
contrib = NAI_pol_mult_erf(A_center_new,B_center,iorder_tmp,power_B,alpha_new,beta,D_center,n_pt_in,mu)
|
||||
erf_mu_gauss += contrib * coefxyz
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
erf_mu_gauss *= fact_a_new
|
||||
end
|
||||
|
191
src/ao_many_one_e_ints/prim_int_gauss_gauss.irp.f
Normal file
191
src/ao_many_one_e_ints/prim_int_gauss_gauss.irp.f
Normal file
@ -0,0 +1,191 @@
|
||||
|
||||
double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
accu += coefxyz * overlap
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
overlap_gauss_r12 = fact_a_new * accu
|
||||
end
|
||||
|
||||
|
||||
subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! gauss_ints(m) = \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: gauss_ints(3)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
integer :: power_B_new(3)
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1,m
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
gauss_ints = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
do m = 1, 3
|
||||
! change (x-Bx)^bx --> (x-Bx)^(bx+1) + Bx(x-Bx)^bx
|
||||
power_B_new = power_B
|
||||
power_B_new(m) += 1 ! (x-Bx)^(bx+1)
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B_new,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
gauss_ints(m) += coefxyz * overlap
|
||||
|
||||
power_B_new = power_B
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B_new,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
gauss_ints(m) += coefxyz * overlap * B_center(m) ! Bx (x-Bx)^(bx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
gauss_ints *= fact_a_new
|
||||
end
|
||||
|
||||
double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3),mx
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||
double precision :: A_new(0:max_dim,3)! new polynom
|
||||
double precision :: A_center_new(3) ! new center
|
||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||
integer :: power_B_new(3)
|
||||
double precision :: alpha_new ! new exponent
|
||||
double precision :: fact_a_new ! constant factor
|
||||
double precision :: coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1,m
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||
|
||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
overlap_gauss_xyz_r12_specific = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
m = mx
|
||||
! change (x-Bx)^bx --> (x-Bx)^(bx+1) + Bx(x-Bx)^bx
|
||||
power_B_new = power_B
|
||||
power_B_new(m) += 1 ! (x-Bx)^(bx+1)
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B_new,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
overlap_gauss_xyz_r12_specific += coefxyz * overlap
|
||||
|
||||
power_B_new = power_B
|
||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B_new,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
overlap_gauss_xyz_r12_specific += coefxyz * overlap * B_center(m) ! Bx (x-Bx)^(bx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
overlap_gauss_xyz_r12_specific *= fact_a_new
|
||||
end
|
121
src/ao_many_one_e_ints/stg_gauss_int.irp.f
Normal file
121
src/ao_many_one_e_ints/stg_gauss_int.irp.f
Normal file
@ -0,0 +1,121 @@
|
||||
double precision function ovlp_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-gam (r - D)) exp(-delta * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||||
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
integer :: i
|
||||
double precision :: integral,gama_gauss
|
||||
double precision, allocatable :: expos_slat(:)
|
||||
allocate(expos_slat(n_max_fit_slat))
|
||||
double precision :: overlap_gauss_r12
|
||||
ovlp_stg_gauss_int_phi_ij = 0.d0
|
||||
call expo_fit_slater_gam(gam,expos_slat)
|
||||
do i = 1, n_max_fit_slat
|
||||
gama_gauss = expos_slat(i)+delta
|
||||
integral = overlap_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
ovlp_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
double precision function erf_mu_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-gam(r - D)-delta(r - D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||||
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||||
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
integer :: i
|
||||
double precision :: NAI_pol_mult_erf_gauss_r12
|
||||
double precision :: integral,gama_gauss
|
||||
double precision, allocatable :: expos_slat(:)
|
||||
allocate(expos_slat(n_max_fit_slat))
|
||||
erf_mu_stg_gauss_int_phi_ij = 0.d0
|
||||
call expo_fit_slater_gam(gam,expos_slat)
|
||||
do i = 1, n_max_fit_slat
|
||||
gama_gauss = expos_slat(i) + delta
|
||||
integral = NAI_pol_mult_erf_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
erf_mu_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
|
||||
enddo
|
||||
end
|
||||
|
||||
double precision function overlap_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-gam (r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
integer :: i
|
||||
double precision :: expos_slat(n_max_fit_slat),integral,delta
|
||||
double precision :: overlap_gauss_r12
|
||||
overlap_stg_gauss = 0.d0
|
||||
call expo_fit_slater_gam(gam,expos_slat)
|
||||
do i = 1, n_max_fit_slat
|
||||
delta = expos_slat(i)
|
||||
integral = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
overlap_stg_gauss += coef_fit_slat_gauss(i) * integral
|
||||
enddo
|
||||
end
|
||||
|
||||
double precision function erf_mu_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! \int dr exp(-gam(r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
|
||||
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
|
||||
|
||||
integer :: i
|
||||
double precision :: expos_slat(n_max_fit_slat),integral,delta
|
||||
double precision :: NAI_pol_mult_erf_gauss_r12
|
||||
erf_mu_stg_gauss = 0.d0
|
||||
call expo_fit_slater_gam(gam,expos_slat)
|
||||
do i = 1, n_max_fit_slat
|
||||
delta = expos_slat(i)
|
||||
integral = NAI_pol_mult_erf_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
erf_mu_stg_gauss += coef_fit_slat_gauss(i) * integral
|
||||
enddo
|
||||
end
|
101
src/ao_many_one_e_ints/taylor_exp.irp.f
Normal file
101
src/ao_many_one_e_ints/taylor_exp.irp.f
Normal file
@ -0,0 +1,101 @@
|
||||
double precision function exp_dl(x,n)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
integer , intent(in) :: n
|
||||
integer :: i
|
||||
exp_dl = 1.d0
|
||||
do i = 1, n
|
||||
exp_dl += fact_inv(i) * x**dble(i)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine exp_dl_rout(x,n, array)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
integer , intent(in) :: n
|
||||
double precision, intent(out):: array(0:n)
|
||||
integer :: i
|
||||
double precision :: accu
|
||||
accu = 1.d0
|
||||
array(0) = 1.d0
|
||||
do i = 1, n
|
||||
accu += fact_inv(i) * x**dble(i)
|
||||
array(i) = accu
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine exp_dl_ovlp_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,n_taylor,array_ints,integral_taylor,exponent_exp)
|
||||
BEGIN_DOC
|
||||
! Computes the following integrals :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! array(i) = \int dr EXP{exponent_exp * [exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2)] (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
!
|
||||
!
|
||||
! and gives back the Taylor expansion of the exponential in integral_taylor
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x)
|
||||
integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||||
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
double precision, intent(in) :: exponent_exp
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor
|
||||
|
||||
integer :: i,dim1
|
||||
double precision :: delta_exp,gam_exp,ovlp_stg_gauss_int_phi_ij
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
dim1=100
|
||||
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
array_ints(0) = overlap
|
||||
integral_taylor = array_ints(0)
|
||||
do i = 1, n_taylor
|
||||
delta_exp = dble(i) * delta
|
||||
gam_exp = dble(i) * gam
|
||||
array_ints(i) = ovlp_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta)
|
||||
integral_taylor += (-zeta*exponent_exp)**dble(i) * fact_inv(i) * array_ints(i)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine exp_dl_erf_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu,n_taylor,array_ints,integral_taylor)
|
||||
BEGIN_DOC
|
||||
! Computes the following integrals :
|
||||
!
|
||||
! .. math::
|
||||
!
|
||||
! array(i) = \int dr exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
!
|
||||
! and gives back the Taylor expansion of the exponential in integral_taylor
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential
|
||||
double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x)
|
||||
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
||||
double precision, intent(in) :: delta ! gaussian in r-r_D
|
||||
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor
|
||||
|
||||
integer :: i,dim1
|
||||
double precision :: delta_exp,gam_exp,NAI_pol_mult_erf,erf_mu_stg_gauss_int_phi_ij
|
||||
dim1=100
|
||||
|
||||
array_ints(0) = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_max_integrals,mu)
|
||||
integral_taylor = array_ints(0)
|
||||
do i = 1, n_taylor
|
||||
delta_exp = dble(i) * delta
|
||||
gam_exp = dble(i) * gam
|
||||
array_ints(i) = erf_mu_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
||||
integral_taylor += (-zeta)**dble(i) * fact_inv(i) * array_ints(i)
|
||||
enddo
|
||||
|
||||
end
|
343
src/ao_many_one_e_ints/xyz_grad_xyz_ao_pol.irp.f
Normal file
343
src/ao_many_one_e_ints/xyz_grad_xyz_ao_pol.irp.f
Normal file
@ -0,0 +1,343 @@
|
||||
BEGIN_PROVIDER [double precision, coef_xyz_ao, (2,3,ao_num)]
|
||||
&BEGIN_PROVIDER [integer, power_xyz_ao, (2,3,ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! coefficient for the basis function :: (x * phi_i(r), y * phi_i(r), * z_phi(r))
|
||||
!
|
||||
! x * (x - A_x)^a_x = A_x (x - A_x)^a_x + 1 * (x - A_x)^{a_x+1}
|
||||
END_DOC
|
||||
integer :: i,j,k,num_ao,power_ao(1:3)
|
||||
double precision :: center_ao(1:3)
|
||||
do i = 1, ao_num
|
||||
power_ao(1:3)= ao_power(i,1:3)
|
||||
num_ao = ao_nucl(i)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
do j = 1, 3
|
||||
coef_xyz_ao(1,j,i) = center_ao(j) ! A_x (x - A_x)^a_x
|
||||
power_xyz_ao(1,j,i)= power_ao(j)
|
||||
coef_xyz_ao(2,j,i) = 1.d0 ! 1 * (x - A_x)^a_{x+1}
|
||||
power_xyz_ao(2,j,i)= power_ao(j) + 1
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_ord_grad_transp, (2,3,ao_prim_num_max,ao_num) ]
|
||||
&BEGIN_PROVIDER [ integer, power_ord_grad_transp, (2,3,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! grad AO in terms of polynoms and coefficients
|
||||
!
|
||||
! WARNING !!!! SOME polynoms might be negative !!!!!
|
||||
!
|
||||
! WHEN IT IS THE CASE, coefficients are ZERO
|
||||
END_DOC
|
||||
integer :: i,j,power_ao(3), m,kk
|
||||
do j=1, ao_num
|
||||
power_ao(1:3)= ao_power(j,1:3)
|
||||
do m = 1, 3
|
||||
power_ord_grad_transp(1,m,j) = power_ao(m) - 1
|
||||
power_ord_grad_transp(2,m,j) = power_ao(m) + 1
|
||||
enddo
|
||||
do i=1, ao_prim_num_max
|
||||
do m = 1, 3
|
||||
ao_coef_ord_grad_transp(1,m,i,j) = ao_coef_normalized_ordered(j,i) * dble(power_ao(m)) ! a_x * c_i
|
||||
ao_coef_ord_grad_transp(2,m,i,j) = -2.d0 * ao_coef_normalized_ordered(j,i) * ao_expo_ordered_transp(i,j) ! -2 * c_i * alpha_i
|
||||
do kk = 1, 2
|
||||
if(power_ord_grad_transp(kk,m,j).lt.0)then
|
||||
ao_coef_ord_grad_transp(kk,m,i,j) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_ord_xyz_grad_transp, (4,3,ao_prim_num_max,ao_num) ]
|
||||
&BEGIN_PROVIDER [ integer, power_ord_xyz_grad_transp, (4,3,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! x * d/dx of an AO in terms of polynoms and coefficients
|
||||
!
|
||||
! WARNING !!!! SOME polynoms might be negative !!!!!
|
||||
!
|
||||
! WHEN IT IS THE CASE, coefficients are ZERO
|
||||
END_DOC
|
||||
integer :: i,j,power_ao(3), m,num_ao,kk
|
||||
double precision :: center_ao(1:3)
|
||||
do j=1, ao_num
|
||||
power_ao(1:3)= ao_power(j,1:3)
|
||||
num_ao = ao_nucl(j)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
do m = 1, 3
|
||||
power_ord_xyz_grad_transp(1,m,j) = power_ao(m) - 1
|
||||
power_ord_xyz_grad_transp(2,m,j) = power_ao(m)
|
||||
power_ord_xyz_grad_transp(3,m,j) = power_ao(m) + 1
|
||||
power_ord_xyz_grad_transp(4,m,j) = power_ao(m) + 2
|
||||
do kk = 1, 4
|
||||
if(power_ord_xyz_grad_transp(kk,m,j).lt.0)then
|
||||
power_ord_xyz_grad_transp(kk,m,j) = -1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do i=1, ao_prim_num_max
|
||||
do m = 1, 3
|
||||
ao_coef_ord_xyz_grad_transp(1,m,i,j) = dble(power_ao(m)) * ao_coef_normalized_ordered(j,i) * center_ao(m)
|
||||
ao_coef_ord_xyz_grad_transp(2,m,i,j) = dble(power_ao(m)) * ao_coef_normalized_ordered(j,i)
|
||||
ao_coef_ord_xyz_grad_transp(3,m,i,j) = -2.d0 * ao_coef_normalized_ordered(j,i) * ao_expo_ordered_transp(i,j) * center_ao(m)
|
||||
ao_coef_ord_xyz_grad_transp(4,m,i,j) = -2.d0 * ao_coef_normalized_ordered(j,i) * ao_expo_ordered_transp(i,j)
|
||||
do kk = 1, 4
|
||||
if(power_ord_xyz_grad_transp(kk,m,j).lt.0)then
|
||||
ao_coef_ord_xyz_grad_transp(kk,m,i,j) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine xyz_grad_phi_ao(r,i_ao,xyz_grad_phi)
|
||||
implicit none
|
||||
integer, intent(in) :: i_ao
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: xyz_grad_phi(3) ! x * d/dx phi i, y * d/dy phi_i, z * d/dz phi_
|
||||
double precision :: center_ao(3),beta
|
||||
double precision :: accu(3,4),dr(3),r2,pol_usual(3)
|
||||
integer :: m,power_ao(3),num_ao,j_prim
|
||||
power_ao(1:3)= ao_power(i_ao,1:3)
|
||||
num_ao = ao_nucl(i_ao)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
dr(1) = (r(1) - center_ao(1))
|
||||
dr(2) = (r(2) - center_ao(2))
|
||||
dr(3) = (r(3) - center_ao(3))
|
||||
r2 = 0.d0
|
||||
do m = 1, 3
|
||||
r2 += dr(m)*dr(m)
|
||||
enddo
|
||||
! computes the gaussian part
|
||||
accu = 0.d0
|
||||
do j_prim =1,ao_prim_num(i_ao)
|
||||
beta = ao_expo_ordered_transp(j_prim,i_ao)
|
||||
if(dabs(beta*r2).gt.50.d0)cycle
|
||||
do m = 1, 3
|
||||
accu(m,1) += ao_coef_ord_xyz_grad_transp(1,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
accu(m,2) += ao_coef_ord_xyz_grad_transp(2,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
accu(m,3) += ao_coef_ord_xyz_grad_transp(3,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
accu(m,4) += ao_coef_ord_xyz_grad_transp(4,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
enddo
|
||||
enddo
|
||||
! computes the polynom part
|
||||
pol_usual = 0.d0
|
||||
pol_usual(1) = dr(2)**dble(power_ao(2)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(2) = dr(1)**dble(power_ao(1)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(3) = dr(1)**dble(power_ao(1)) * dr(2)**dble(power_ao(2))
|
||||
|
||||
xyz_grad_phi = 0.d0
|
||||
do m = 1, 3
|
||||
xyz_grad_phi(m) += accu(m,2) * pol_usual(m) * dr(m)**dble(power_ord_xyz_grad_transp(2,m,i_ao))
|
||||
xyz_grad_phi(m) += accu(m,3) * pol_usual(m) * dr(m)**dble(power_ord_xyz_grad_transp(3,m,i_ao))
|
||||
xyz_grad_phi(m) += accu(m,4) * pol_usual(m) * dr(m)**dble(power_ord_xyz_grad_transp(4,m,i_ao))
|
||||
if(power_ord_xyz_grad_transp(1,m,i_ao).lt.0)cycle
|
||||
xyz_grad_phi(m) += accu(m,1) * pol_usual(m) * dr(m)**dble(power_ord_xyz_grad_transp(1,m,i_ao))
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine grad_phi_ao(r,i_ao,grad_xyz_phi)
|
||||
implicit none
|
||||
integer, intent(in) :: i_ao
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: grad_xyz_phi(3) ! x * phi i, y * phi_i, z * phi_
|
||||
double precision :: center_ao(3),beta
|
||||
double precision :: accu(3,2),dr(3),r2,pol_usual(3)
|
||||
integer :: m,power_ao(3),num_ao,j_prim
|
||||
power_ao(1:3)= ao_power(i_ao,1:3)
|
||||
num_ao = ao_nucl(i_ao)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
dr(1) = (r(1) - center_ao(1))
|
||||
dr(2) = (r(2) - center_ao(2))
|
||||
dr(3) = (r(3) - center_ao(3))
|
||||
r2 = 0.d0
|
||||
do m = 1, 3
|
||||
r2 += dr(m)*dr(m)
|
||||
enddo
|
||||
! computes the gaussian part
|
||||
accu = 0.d0
|
||||
do j_prim =1,ao_prim_num(i_ao)
|
||||
beta = ao_expo_ordered_transp(j_prim,i_ao)
|
||||
if(dabs(beta*r2).gt.50.d0)cycle
|
||||
do m = 1, 3
|
||||
accu(m,1) += ao_coef_ord_grad_transp(1,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
accu(m,2) += ao_coef_ord_grad_transp(2,m,j_prim,i_ao) * dexp(-beta*r2)
|
||||
enddo
|
||||
enddo
|
||||
! computes the polynom part
|
||||
pol_usual = 0.d0
|
||||
pol_usual(1) = dr(2)**dble(power_ao(2)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(2) = dr(1)**dble(power_ao(1)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(3) = dr(1)**dble(power_ao(1)) * dr(2)**dble(power_ao(2))
|
||||
do m = 1, 3
|
||||
grad_xyz_phi(m) = accu(m,2) * pol_usual(m) * dr(m)**dble(power_ord_grad_transp(2,m,i_ao))
|
||||
if(power_ao(m)==0)cycle
|
||||
grad_xyz_phi(m) += accu(m,1) * pol_usual(m) * dr(m)**dble(power_ord_grad_transp(1,m,i_ao))
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine xyz_phi_ao(r,i_ao,xyz_phi)
|
||||
implicit none
|
||||
integer, intent(in) :: i_ao
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: xyz_phi(3) ! x * phi i, y * phi_i, z * phi_i
|
||||
double precision :: center_ao(3),beta
|
||||
double precision :: accu,dr(3),r2,pol_usual(3)
|
||||
integer :: m,power_ao(3),num_ao
|
||||
power_ao(1:3)= ao_power(i_ao,1:3)
|
||||
num_ao = ao_nucl(i_ao)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
dr(1) = (r(1) - center_ao(1))
|
||||
dr(2) = (r(2) - center_ao(2))
|
||||
dr(3) = (r(3) - center_ao(3))
|
||||
r2 = 0.d0
|
||||
do m = 1, 3
|
||||
r2 += dr(m)*dr(m)
|
||||
enddo
|
||||
! computes the gaussian part
|
||||
accu = 0.d0
|
||||
do m=1,ao_prim_num(i_ao)
|
||||
beta = ao_expo_ordered_transp(m,i_ao)
|
||||
if(dabs(beta*r2).gt.50.d0)cycle
|
||||
accu += ao_coef_normalized_ordered_transp(m,i_ao) * dexp(-beta*r2)
|
||||
enddo
|
||||
! computes the polynom part
|
||||
pol_usual = 0.d0
|
||||
pol_usual(1) = dr(2)**dble(power_ao(2)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(2) = dr(1)**dble(power_ao(1)) * dr(3)**dble(power_ao(3))
|
||||
pol_usual(3) = dr(1)**dble(power_ao(1)) * dr(2)**dble(power_ao(2))
|
||||
do m = 1, 3
|
||||
xyz_phi(m) = accu * pol_usual(m) * dr(m)**(dble(power_ao(m))) * ( coef_xyz_ao(1,m,i_ao) + coef_xyz_ao(2,m,i_ao) * dr(m) )
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine test_pol_xyz
|
||||
implicit none
|
||||
integer :: ipoint,i,j,m,jpoint
|
||||
double precision :: r1(3),derf_mu_x
|
||||
double precision :: weight1,r12,xyz_phi(3),grad_phi(3),xyz_grad_phi(3)
|
||||
double precision, allocatable :: aos_array(:),aos_grad_array(:,:)
|
||||
double precision :: num_xyz_phi(3),num_grad_phi(3),num_xyz_grad_phi(3)
|
||||
double precision :: accu_xyz_phi(3),accu_grad_phi(3),accu_xyz_grad_phi(3)
|
||||
double precision :: meta_accu_xyz_phi(3),meta_accu_grad_phi(3),meta_accu_xyz_grad_phi(3)
|
||||
allocate(aos_array(ao_num),aos_grad_array(3,ao_num))
|
||||
meta_accu_xyz_phi = 0.d0
|
||||
meta_accu_grad_phi = 0.d0
|
||||
meta_accu_xyz_grad_phi= 0.d0
|
||||
do i = 1, ao_num
|
||||
accu_xyz_phi = 0.d0
|
||||
accu_grad_phi = 0.d0
|
||||
accu_xyz_grad_phi= 0.d0
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(:) = final_grid_points(:,ipoint)
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
call give_all_aos_and_grad_at_r(r1,aos_array,aos_grad_array)
|
||||
do m = 1, 3
|
||||
num_xyz_phi(m) = r1(m) * aos_array(i)
|
||||
num_grad_phi(m) = aos_grad_array(m,i)
|
||||
num_xyz_grad_phi(m) = r1(m) * aos_grad_array(m,i)
|
||||
enddo
|
||||
call xyz_phi_ao(r1,i,xyz_phi)
|
||||
call grad_phi_ao(r1,i,grad_phi)
|
||||
call xyz_grad_phi_ao(r1,i,xyz_grad_phi)
|
||||
do m = 1, 3
|
||||
accu_xyz_phi(m) += weight1 * dabs(num_xyz_phi(m) - xyz_phi(m) )
|
||||
accu_grad_phi(m) += weight1 * dabs(num_grad_phi(m) - grad_phi(m) )
|
||||
accu_xyz_grad_phi(m) += weight1 * dabs(num_xyz_grad_phi(m) - xyz_grad_phi(m))
|
||||
enddo
|
||||
enddo
|
||||
print*,''
|
||||
print*,''
|
||||
print*,'i,',i
|
||||
print*,''
|
||||
do m = 1, 3
|
||||
! print*, 'm, accu_xyz_phi(m) ' ,m, accu_xyz_phi(m)
|
||||
! print*, 'm, accu_grad_phi(m) ' ,m, accu_grad_phi(m)
|
||||
print*, 'm, accu_xyz_grad_phi' ,m, accu_xyz_grad_phi(m)
|
||||
enddo
|
||||
do m = 1, 3
|
||||
meta_accu_xyz_phi(m) += dabs(accu_xyz_phi(m))
|
||||
meta_accu_grad_phi(m) += dabs(accu_grad_phi(m))
|
||||
meta_accu_xyz_grad_phi(m) += dabs(accu_xyz_grad_phi(m))
|
||||
enddo
|
||||
enddo
|
||||
do m = 1, 3
|
||||
! print*, 'm, meta_accu_xyz_phi(m) ' ,m, meta_accu_xyz_phi(m)
|
||||
! print*, 'm, meta_accu_grad_phi(m) ' ,m, meta_accu_grad_phi(m)
|
||||
print*, 'm, meta_accu_xyz_grad_phi' ,m, meta_accu_xyz_grad_phi(m)
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine test_ints_semi_bis
|
||||
implicit none
|
||||
integer :: ipoint,i,j,m
|
||||
double precision :: r1(3), aos_grad_array_r1(3, ao_num), aos_array_r1(ao_num)
|
||||
double precision :: C_center(3), weight1,mu_in,r12,derf_mu_x,dxyz_ints(3),NAI_pol_mult_erf_ao
|
||||
double precision :: ao_mat(ao_num,ao_num),ao_xmat(3,ao_num,ao_num),accu1, accu2(3)
|
||||
mu_in = 0.5d0
|
||||
C_center = 0.d0
|
||||
C_center(1) = 0.25d0
|
||||
C_center(3) = 1.12d0
|
||||
C_center(2) = -1.d0
|
||||
ao_mat = 0.d0
|
||||
ao_xmat = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1) = final_grid_points(1,ipoint)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
call give_all_aos_and_grad_at_r(r1,aos_array_r1,aos_grad_array_r1)
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
r12 = (r1(1) - C_center(1))**2.d0 + (r1(2) - C_center(2))**2.d0 + (r1(3) - C_center(3))**2.d0
|
||||
r12 = dsqrt(r12)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
ao_mat(j,i) += aos_array_r1(i) * aos_array_r1(j) * weight1 * derf_mu_x(mu_in,r12)
|
||||
do m = 1, 3
|
||||
ao_xmat(m,j,i) += r1(m) * aos_array_r1(j) * aos_grad_array_r1(m,i) * weight1 * derf_mu_x(mu_in,r12)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
accu1 = 0.d0
|
||||
accu2 = 0.d0
|
||||
accu1relat = 0.d0
|
||||
accu2relat = 0.d0
|
||||
double precision :: accu1relat, accu2relat(3)
|
||||
double precision :: contrib(3)
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
call phi_j_erf_mu_r_xyz_dxyz_phi(i,j,mu_in, C_center, dxyz_ints)
|
||||
print*,''
|
||||
print*,'i,j',i,j
|
||||
print*,dxyz_ints(:)
|
||||
print*,ao_xmat(:,j,i)
|
||||
do m = 1, 3
|
||||
contrib(m) = dabs(ao_xmat(m,j,i) - dxyz_ints(m))
|
||||
accu2(m) += contrib(m)
|
||||
if(dabs(ao_xmat(m,j,i)).gt.1.d-10)then
|
||||
accu2relat(m) += dabs(ao_xmat(m,j,i) - dxyz_ints(m))/dabs(ao_xmat(m,j,i))
|
||||
endif
|
||||
enddo
|
||||
print*,contrib
|
||||
enddo
|
||||
print*,''
|
||||
enddo
|
||||
print*,'accu2relat = '
|
||||
print*, accu2relat /dble(ao_num * ao_num)
|
||||
|
||||
end
|
||||
|
||||
|
12
src/ao_tc_eff_map/EZFIO.cfg
Normal file
12
src/ao_tc_eff_map/EZFIO.cfg
Normal file
@ -0,0 +1,12 @@
|
||||
|
||||
[j1b_gauss_pen]
|
||||
type: double precision
|
||||
doc: exponents of the 1-body Jastrow
|
||||
interface: ezfio
|
||||
size: (nuclei.nucl_num)
|
||||
|
||||
[j1b_gauss]
|
||||
type: integer
|
||||
doc: Use 1-body Gaussian Jastrow
|
||||
interface: ezfio, provider, ocaml
|
||||
default: 0
|
4
src/ao_tc_eff_map/NEED
Normal file
4
src/ao_tc_eff_map/NEED
Normal file
@ -0,0 +1,4 @@
|
||||
ao_two_e_erf_ints
|
||||
mo_one_e_ints
|
||||
ao_many_one_e_ints
|
||||
dft_utils_in_r
|
12
src/ao_tc_eff_map/README.rst
Normal file
12
src/ao_tc_eff_map/README.rst
Normal file
@ -0,0 +1,12 @@
|
||||
ao_tc_eff_map
|
||||
=============
|
||||
|
||||
This is a module to obtain the integrals on the AO basis of the SCALAR HERMITIAN
|
||||
effective potential defined in Eq. 32 of JCP 154, 084119 (2021)
|
||||
It also contains the modification by a one-body Jastrow factor.
|
||||
|
||||
The main routine/providers are
|
||||
|
||||
+) ao_tc_sym_two_e_pot_map : map of the SCALAR PART of total effective two-electron on the AO basis in PHYSICIST notations. It might contain the two-electron term coming from the one-e correlation factor.
|
||||
+) get_ao_tc_sym_two_e_pot(i,j,k,l,ao_tc_sym_two_e_pot_map) : routine to get the integrals from ao_tc_sym_two_e_pot_map.
|
||||
+) ao_tc_sym_two_e_pot(i,j,k,l) : FUNCTION that returns the scalar part of TC-potential EXCLUDING the erf(mu r12)/r12. See two_e_ints_gauss.irp.f for more details.
|
75
src/ao_tc_eff_map/compute_ints_eff_pot.irp.f
Normal file
75
src/ao_tc_eff_map/compute_ints_eff_pot.irp.f
Normal file
@ -0,0 +1,75 @@
|
||||
subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_value)
|
||||
|
||||
use map_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Parallel client for AO integrals of the TC integrals involving purely hermitian operators
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: j, l
|
||||
integer,intent(out) :: n_integrals
|
||||
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
|
||||
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
|
||||
|
||||
integer :: i, k
|
||||
integer :: kk, m, j1, i1
|
||||
double precision :: cpu_1, cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0, integral_pot, integral_erf
|
||||
double precision :: thr
|
||||
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
double precision :: ao_tc_sym_two_e_pot, ao_two_e_integral_erf
|
||||
double precision :: j1b_gauss_erf, j1b_gauss_coul
|
||||
double precision :: j1b_gauss_coul_debug
|
||||
double precision :: j1b_gauss_coul_modifdebug
|
||||
double precision :: j1b_gauss_coulerf
|
||||
|
||||
|
||||
PROVIDE j1b_gauss
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
n_integrals = 0
|
||||
|
||||
j1 = j+ishft(l*l-l,-1)
|
||||
do k = 1, ao_num ! r1
|
||||
i1 = ishft(k*k-k,-1)
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
do i = 1, k
|
||||
i1 += 1
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
integral_pot = ao_tc_sym_two_e_pot (i, k, j, l) ! i,k : r1 j,l : r2
|
||||
integral_erf = ao_two_e_integral_erf(i, k, j, l)
|
||||
integral = integral_erf + integral_pot
|
||||
|
||||
if( j1b_gauss .eq. 1 ) then
|
||||
integral = integral &
|
||||
+ j1b_gauss_coulerf(i, k, j, l)
|
||||
endif
|
||||
|
||||
|
||||
if(abs(integral) < thr) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
n_integrals += 1
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(n_integrals))
|
||||
buffer_value(n_integrals) = integral
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine compute_ao_tc_sym_two_e_pot_jl
|
||||
|
194
src/ao_tc_eff_map/integrals_eff_pot_in_map_slave.irp.f
Normal file
194
src/ao_tc_eff_map/integrals_eff_pot_in_map_slave.irp.f
Normal file
@ -0,0 +1,194 @@
|
||||
subroutine ao_tc_sym_two_e_pot_in_map_slave_tcp(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_tc_sym_two_e_pot_in_map_slave(0,i)
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_tc_sym_two_e_pot_in_map_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_tc_sym_two_e_pot_in_map_slave(1,i)
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine ao_tc_sym_two_e_pot_in_map_slave(thread,iproc)
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: thread, iproc
|
||||
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer :: worker_id, task_id
|
||||
character*(512) :: task
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
character*(64) :: state
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
integer, external :: connect_to_taskserver
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
return
|
||||
endif
|
||||
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
allocate ( buffer_i(ao_num*ao_num), buffer_value(ao_num*ao_num) )
|
||||
|
||||
|
||||
do
|
||||
integer, external :: get_task_from_taskserver
|
||||
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task) == -1) then
|
||||
exit
|
||||
endif
|
||||
if (task_id == 0) exit
|
||||
read(task,*) j, l
|
||||
integer, external :: task_done_to_taskserver
|
||||
call compute_ao_tc_sym_two_e_pot_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id) == -1) then
|
||||
stop 'Unable to send task_done'
|
||||
endif
|
||||
call push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
|
||||
enddo
|
||||
|
||||
integer, external :: disconnect_from_taskserver
|
||||
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
|
||||
continue
|
||||
endif
|
||||
deallocate( buffer_i, buffer_value )
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_tc_sym_two_e_pot_in_map_collector(zmq_socket_pull)
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Collects results from the AO integral calculation
|
||||
END_DOC
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
|
||||
integer*8 :: control, accu, sze
|
||||
integer :: task_id, more
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
sze = ao_num*ao_num
|
||||
allocate ( buffer_i(sze), buffer_value(sze) )
|
||||
|
||||
accu = 0_8
|
||||
more = 1
|
||||
do while (more == 1)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)
|
||||
if (rc == -1) then
|
||||
n_integrals = 0
|
||||
return
|
||||
endif
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
if (n_integrals >= 0) then
|
||||
|
||||
if (n_integrals > sze) then
|
||||
deallocate (buffer_value, buffer_i)
|
||||
sze = n_integrals
|
||||
allocate (buffer_value(sze), buffer_i(sze))
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)
|
||||
if (rc /= key_kind*n_integrals) then
|
||||
print *, rc, key_kind, n_integrals
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)
|
||||
if (rc /= integral_kind*n_integrals) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
|
||||
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ' : f77_zmq_send (zmq_socket_pull,...'
|
||||
stop 'error'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
call insert_into_ao_tc_sym_two_e_pot_map(n_integrals,buffer_i,buffer_value)
|
||||
accu += n_integrals
|
||||
if (task_id /= 0) then
|
||||
integer, external :: zmq_delete_task
|
||||
if (zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more) == -1) then
|
||||
stop 'Unable to delete task'
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate( buffer_i, buffer_value )
|
||||
|
||||
integer (map_size_kind) :: get_ao_tc_sym_two_e_pot_map_size
|
||||
control = get_ao_tc_sym_two_e_pot_map_size(ao_tc_sym_two_e_pot_map)
|
||||
|
||||
if (control /= accu) then
|
||||
print *, ''
|
||||
print *, irp_here
|
||||
print *, 'Control : ', control
|
||||
print *, 'Accu : ', accu
|
||||
print *, 'Some integrals were lost during the parallel computation.'
|
||||
print *, 'Try to reduce the number of threads.'
|
||||
stop
|
||||
endif
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
|
||||
end
|
||||
|
299
src/ao_tc_eff_map/j1b_1eInteg.py
Normal file
299
src/ao_tc_eff_map/j1b_1eInteg.py
Normal file
@ -0,0 +1,299 @@
|
||||
import sys, os
|
||||
QP_PATH=os.environ["QP_EZFIO"]
|
||||
sys.path.insert(0,QP_PATH+"/Python/")
|
||||
from ezfio import ezfio
|
||||
from datetime import datetime
|
||||
import time
|
||||
from math import exp, sqrt, pi
|
||||
import numpy as np
|
||||
import subprocess
|
||||
from scipy.integrate import tplquad
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def read_ao():
|
||||
|
||||
with open('ao_data') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
ao_prim_num = np.zeros((ao_num), dtype=int)
|
||||
ao_nucl = np.zeros((ao_num), dtype=int)
|
||||
ao_power = np.zeros((ao_num, 3))
|
||||
nucl_coord = np.zeros((ao_num, 3))
|
||||
ao_expo = np.zeros((ao_num, ao_num))
|
||||
ao_coef = np.zeros((ao_num, ao_num))
|
||||
|
||||
iline = 0
|
||||
for j in range(ao_num):
|
||||
|
||||
line = lines[iline]
|
||||
iline += 1
|
||||
ao_nucl[j] = int(line) - 1
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
ao_power[j, 0] = float(line[0])
|
||||
ao_power[j, 1] = float(line[1])
|
||||
ao_power[j, 2] = float(line[2])
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
nucl_coord[ao_nucl[j], 0] = float(line[0])
|
||||
nucl_coord[ao_nucl[j], 1] = float(line[1])
|
||||
nucl_coord[ao_nucl[j], 2] = float(line[2])
|
||||
|
||||
line = lines[iline]
|
||||
iline += 1
|
||||
ao_prim_num[j] = int(line)
|
||||
|
||||
for l in range(ao_prim_num[j]):
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
ao_expo[l, j] = float(line[0])
|
||||
ao_coef[l, j] = float(line[1])
|
||||
|
||||
return( ao_prim_num
|
||||
, ao_nucl
|
||||
, ao_power
|
||||
, nucl_coord
|
||||
, ao_expo
|
||||
, ao_coef )
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def Gao(X, i_ao):
|
||||
|
||||
ii = ao_nucl[i_ao]
|
||||
C = np.array([nucl_coord[ii,0], nucl_coord[ii,1], nucl_coord[ii,2]])
|
||||
Y = X - C
|
||||
dis = np.dot(Y,Y)
|
||||
|
||||
ip = np.array([ao_power[i_ao,0], ao_power[i_ao,1], ao_power[i_ao,2]])
|
||||
pol = np.prod(Y**ip)
|
||||
|
||||
xi = np.sum( ao_coef[:,i_ao] * np.exp(-dis*ao_expo[:,i_ao]) )
|
||||
|
||||
return(xi*pol)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def grad_Gao(X, i_ao):
|
||||
|
||||
ii = ao_nucl[i_ao]
|
||||
C = np.array([nucl_coord[ii,0], nucl_coord[ii,1], nucl_coord[ii,2]])
|
||||
|
||||
ix = ao_power[i_ao,0]
|
||||
iy = ao_power[i_ao,1]
|
||||
iz = ao_power[i_ao,2]
|
||||
|
||||
Y = X - C
|
||||
dis = np.dot(Y,Y)
|
||||
|
||||
xm = np.sum( ao_coef[:,i_ao]*np.exp(-dis*ao_expo[:,i_ao]))
|
||||
xp = np.sum(ao_expo[:,i_ao]*ao_coef[:,i_ao]*np.exp(-dis*ao_expo[:,i_ao]))
|
||||
|
||||
ip = np.array([ix+1, iy, iz])
|
||||
dx = -2. * np.prod(Y**ip) * xp
|
||||
if(ix > 0):
|
||||
ip = np.array([ix-1, iy, iz])
|
||||
dx += ix * np.prod(Y**ip) * xm
|
||||
|
||||
ip = np.array([ix, iy+1, iz])
|
||||
dy = -2. * np.prod(Y**ip) * xp
|
||||
if(iy > 0):
|
||||
ip = np.array([ix, iy-1, iz])
|
||||
dy += iy * np.prod(Y**ip) * xm
|
||||
|
||||
ip = np.array([ix, iy, iz+1])
|
||||
dz = -2. * np.prod(Y**ip) * xp
|
||||
if(iz > 0):
|
||||
ip = np.array([ix, iy, iz-1])
|
||||
dz += iz * np.prod(Y**ip) * xm
|
||||
|
||||
return(np.array([dx, dy, dz]))
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
# 3 x < XA | exp[-gama r_C^2] | XB >
|
||||
# - 2 x < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
#
|
||||
def integ_lap(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
Gj = Gao(X, j_ao)
|
||||
|
||||
c = 0.
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
dis = np.dot(Y, Y)
|
||||
arg = exp(-gama*dis)
|
||||
arg = exp(-gama*dis)
|
||||
c += ( 3. - 2. * dis * gama ) * arg * gama * Gi * Gj
|
||||
|
||||
return(c)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
#
|
||||
def integ_grad2(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
Gj = Gao(X, j_ao)
|
||||
|
||||
c = np.zeros((3))
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
c += gama * exp(-gama*np.dot(Y, Y)) * Y
|
||||
|
||||
return(-2*np.dot(c,c)*Gi*Gj)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
#
|
||||
def integ_nonh(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
|
||||
c = 0.
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
grad = grad_Gao(X, j_ao)
|
||||
c += gama * exp(-gama*np.dot(Y,Y)) * np.dot(Y,grad)
|
||||
|
||||
return(2*c*Gi)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def perform_integ( ind_ao ):
|
||||
|
||||
i_ao = ind_ao[0]
|
||||
j_ao = ind_ao[1]
|
||||
|
||||
a = -15. #-np.Inf
|
||||
b = +15. #+np.Inf
|
||||
epsrel = 1e-5
|
||||
|
||||
res_lap, err_lap = tplquad( integ_lap
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
res_grd, err_grd = tplquad( integ_grad2
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
res_nnh, err_nnh = tplquad( integ_nonh
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
return( [ res_lap, err_lap
|
||||
, res_grd, err_grd
|
||||
, res_nnh, err_nnh ])
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def integ_eval():
|
||||
|
||||
list_ind = []
|
||||
for i_ao in range(ao_num):
|
||||
for j_ao in range(ao_num):
|
||||
list_ind.append( [i_ao, j_ao] )
|
||||
|
||||
nb_proc = multiprocessing.cpu_count()
|
||||
print(" --- Excexution with {} processors ---\n".format(nb_proc))
|
||||
|
||||
p = Pool(nb_proc)
|
||||
res = np.array( p.map( perform_integ, list_ind ) )
|
||||
|
||||
ii = 0
|
||||
for i_ao in range(ao_num):
|
||||
for j_ao in range(ao_num):
|
||||
print(" {} {} {:+e} {:+e} {:+e} {:+e}".format( i_ao, j_ao
|
||||
, res[ii][0], res[ii][1], res[ii][2], res[ii][3]) )
|
||||
ii += 1
|
||||
|
||||
p.close()
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
if __name__=="__main__":
|
||||
|
||||
t0 = time.time()
|
||||
|
||||
EZFIO_file = sys.argv[1]
|
||||
ezfio.set_file(EZFIO_file)
|
||||
|
||||
print(" Today's date:", datetime.now() )
|
||||
print(" EZFIO file = {}".format(EZFIO_file))
|
||||
|
||||
nucl_num = ezfio.get_nuclei_nucl_num()
|
||||
ao_num = ezfio.get_ao_basis_ao_num()
|
||||
j1b_gauss_pen = ezfio.get_ao_tc_eff_map_j1b_gauss_pen()
|
||||
|
||||
ao_prim_num, ao_nucl, ao_power, nucl_coord, ao_expo, ao_coef = read_ao()
|
||||
|
||||
#integ_eval()
|
||||
|
||||
i_ao = 0
|
||||
j_ao = 0
|
||||
|
||||
a = -5.
|
||||
b = +5.
|
||||
epsrel = 1e-1
|
||||
res_grd, err_grd = tplquad( integ_nonh
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
print(res_grd, err_grd)
|
||||
|
||||
|
||||
tf = time.time() - t0
|
||||
print(' end after {} min'.format(tf/60.))
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
|
59
src/ao_tc_eff_map/j1b_pen.irp.f
Normal file
59
src/ao_tc_eff_map/j1b_pen.irp.f
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_pen, (nucl_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! exponents of the 1-body Jastrow
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
logical :: exists
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_ao_tc_eff_map_j1b_gauss_pen(exists)
|
||||
endif
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(j1b_gauss_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_gauss_pen with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
|
||||
if (mpi_master) then
|
||||
write(6,'(A)') '.. >>>>> [ IO READ: j1b_gauss_pen ] <<<<< ..'
|
||||
call ezfio_get_ao_tc_eff_map_j1b_gauss_pen(j1b_gauss_pen)
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST(j1b_gauss_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_gauss_pen with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
integer :: i
|
||||
do i = 1, nucl_num
|
||||
j1b_gauss_pen(i) = 1d5
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
291
src/ao_tc_eff_map/map_integrals_eff_pot.irp.f
Normal file
291
src/ao_tc_eff_map/map_integrals_eff_pot.irp.f
Normal file
@ -0,0 +1,291 @@
|
||||
use map_module
|
||||
|
||||
!! AO Map
|
||||
!! ======
|
||||
|
||||
BEGIN_PROVIDER [ type(map_type), ao_tc_sym_two_e_pot_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! |AO| integrals
|
||||
END_DOC
|
||||
integer(key_kind) :: key_max
|
||||
integer(map_size_kind) :: sze
|
||||
call two_e_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
|
||||
sze = key_max
|
||||
call map_init(ao_tc_sym_two_e_pot_map,sze)
|
||||
print*, 'ao_tc_sym_two_e_pot_map map initialized : ', sze
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, ao_tc_sym_two_e_pot_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, ao_tc_sym_two_e_pot_cache_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Min and max values of the AOs for which the integrals are in the cache
|
||||
END_DOC
|
||||
ao_tc_sym_two_e_pot_cache_min = max(1,ao_num - 63)
|
||||
ao_tc_sym_two_e_pot_cache_max = ao_num
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_tc_sym_two_e_pot_cache, (0:64*64*64*64) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of |AO| integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do k=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do j=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do i=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(ao_tc_sym_two_e_pot_map,idx,integral)
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_tc_sym_two_e_pot_cache_min)
|
||||
ao_tc_sym_two_e_pot_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine insert_into_ao_tc_sym_two_e_pot_map(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create new entry into |AO| map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_tc_sym_two_e_pot_map, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
double precision function get_ao_tc_sym_two_e_pot(i,j,k,l,map) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one |AO| two-electron integral from the |AO| map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map ao_tc_sym_two_e_pot_cache ao_tc_sym_two_e_pot_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
! if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
if (.False.) then
|
||||
tmp = 0.d0
|
||||
!else if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < ao_integrals_threshold) then
|
||||
! tmp = 0.d0
|
||||
else
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
ii = ior(ii, k-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior(ii, j-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior(ii, i-ao_tc_sym_two_e_pot_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
tmp = tmp
|
||||
else
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_tc_sym_two_e_pot_cache_min)
|
||||
tmp = ao_tc_sym_two_e_pot_cache(ii)
|
||||
endif
|
||||
endif
|
||||
result = tmp
|
||||
end
|
||||
|
||||
|
||||
subroutine get_many_ao_tc_sym_two_e_pot(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Gets multiple |AO| two-electron integral from the |AO| map .
|
||||
! All i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
! logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map ao_tc_sym_two_e_pot_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
! if (ao_one_e_integral_zero(j,l)) then
|
||||
if (.False.) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
double precision :: get_ao_tc_sym_two_e_pot
|
||||
do i=1,sze
|
||||
out_val(i) = get_ao_tc_sym_two_e_pot(i,j,k,l,ao_tc_sym_two_e_pot_map)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine get_many_ao_tc_sym_two_e_pot_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets multiple |AO| two-electron integrals from the |AO| map .
|
||||
! All non-zero i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
integer, intent(out) :: out_val_index(sze),non_zero_int
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh,tmp
|
||||
! logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
non_zero_int = 0
|
||||
! if (ao_one_e_integral_zero(j,l)) then
|
||||
if (.False.) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
non_zero_int = 0
|
||||
do i=1,sze
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral_eff_pot
|
||||
!DIR$ FORCEINLINE
|
||||
!if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thresh) then
|
||||
! cycle
|
||||
!endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_tc_sym_two_e_pot_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(non_zero_int) = i
|
||||
out_val(non_zero_int) = tmp
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
function get_ao_tc_sym_two_e_pot_map_size()
|
||||
implicit none
|
||||
integer (map_size_kind) :: get_ao_tc_sym_two_e_pot_map_size
|
||||
BEGIN_DOC
|
||||
! Returns the number of elements in the |AO| map
|
||||
END_DOC
|
||||
get_ao_tc_sym_two_e_pot_map_size = ao_tc_sym_two_e_pot_map % n_elements
|
||||
end
|
||||
|
||||
subroutine clear_ao_tc_sym_two_e_pot_map
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Frees the memory of the |AO| map
|
||||
END_DOC
|
||||
call map_deinit(ao_tc_sym_two_e_pot_map)
|
||||
FREE ao_tc_sym_two_e_pot_map
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine dump_ao_tc_sym_two_e_pot(filename)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save to disk the |AO| eff_pot integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer*8 :: i,j, n
|
||||
call ezfio_set_work_empty(.False.)
|
||||
open(unit=66,file=filename,FORM='unformatted')
|
||||
write(66) integral_kind, key_kind
|
||||
write(66) ao_tc_sym_two_e_pot_map%sorted, ao_tc_sym_two_e_pot_map%map_size, &
|
||||
ao_tc_sym_two_e_pot_map%n_elements
|
||||
do i=0_8,ao_tc_sym_two_e_pot_map%map_size
|
||||
write(66) ao_tc_sym_two_e_pot_map%map(i)%sorted, ao_tc_sym_two_e_pot_map%map(i)%map_size,&
|
||||
ao_tc_sym_two_e_pot_map%map(i)%n_elements
|
||||
enddo
|
||||
do i=0_8,ao_tc_sym_two_e_pot_map%map_size
|
||||
key => ao_tc_sym_two_e_pot_map%map(i)%key
|
||||
val => ao_tc_sym_two_e_pot_map%map(i)%value
|
||||
n = ao_tc_sym_two_e_pot_map%map(i)%n_elements
|
||||
write(66) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
close(66)
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
integer function load_ao_tc_sym_two_e_pot(filename)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Read from disk the |AO| eff_pot integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer*8 :: i
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer :: iknd, kknd
|
||||
integer*8 :: n, j
|
||||
load_ao_tc_sym_two_e_pot = 1
|
||||
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
|
||||
read(66,err=98,end=98) iknd, kknd
|
||||
if (iknd /= integral_kind) then
|
||||
print *, 'Wrong integrals kind in file :', iknd
|
||||
stop 1
|
||||
endif
|
||||
if (kknd /= key_kind) then
|
||||
print *, 'Wrong key kind in file :', kknd
|
||||
stop 1
|
||||
endif
|
||||
read(66,err=98,end=98) ao_tc_sym_two_e_pot_map%sorted, ao_tc_sym_two_e_pot_map%map_size,&
|
||||
ao_tc_sym_two_e_pot_map%n_elements
|
||||
do i=0_8, ao_tc_sym_two_e_pot_map%map_size
|
||||
read(66,err=99,end=99) ao_tc_sym_two_e_pot_map%map(i)%sorted, &
|
||||
ao_tc_sym_two_e_pot_map%map(i)%map_size, ao_tc_sym_two_e_pot_map%map(i)%n_elements
|
||||
call cache_map_reallocate(ao_tc_sym_two_e_pot_map%map(i),ao_tc_sym_two_e_pot_map%map(i)%map_size)
|
||||
enddo
|
||||
do i=0_8, ao_tc_sym_two_e_pot_map%map_size
|
||||
key => ao_tc_sym_two_e_pot_map%map(i)%key
|
||||
val => ao_tc_sym_two_e_pot_map%map(i)%value
|
||||
n = ao_tc_sym_two_e_pot_map%map(i)%n_elements
|
||||
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
call map_sort(ao_tc_sym_two_e_pot_map)
|
||||
load_ao_tc_sym_two_e_pot = 0
|
||||
return
|
||||
99 continue
|
||||
call map_deinit(ao_tc_sym_two_e_pot_map)
|
||||
98 continue
|
||||
stop 'Problem reading ao_tc_sym_two_e_pot_map file in work/'
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
519
src/ao_tc_eff_map/one_e_1bgauss_hermit.irp.f
Normal file
519
src/ao_tc_eff_map/one_e_1bgauss_hermit.irp.f
Normal file
@ -0,0 +1,519 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \grad \tau_{1b} \cdot \grad \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k1, k2, l, m
|
||||
double precision :: alpha, beta, gama1, gama2
|
||||
double precision :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision :: c1, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_4G
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
|
||||
j1b_gauss_hermII(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k1, k2, l, m, alpha, beta, gama1, gama2, &
|
||||
!$OMP A_center, B_center, C_center1, C_center2, &
|
||||
!$OMP power_A, power_B, num_A, num_B, c1, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_hermII)
|
||||
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k1 = 1, nucl_num
|
||||
gama1 = j1b_gauss_pen(k1)
|
||||
C_center1(1:3) = nucl_coord(k1,1:3)
|
||||
|
||||
do k2 = 1, nucl_num
|
||||
gama2 = j1b_gauss_pen(k2)
|
||||
C_center2(1:3) = nucl_coord(k2,1:3)
|
||||
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
c1 = int_gauss_4G( A_center, B_center, C_center1, C_center2 &
|
||||
, power_A, power_B, alpha, beta, gama1, gama2 )
|
||||
|
||||
c = c - 2.d0 * gama1 * gama2 * c1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
!
|
||||
double precision function int_gauss_4G( A_center, B_center, C_center1, C_center2, power_A, power_B &
|
||||
, alpha, beta, gama1, gama2 )
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision, intent(in) :: alpha, beta, gama1, gama2
|
||||
|
||||
integer :: i, dim1, power_C
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: gama, fact_C, C_center(3)
|
||||
double precision :: cx0, cy0, cz0, c_tmp1, c_tmp2, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
call gaussian_product(gama1, C_center1, gama2, C_center2, fact_C, gama, C_center)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! x term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (x - x_C1) (x - x_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(1) - C_center1(1) - C_center2(1)
|
||||
c_tmp2 = ( C_center(1) - C_center1(1) ) * ( C_center(1) - C_center2(1) )
|
||||
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C)^2 | XB >
|
||||
power_C = 2
|
||||
cx = cx + P_AB(i,1) &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C) | XB >
|
||||
power_C = 1
|
||||
cx = cx + P_AB(i,1) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cx = cx + P_AB(i,1) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! y term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (y - y_C1) (y - y_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(2) - C_center1(2) - C_center2(2)
|
||||
c_tmp2 = ( C_center(2) - C_center1(2) ) * ( C_center(2) - C_center2(2) )
|
||||
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C)^2 | XB >
|
||||
power_C = 2
|
||||
cy = cy + P_AB(i,2) &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C) | XB >
|
||||
power_C = 1
|
||||
cy = cy + P_AB(i,2) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cy = cy + P_AB(i,2) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! z term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (z - z_C1) (z - z_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(3) - C_center1(3) - C_center2(3)
|
||||
c_tmp2 = ( C_center(3) - C_center1(3) ) * ( C_center(3) - C_center2(3) )
|
||||
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C)^2 | XB >
|
||||
power_C = 2
|
||||
cz = cz + P_AB(i,3) &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C) | XB >
|
||||
power_C = 1
|
||||
cz = cz + P_AB(i,3) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cz = cz + P_AB(i,3) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
int_gauss_4G = fact_AB * fact_C * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_4G
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \Delta \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: alpha, beta, gama
|
||||
double precision :: A_center(3), B_center(3), C_center(3)
|
||||
double precision :: c1, c2, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_r0, int_gauss_r2
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
j1b_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c2, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_hermI)
|
||||
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
|
||||
gama = j1b_gauss_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 3.d0 * gama * c1 - 2.d0 * gama * gama * c2
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r0(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
integer :: nmax
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx, cy, cz
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
if( fact_AB .lt. 1d-20 ) then
|
||||
int_gauss_r0 = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_r0 = fact_AB * cx * cy * cz
|
||||
|
||||
return
|
||||
end function int_gauss_r0
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | r_C^2 exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r2(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx0, cy0, cz0, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial centered on AB_center
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
power_C = 2
|
||||
|
||||
! ( x - XC)^2
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! ( y - YC)^2
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! ( z - ZC)^2
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
int_gauss_r2 = fact_AB * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_r2
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
319
src/ao_tc_eff_map/one_e_1bgauss_nonherm.irp.f
Normal file
319
src/ao_tc_eff_map/one_e_1bgauss_nonherm.irp.f
Normal file
@ -0,0 +1,319 @@
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! \langle \chi_i | - grad \tau_{1b} \cdot grad | \chi_j \rangle =
|
||||
! 2 \sum_A aA \langle \chi_i | exp[-aA riA^2] (ri-rA) \cdot grad | \chi_j \rangle
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: alpha, beta, gama
|
||||
double precision :: A_center(3), B_center(3), C_center(3)
|
||||
double precision :: c1, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_deriv
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
|
||||
j1b_gauss_nonherm(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_nonherm)
|
||||
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
|
||||
gama = j1b_gauss_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||||
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 2.d0 * gama * c1
|
||||
enddo
|
||||
|
||||
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama r_C^2] r_C \cdot grad | XB >
|
||||
!
|
||||
double precision function int_gauss_deriv(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3), power_D(3)
|
||||
double precision :: AB_expo
|
||||
double precision :: fact_AB, center_AB(3), pol_AB(0:max_dim,3)
|
||||
double precision :: cx, cy, cz
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
int_gauss_deriv = 0.d0
|
||||
|
||||
! ===============
|
||||
! term I:
|
||||
! \partial_x
|
||||
! ===============
|
||||
|
||||
if( power_B(1) .ge. 1 ) then
|
||||
|
||||
power_D(1) = power_B(1) - 1
|
||||
power_D(2) = power_B(2)
|
||||
power_D(3) = power_B(3)
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 1
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(1)) * cx * cy * cz
|
||||
endif
|
||||
|
||||
! ===============
|
||||
|
||||
power_D(1) = power_B(1) + 1
|
||||
power_D(2) = power_B(2)
|
||||
power_D(3) = power_B(3)
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 1
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||||
|
||||
! ===============
|
||||
! ===============
|
||||
|
||||
|
||||
! ===============
|
||||
! term II:
|
||||
! \partial_y
|
||||
! ===============
|
||||
|
||||
if( power_B(2) .ge. 1 ) then
|
||||
|
||||
power_D(1) = power_B(1)
|
||||
power_D(2) = power_B(2) - 1
|
||||
power_D(3) = power_B(3)
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 1
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(2)) * cx * cy * cz
|
||||
endif
|
||||
|
||||
! ===============
|
||||
|
||||
power_D(1) = power_B(1)
|
||||
power_D(2) = power_B(2) + 1
|
||||
power_D(3) = power_B(3)
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 1
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||||
|
||||
! ===============
|
||||
! ===============
|
||||
|
||||
! ===============
|
||||
! term III:
|
||||
! \partial_z
|
||||
! ===============
|
||||
|
||||
if( power_B(3) .ge. 1 ) then
|
||||
|
||||
power_D(1) = power_B(1)
|
||||
power_D(2) = power_B(2)
|
||||
power_D(3) = power_B(3) - 1
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 1
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv + fact_AB * dble(power_B(3)) * cx * cy * cz
|
||||
endif
|
||||
|
||||
! ===============
|
||||
|
||||
power_D(1) = power_B(1)
|
||||
power_D(2) = power_B(2)
|
||||
power_D(3) = power_B(3) + 1
|
||||
|
||||
call give_explicit_poly_and_gaussian( pol_AB, center_AB, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_D, A_center, B_center, dim1)
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + pol_AB(i,1) * overlap_gaussian_x( center_AB(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 0
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + pol_AB(i,2) * overlap_gaussian_x( center_AB(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
power_C = 1
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + pol_AB(i,3) * overlap_gaussian_x( center_AB(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_deriv = int_gauss_deriv - 2.d0 * beta * fact_AB * cx * cy * cz
|
||||
|
||||
! ===============
|
||||
! ===============
|
||||
|
||||
return
|
||||
end function int_gauss_deriv
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
203
src/ao_tc_eff_map/potential.irp.f
Normal file
203
src/ao_tc_eff_map/potential.irp.f
Normal file
@ -0,0 +1,203 @@
|
||||
BEGIN_PROVIDER [integer, n_gauss_eff_pot]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! number of gaussians to represent the effective potential :
|
||||
!
|
||||
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
|
||||
!
|
||||
! Here (1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021)
|
||||
END_DOC
|
||||
n_gauss_eff_pot = n_max_fit_slat + 1
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_gauss_eff_pot_deriv]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! V(r12) = -(1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021)
|
||||
END_DOC
|
||||
n_gauss_eff_pot_deriv = n_max_fit_slat
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_eff_pot, (n_gauss_eff_pot)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_eff_pot, (n_gauss_eff_pot)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Coefficients and exponents of the Fit on Gaussians of V(X) = -(1 - erf(mu*X))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*X)^2)
|
||||
!
|
||||
! V(X) = \sum_{i=1,n_gauss_eff_pot} coef_gauss_eff_pot(i) * exp(-expo_gauss_eff_pot(i) * X^2)
|
||||
!
|
||||
! Relies on the fit proposed in Eqs A11-A20 in JCP 154, 084119 (2021)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: i
|
||||
! fit of the -0.25 * (1 - erf(mu*x))^2 with n_max_fit_slat gaussians
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_eff_pot(i) = expo_gauss_1_erf_x_2(i)
|
||||
coef_gauss_eff_pot(i) = -0.25d0 * coef_gauss_1_erf_x_2(i) ! -1/4 * (1 - erf(mu*x))^2
|
||||
enddo
|
||||
! Analytical Gaussian part of the potential: + 1/(\sqrt(pi)mu) * exp(-(mu*x)^2)
|
||||
expo_gauss_eff_pot(n_max_fit_slat+1) = mu_erf * mu_erf
|
||||
coef_gauss_eff_pot(n_max_fit_slat+1) = 1.d0 * mu_erf * inv_sq_pi
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function eff_pot_gauss(x,mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
|
||||
END_DOC
|
||||
double precision, intent(in) :: x,mu
|
||||
eff_pot_gauss = mu/dsqrt(dacos(-1.d0)) * dexp(-mu*mu*x*x) - 0.25d0 * (1.d0 - derf(mu*x))**2.d0
|
||||
end
|
||||
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------
|
||||
! ---
|
||||
|
||||
double precision function eff_pot_fit_gauss(x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
|
||||
!
|
||||
! but fitted with gaussians
|
||||
END_DOC
|
||||
double precision, intent(in) :: x
|
||||
integer :: i
|
||||
double precision :: alpha
|
||||
eff_pot_fit_gauss = derf(mu_erf*x)/x
|
||||
do i = 1, n_gauss_eff_pot
|
||||
alpha = expo_gauss_eff_pot(i)
|
||||
eff_pot_fit_gauss += coef_gauss_eff_pot(i) * dexp(-alpha*x*x)
|
||||
enddo
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [integer, n_fit_1_erf_x]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!
|
||||
END_DOC
|
||||
n_fit_1_erf_x = 2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, expos_slat_gauss_1_erf_x, (n_fit_1_erf_x)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 1 - erf(mu*x) is fitted with a Slater and gaussian as in Eq.A15 of JCP 154, 084119 (2021)
|
||||
!
|
||||
! 1 - erf(mu*x) = e^{-expos_slat_gauss_1_erf_x(1) * mu *x} * e^{-expos_slat_gauss_1_erf_x(2) * mu^2 * x^2}
|
||||
END_DOC
|
||||
expos_slat_gauss_1_erf_x(1) = 1.09529d0
|
||||
expos_slat_gauss_1_erf_x(2) = 0.756023d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x, (n_max_fit_slat)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! (1 - erf(mu*x)) = \sum_i coef_gauss_1_erf_x(i) * exp(-expo_gauss_1_erf_x(i) * x^2)
|
||||
!
|
||||
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
|
||||
!
|
||||
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
!
|
||||
! See Appendix 2 of JCP 154, 084119 (2021)
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: expos(n_max_fit_slat),alpha,beta
|
||||
alpha = expos_slat_gauss_1_erf_x(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha,expos)
|
||||
beta = expos_slat_gauss_1_erf_x(2) * mu_erf**2.d0
|
||||
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_1_erf_x(i) = expos(i) + beta
|
||||
coef_gauss_1_erf_x(i) = coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
double precision function fit_1_erf_x(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
BEGIN_DOC
|
||||
! fit_1_erf_x(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))
|
||||
END_DOC
|
||||
integer :: i
|
||||
fit_1_erf_x = 0.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
fit_1_erf_x += dexp(-expo_gauss_1_erf_x(i) *x*x) * coef_gauss_1_erf_x(i)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (n_max_fit_slat)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
|
||||
!
|
||||
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
|
||||
!
|
||||
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: expos(n_max_fit_slat),alpha,beta
|
||||
alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha,expos)
|
||||
beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf**2.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_1_erf_x_2(i) = expos(i) + beta
|
||||
coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
double precision function fit_1_erf_x_2(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
BEGIN_DOC
|
||||
! fit_1_erf_x_2(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))^2
|
||||
END_DOC
|
||||
integer :: i
|
||||
fit_1_erf_x_2 = 0.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
fit_1_erf_x_2 += dexp(-expo_gauss_1_erf_x_2(i) *x*x) * coef_gauss_1_erf_x_2(i)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine inv_r_times_poly(r, dist_r, dist_vec, poly)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns
|
||||
!
|
||||
! poly(1) = x / sqrt(x^2+y^2+z^2), poly(2) = y / sqrt(x^2+y^2+z^2), poly(3) = z / sqrt(x^2+y^2+z^2)
|
||||
!
|
||||
! with the arguments
|
||||
!
|
||||
! r(1) = x, r(2) = y, r(3) = z, dist_r = sqrt(x^2+y^2+z^2)
|
||||
!
|
||||
! dist_vec(1) = sqrt(y^2+z^2), dist_vec(2) = sqrt(x^2+z^2), dist_vec(3) = sqrt(x^2+y^2)
|
||||
END_DOC
|
||||
double precision, intent(in) :: r(3), dist_r, dist_vec(3)
|
||||
double precision, intent(out):: poly(3)
|
||||
double precision :: inv_dist
|
||||
integer :: i
|
||||
if (dist_r.gt. 1.d-8)then
|
||||
inv_dist = 1.d0/dist_r
|
||||
do i = 1, 3
|
||||
poly(i) = r(i) * inv_dist
|
||||
enddo
|
||||
else
|
||||
do i = 1, 3
|
||||
if(dabs(r(i)).lt.dist_vec(i))then
|
||||
inv_dist = 1.d0/dist_r
|
||||
poly(i) = r(i) * inv_dist
|
||||
else !if(dabs(r(i)))then
|
||||
poly(i) = 1.d0
|
||||
! poly(i) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
end
|
86
src/ao_tc_eff_map/providers_ao_eff_pot.irp.f
Normal file
86
src/ao_tc_eff_map/providers_ao_eff_pot.irp.f
Normal file
@ -0,0 +1,86 @@
|
||||
|
||||
BEGIN_PROVIDER [ logical, ao_tc_sym_two_e_pot_in_map ]
|
||||
implicit none
|
||||
use f77_zmq
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Map of Atomic integrals
|
||||
! i(r1) j(r2) 1/r12 k(r1) l(r2)
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: ao_tc_sym_two_e_pot,cpu_1,cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
! For integrals file
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
integer,parameter :: size_buffer = 1024*64
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
|
||||
integer :: n_integrals, rc
|
||||
integer :: kk, m, j1, i1, lmax
|
||||
character*(64) :: fmt
|
||||
|
||||
!double precision :: j1b_gauss_coul_debug
|
||||
!integral = j1b_gauss_coul_debug(1,1,1,1)
|
||||
|
||||
integral = ao_tc_sym_two_e_pot(1,1,1,1)
|
||||
|
||||
double precision :: map_mb
|
||||
|
||||
print*, 'Providing the ao_tc_sym_two_e_pot_map integrals'
|
||||
call wall_time(wall_0)
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'ao_tc_sym_two_e_pot')
|
||||
|
||||
character(len=:), allocatable :: task
|
||||
allocate(character(len=ao_num*12) :: task)
|
||||
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
|
||||
do l=1,ao_num
|
||||
write(task,fmt) (i,l, i=1,l)
|
||||
integer, external :: add_task_to_taskserver
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) == -1) then
|
||||
stop 'Unable to add task to server'
|
||||
endif
|
||||
enddo
|
||||
deallocate(task)
|
||||
|
||||
integer, external :: zmq_set_running
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
PROVIDE nproc
|
||||
!$OMP PARALLEL DEFAULT(shared) private(i) num_threads(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call ao_tc_sym_two_e_pot_in_map_collector(zmq_socket_pull)
|
||||
else
|
||||
call ao_tc_sym_two_e_pot_in_map_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'ao_tc_sym_two_e_pot')
|
||||
|
||||
|
||||
print*, 'Sorting the map'
|
||||
call map_sort(ao_tc_sym_two_e_pot_map)
|
||||
call cpu_time(cpu_2)
|
||||
call wall_time(wall_2)
|
||||
integer(map_size_kind) :: get_ao_tc_sym_two_e_pot_map_size, ao_eff_pot_map_size
|
||||
ao_eff_pot_map_size = get_ao_tc_sym_two_e_pot_map_size()
|
||||
|
||||
print*, 'AO eff_pot integrals provided:'
|
||||
print*, ' Size of AO eff_pot map : ', map_mb(ao_tc_sym_two_e_pot_map) ,'MB'
|
||||
print*, ' Number of AO eff_pot integrals :', ao_eff_pot_map_size
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
|
||||
ao_tc_sym_two_e_pot_in_map = .True.
|
||||
|
||||
|
||||
END_PROVIDER
|
800
src/ao_tc_eff_map/two_e_1bgauss_coul.irp.f
Normal file
800
src/ao_tc_eff_map/two_e_1bgauss_coul.irp.f
Normal file
@ -0,0 +1,800 @@
|
||||
double precision function j1b_gauss_coul(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = 0.d0
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul - coef4 * ( cx + cy + cz )
|
||||
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul
|
||||
|
||||
|
||||
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_coul_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_coul_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_coul_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_coul_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
433
src/ao_tc_eff_map/two_e_1bgauss_coul_acc.irp.f
Normal file
433
src/ao_tc_eff_map/two_e_1bgauss_coul_acc.irp.f
Normal file
@ -0,0 +1,433 @@
|
||||
double precision function j1b_gauss_coul_acc(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p1_inv, q1_inv, p2_inv, q2_inv
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
!double precision :: j1b_gauss_coul_schwartz_accel
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
! TODO
|
||||
!if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
! j1b_gauss_coul_schwartz_accel = j1b_gauss_coul_schwartz_accel(i, j, k, l)
|
||||
! return
|
||||
!endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_acc = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new)
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new)
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_acc = j1b_gauss_coul_acc + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_acc
|
397
src/ao_tc_eff_map/two_e_1bgauss_coul_debug.irp.f
Normal file
397
src/ao_tc_eff_map/two_e_1bgauss_coul_debug.irp.f
Normal file
@ -0,0 +1,397 @@
|
||||
double precision function j1b_gauss_coul_debug(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = 0.d0
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = j1b_gauss_coul_debug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! !
|
||||
! ! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! !
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
!
|
||||
! do p = 1, ao_prim_num(i)
|
||||
! coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
! expo1 = ao_expo_ordered_transp(p, i)
|
||||
!
|
||||
! do q = 1, ao_prim_num(j)
|
||||
! coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
! expo2 = ao_expo_ordered_transp(q, j)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
! , I_power, J_power, I_center, J_center, dim1 )
|
||||
! p_inv = 1.d0 / pp
|
||||
!
|
||||
! do r = 1, ao_prim_num(k)
|
||||
! coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
! expo3 = ao_expo_ordered_transp(r, k)
|
||||
!
|
||||
! do s = 1, ao_prim_num(l)
|
||||
! coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
! expo4 = ao_expo_ordered_transp(s, l)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
! , K_power, L_power, K_center, L_center, dim1 )
|
||||
!
|
||||
! cx = 0.d0
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
!
|
||||
! call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
!
|
||||
! fact_q = fact_q_tmp * factii
|
||||
! q_inv = 1.d0 / qq
|
||||
!
|
||||
! ! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
! call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
! ! x term:
|
||||
!
|
||||
! ff = Q_center(1) - Centerii(1)
|
||||
!
|
||||
! shift_Q = (/ 2, 0, 0 /)
|
||||
! cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! j1b_gauss_coul_debug = j1b_gauss_coul_debug + coef4 * cx
|
||||
! enddo ! s
|
||||
! enddo ! r
|
||||
! enddo ! q
|
||||
! enddo ! p
|
||||
!
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = j1b_gauss_coul_debug - coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! !
|
||||
! ! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! !
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! do p = 1, ao_prim_num(i)
|
||||
! coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
! expo1 = ao_expo_ordered_transp(p, i)
|
||||
!
|
||||
! do q = 1, ao_prim_num(j)
|
||||
! coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
! expo2 = ao_expo_ordered_transp(q, j)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
! , I_power, J_power, I_center, J_center, dim1 )
|
||||
! p_inv = 1.d0 / pp
|
||||
!
|
||||
! do r = 1, ao_prim_num(k)
|
||||
! coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
! expo3 = ao_expo_ordered_transp(r, k)
|
||||
!
|
||||
! do s = 1, ao_prim_num(l)
|
||||
! coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
! expo4 = ao_expo_ordered_transp(s, l)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
! , K_power, L_power, K_center, L_center, dim1 )
|
||||
!
|
||||
! cx = 0.d0
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
!
|
||||
! call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
!
|
||||
! fact_q = fact_q_tmp * factii
|
||||
! q_inv = 1.d0 / qq
|
||||
!
|
||||
! ! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
! call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
! ! x term:
|
||||
!
|
||||
! ff = P_center(1) - Centerii(1)
|
||||
! gg = Q_center(1) - Centerii(1)
|
||||
!
|
||||
! shift_P = (/ 1, 0, 0 /)
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 1, 0, 0 /)
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! j1b_gauss_coul_debug = j1b_gauss_coul_debug - coef4 * cx
|
||||
!
|
||||
! enddo ! s
|
||||
! enddo ! r
|
||||
! enddo ! q
|
||||
! enddo ! p
|
||||
!
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_debug
|
||||
|
324
src/ao_tc_eff_map/two_e_1bgauss_coul_modifdebug.irp.f
Normal file
324
src/ao_tc_eff_map/two_e_1bgauss_coul_modifdebug.irp.f
Normal file
@ -0,0 +1,324 @@
|
||||
double precision function j1b_gauss_coul_modifdebug(i, j, k, l)
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
double precision :: ao_two_e_integral
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = 0.d0
|
||||
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! j1b_gauss_coul_modifdebug += expoii * ao_two_e_integral(i, j, k, l)
|
||||
! enddo
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
P_new(:,:) = 0.d0
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = j1b_gauss_coul_modifdebug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
fact_q = fact_q_tmp * factii
|
||||
Q_inv = 1.d0 / qq
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = j1b_gauss_coul_modifdebug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_modifdebug
|
||||
|
||||
|
||||
|
||||
|
||||
double precision function general_primitive_integral_coul(dim, &
|
||||
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||||
END_DOC
|
||||
integer,intent(in) :: dim
|
||||
include 'utils/constants.include.F'
|
||||
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
||||
integer, intent(in) :: iorder_p(3)
|
||||
integer, intent(in) :: iorder_q(3)
|
||||
|
||||
double precision :: r_cut,gama_r_cut,rho,dist
|
||||
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
||||
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||||
double precision :: bla
|
||||
integer :: ix,iy,iz,jx,jy,jz,i
|
||||
double precision :: a,b,c,d,e,f,accu,pq,const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||||
integer :: n_pt_tmp,n_pt_out, iorder
|
||||
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
||||
|
||||
general_primitive_integral_coul = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
|
||||
pq = p_inv*0.5d0*q_inv
|
||||
pq_inv = 0.5d0/(p+q)
|
||||
p10_1 = q*pq ! 1/(2p)
|
||||
p01_1 = p*pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv+pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||||
do ix=0,iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
if (abs(P_new(ix,1)) < thresh) cycle
|
||||
a = P_new(ix,1)
|
||||
do jx = 0, iorder_q(1)
|
||||
d = a*Q_new(jx,1)
|
||||
if (abs(d) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if (n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||||
do ix=0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
if (abs(P_new(iy,2)) > thresh) then
|
||||
b = P_new(iy,2)
|
||||
do jy = 0, iorder_q(2)
|
||||
e = b*Q_new(jy,2)
|
||||
if (abs(e) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||||
do ix=0,iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
if (abs(P_new(iz,3)) > thresh) then
|
||||
c = P_new(iz,3)
|
||||
do jz = 0, iorder_q(3)
|
||||
f = c*Q_new(jz,3)
|
||||
if (abs(f) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p*q *pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||||
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||||
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix+n_Iy
|
||||
do i=0,n_pt_tmp
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp+n_Iz
|
||||
do i=0,n_pt_out
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
double precision :: rint_sum
|
||||
accu = accu + rint_sum(n_pt_out,const,d1)
|
||||
|
||||
general_primitive_integral_coul = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q)
|
||||
end function general_primitive_integral_coul
|
102
src/ao_tc_eff_map/two_e_1bgauss_coulerf.irp.f
Normal file
102
src/ao_tc_eff_map/two_e_1bgauss_coulerf.irp.f
Normal file
@ -0,0 +1,102 @@
|
||||
double precision function j1b_gauss_coulerf(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: j1b_gauss_coulerf_schwartz
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
j1b_gauss_coulerf = j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
return
|
||||
endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coulerf = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_coulerf = j1b_gauss_coulerf + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_coulerf
|
||||
|
624
src/ao_tc_eff_map/two_e_1bgauss_coulerf_schwartz.irp.f
Normal file
624
src/ao_tc_eff_map/two_e_1bgauss_coulerf_schwartz.irp.f
Normal file
@ -0,0 +1,624 @@
|
||||
double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: cx, cy, cz
|
||||
double precision :: schwartz_ij, thr
|
||||
double precision, allocatable :: schwartz_kl(:,:)
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
thr = ao_integrals_threshold * ao_integrals_threshold
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
|
||||
allocate( schwartz_kl(0:ao_prim_num(l) , 0:ao_prim_num(k)) )
|
||||
|
||||
schwartz_kl(0,0) = 0.d0
|
||||
do r = 1, ao_prim_num(k)
|
||||
expo3 = ao_expo_ordered_transp(r,k)
|
||||
coef3 = ao_coef_normalized_ordered_transp(r,k) * ao_coef_normalized_ordered_transp(r,k)
|
||||
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
expo4 = ao_expo_ordered_transp(s,l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
schwartz_kl(s,r) = coef4 * dabs( cx + cy + cz )
|
||||
schwartz_kl(0,r) = max( schwartz_kl(0,r) , schwartz_kl(s,r) )
|
||||
enddo
|
||||
|
||||
schwartz_kl(0,0) = max( schwartz_kl(0,r) , schwartz_kl(0,0) )
|
||||
enddo
|
||||
|
||||
|
||||
j1b_gauss_coulerf_schwartz = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p )
|
||||
|
||||
schwartz_ij = coef2 * coef2 * dabs( cx + cy + cz )
|
||||
if( schwartz_kl(0,0) * schwartz_ij < thr ) cycle
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
if( schwartz_kl(0,r) * schwartz_ij < thr ) cycle
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
if( schwartz_kl(s,r) * schwartz_ij < thr ) cycle
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_coulerf_schwartz = j1b_gauss_coulerf_schwartz + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
deallocate( schwartz_kl )
|
||||
|
||||
return
|
||||
end function j1b_gauss_coulerf_schwartz
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim1
|
||||
integer, intent(in) :: iorder_p(3), iorder_q(3)
|
||||
double precision, intent(in) :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision, intent(in) :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision, intent(out) :: cx, cy, cz
|
||||
|
||||
integer :: ii
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2, q2_inv
|
||||
double precision :: ff, gg
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new )
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new )
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ (1-erf(mu r12)) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ (1-erf(mu r12)) / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ (1-erf(mu r12)) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ (1-erf(mu r12)) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine get_cxcycz
|
||||
|
854
src/ao_tc_eff_map/two_e_1bgauss_erf.irp.f
Normal file
854
src/ao_tc_eff_map/two_e_1bgauss_erf.irp.f
Normal file
@ -0,0 +1,854 @@
|
||||
double precision function j1b_gauss_erf(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ -0.5 erf(mu r12) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
|
||||
PROVIDE mu_erf
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = 0.d0
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 2
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 2
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 2
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_Q(1) = 2
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_Q(2) = 2
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_Q(3) = 2
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf + coef4 * ( cx + cy + cz )
|
||||
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
return
|
||||
end function j1b_gauss_erf
|
||||
|
||||
|
||||
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_erf_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_erf_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q) * ( (p*q)/(p+q) + mu_erf*mu_erf ) / (mu_erf*mu_erf)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_erf_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_erf_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
433
src/ao_tc_eff_map/two_e_1bgauss_erf_acc.irp.f
Normal file
433
src/ao_tc_eff_map/two_e_1bgauss_erf_acc.irp.f
Normal file
@ -0,0 +1,433 @@
|
||||
double precision function j1b_gauss_erf_acc(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ -0.5 erf(mu r12) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p1_inv, q1_inv, p2_inv, q2_inv
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
!double precision :: j1b_gauss_erf_schwartz_accel
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
! TODO
|
||||
!if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
! j1b_gauss_erf_schwartz_accel = j1b_gauss_erf_schwartz_accel(i, j, k, l)
|
||||
! return
|
||||
!endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf_acc = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new)
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new)
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf_acc = j1b_gauss_erf_acc - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_erf_acc
|
326
src/ao_tc_eff_map/two_e_ints_gauss.irp.f
Normal file
326
src/ao_tc_eff_map/two_e_ints_gauss.irp.f
Normal file
@ -0,0 +1,326 @@
|
||||
double precision function ao_tc_sym_two_e_pot(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! integral of the AO basis <ik|jl> or (ij|kl)
|
||||
! i(r1) j(r1) (tc_pot(r12,mu)) k(r2) l(r2)
|
||||
!
|
||||
! where (tc_pot(r12,mu)) is the scalar part of the potential EXCLUDING the term erf(mu r12)/r12.
|
||||
!
|
||||
! See Eq. (32) of JCP 154, 084119 (2021).
|
||||
END_DOC
|
||||
integer,intent(in) :: i,j,k,l
|
||||
integer :: p,q,r,s
|
||||
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
||||
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
||||
double precision :: integral
|
||||
include 'utils/constants.include.F'
|
||||
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
||||
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
double precision, allocatable :: schwartz_kl(:,:)
|
||||
double precision :: schwartz_ij
|
||||
double precision :: scw_gauss_int,general_primitive_integral_gauss
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_tc_sym_two_e_pot = 0.d0
|
||||
double precision :: thr
|
||||
thr = ao_integrals_threshold*ao_integrals_threshold
|
||||
|
||||
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
|
||||
|
||||
double precision :: coef3
|
||||
double precision :: coef2
|
||||
double precision :: p_inv,q_inv
|
||||
double precision :: coef1
|
||||
double precision :: coef4
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
schwartz_kl(0,0) = 0.d0
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
scw_gauss_int = general_primitive_integral_gauss(dim1, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
|
||||
schwartz_kl(s,r) = dabs(scw_gauss_int * coef2)
|
||||
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
||||
enddo
|
||||
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
||||
enddo
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||||
I_power,J_power,I_center,J_center,dim1)
|
||||
p_inv = 1.d0/pp
|
||||
scw_gauss_int = general_primitive_integral_gauss(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p)
|
||||
schwartz_ij = dabs(scw_gauss_int * coef2*coef2)
|
||||
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
do r = 1, ao_prim_num(k)
|
||||
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q, &
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
integral = general_primitive_integral_gauss(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
ao_tc_sym_two_e_pot = ao_tc_sym_two_e_pot + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
deallocate (schwartz_kl)
|
||||
|
||||
end
|
||||
|
||||
|
||||
double precision function general_primitive_integral_gauss(dim, &
|
||||
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||||
END_DOC
|
||||
integer,intent(in) :: dim
|
||||
include 'utils/constants.include.F'
|
||||
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
||||
integer, intent(in) :: iorder_p(3)
|
||||
integer, intent(in) :: iorder_q(3)
|
||||
|
||||
double precision :: r_cut,gama_r_cut,rho,dist
|
||||
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
||||
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||||
double precision :: bla
|
||||
integer :: ix,iy,iz,jx,jy,jz,i
|
||||
double precision :: a,b,c,d,e,f,accu,pq,const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||||
integer :: n_pt_tmp,n_pt_out, iorder
|
||||
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
||||
double precision :: thr
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
general_primitive_integral_gauss = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
|
||||
pq = p_inv*0.5d0*q_inv
|
||||
pq_inv = 0.5d0/(p+q)
|
||||
p10_1 = q*pq ! 1/(2p)
|
||||
p01_1 = p*pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv+pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||||
do ix=0,iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
if (abs(P_new(ix,1)) < thr) cycle
|
||||
a = P_new(ix,1)
|
||||
do jx = 0, iorder_q(1)
|
||||
d = a*Q_new(jx,1)
|
||||
if (abs(d) < thr) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if (n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||||
do ix=0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
if (abs(P_new(iy,2)) > thr) then
|
||||
b = P_new(iy,2)
|
||||
do jy = 0, iorder_q(2)
|
||||
e = b*Q_new(jy,2)
|
||||
if (abs(e) < thr) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||||
do ix=0,iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
if (abs(P_new(iz,3)) > thr) then
|
||||
c = P_new(iz,3)
|
||||
do jz = 0, iorder_q(3)
|
||||
f = c*Q_new(jz,3)
|
||||
if (abs(f) < thr) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p*q *pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||||
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||||
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix+n_Iy
|
||||
do i=0,n_pt_tmp
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp+n_Iz
|
||||
do i=0,n_pt_out
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
|
||||
double precision :: aa,c_a,t_a,rho_old,w_a,pi_3,prefactor,inv_pq_3_2
|
||||
double precision :: gauss_int
|
||||
integer :: m
|
||||
gauss_int = 0.d0
|
||||
pi_3 = pi*pi*pi
|
||||
inv_pq_3_2 = (p_inv * q_inv)**(1.5d0)
|
||||
rho_old = (p*q)/(p+q)
|
||||
prefactor = pi_3 * inv_pq_3_2 * fact_p * fact_q
|
||||
do i = 1, n_gauss_eff_pot ! browse the gaussians with different expo/coef
|
||||
aa = expo_gauss_eff_pot(i)
|
||||
c_a = coef_gauss_eff_pot(i)
|
||||
t_a = dsqrt( aa /(rho_old + aa) )
|
||||
w_a = dexp(-t_a*t_a*rho_old*dist)
|
||||
accu = 0.d0
|
||||
! evaluation of the polynom Ix(t_a) * Iy(t_a) * Iz(t_a)
|
||||
do m = 0, n_pt_out,2
|
||||
accu += d1(m) * (t_a)**(dble(m))
|
||||
enddo
|
||||
! equation A8 of PRA-70-062505 (2004) of Toul. Col. Sav.
|
||||
gauss_int = gauss_int + c_a * prefactor * (1.d0 - t_a*t_a)**(1.5d0) * w_a * accu
|
||||
enddo
|
||||
|
||||
general_primitive_integral_gauss = gauss_int
|
||||
end
|
||||
|
||||
subroutine compute_ao_integrals_gauss_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
implicit none
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Parallel client for AO integrals
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: j,l
|
||||
integer,intent(out) :: n_integrals
|
||||
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
|
||||
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
|
||||
|
||||
integer :: i,k
|
||||
double precision :: cpu_1,cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0
|
||||
double precision :: thr,ao_tc_sym_two_e_pot
|
||||
integer :: kk, m, j1, i1
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
n_integrals = 0
|
||||
|
||||
j1 = j+ishft(l*l-l,-1)
|
||||
do k = 1, ao_num ! r1
|
||||
i1 = ishft(k*k-k,-1)
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
do i = 1, k
|
||||
i1 += 1
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
! if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
if (.False.) then
|
||||
cycle
|
||||
endif
|
||||
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then
|
||||
cycle
|
||||
endif
|
||||
!DIR$ FORCEINLINE
|
||||
integral = ao_tc_sym_two_e_pot(i,k,j,l) ! i,k : r1 j,l : r2
|
||||
if (abs(integral) < thr) then
|
||||
cycle
|
||||
endif
|
||||
n_integrals += 1
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i,j,k,l,buffer_i(n_integrals))
|
||||
buffer_value(n_integrals) = integral
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
3
src/bi_ort_ints/NEED
Normal file
3
src/bi_ort_ints/NEED
Normal file
@ -0,0 +1,3 @@
|
||||
non_h_ints_mu
|
||||
ao_tc_eff_map
|
||||
bi_ortho_mos
|
25
src/bi_ort_ints/README.rst
Normal file
25
src/bi_ort_ints/README.rst
Normal file
@ -0,0 +1,25 @@
|
||||
===========
|
||||
bi_ort_ints
|
||||
===========
|
||||
|
||||
This module contains all necessary integrals for the TC Hamiltonian in a bi-orthonormal (BO) MO Basis.
|
||||
See in bi_ortho_basis for more information.
|
||||
The main providers are :
|
||||
|
||||
One-electron integrals
|
||||
----------------------
|
||||
+) ao_one_e_integrals_tc_tot : total one-electron Hamiltonian which might include non hermitian part coming from one-e correlation factor.
|
||||
+) mo_bi_ortho_tc_one_e : one-electron Hamiltonian (h_core+one-J terms) on the BO-MO basis.
|
||||
+) mo_bi_orth_bipole_x : x-component of the dipole operator on the BO-MO basis. (Same for y,z)
|
||||
|
||||
Two-electron integrals
|
||||
----------------------
|
||||
+) ao_two_e_tc_tot : Total two-electron operator (including the non-hermitian term of the TC Hamiltonian) on the AO basis
|
||||
+) mo_bi_ortho_tc_two_e : Total two-electron operator on the BO-MO basis
|
||||
|
||||
Three-electron integrals
|
||||
------------------------
|
||||
+) three_body_ints_bi_ort : 6-indices three-electron tensor (-L) on the BO-MO basis. WARNING :: N^6 storage !
|
||||
+) three_e_3_idx_direct_bi_ort : DIRECT term with 3 different indices of the -L operator. These terms appear in the DIAGONAL matrix element of the -L operator. The 5 other permutations needed to compute matrix elements can be found in three_body_ijm.irp.f
|
||||
+) three_e_4_idx_direct_bi_ort : DIRECT term with 4 different indices of the -L operator. These terms appear in the OFF-DIAGONAL matrix element of the -L operator including SINGLE EXCITATIONS. The 5 other permutations needed to compute matrix elements can be found in three_body_ijmk.irp.f
|
||||
+) three_e_5_idx_direct_bi_ort : DIRECT term with 5 different indices of the -L operator. These terms appear in the OFF-DIAGONAL matrix element of the -L operator including DOUBLE EXCITATIONS. The 5 other permutations needed to compute matrix elements can be found in three_body_ijmkl.irp.f
|
123
src/bi_ort_ints/bi_ort_ints.irp.f
Normal file
123
src/bi_ort_ints/bi_ort_ints.irp.f
Normal file
@ -0,0 +1,123 @@
|
||||
program bi_ort_ints
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
! call test_overlap
|
||||
! call routine_twoe
|
||||
! call routine_onee
|
||||
! call test_v_ki_bi_ortho
|
||||
! call test_x_v_ki_bi_ortho
|
||||
! call test_3_body_bi_ort
|
||||
! call test_3_e_diag
|
||||
! call test_3_e_diag_cycle1
|
||||
! call test_3_e
|
||||
call routine_test_one_int
|
||||
end
|
||||
|
||||
subroutine routine_test_one_int
|
||||
implicit none
|
||||
integer :: p,q,r,s,ii
|
||||
integer :: i,j
|
||||
i = 3
|
||||
j = 5
|
||||
double precision :: accu
|
||||
double precision, allocatable :: vec(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate(vec(ao_num**4),iorder(ao_num**4))
|
||||
accu = 0.d0
|
||||
ii = 0
|
||||
do p = 1, ao_num !
|
||||
do q = 1, ao_num
|
||||
do r = 1, ao_num
|
||||
do s = 1, ao_num
|
||||
!<ji | ji>
|
||||
!
|
||||
! j j i i
|
||||
if(dabs(mo_l_coef(s,j) * mo_l_coef(q,i) * ao_two_e_tc_tot(s,r,q,p) * mo_r_coef(p,i) * mo_r_coef(r,j)).gt.10)then
|
||||
write(33,'(3(F16.10,X),4(I3,X))')mo_l_coef(s,j) * mo_l_coef(q,i)* mo_r_coef(p,i) * mo_r_coef(r,j) , ao_two_e_tc_tot(s,r,q,p), mo_l_coef(s,j) * mo_l_coef(q,i) * ao_two_e_tc_tot(s,r,q,p) * mo_r_coef(p,i) * mo_r_coef(r,j) , s,q,p,r
|
||||
endif
|
||||
ii += 1
|
||||
iorder(ii) = ii
|
||||
vec(ii) = mo_l_coef(s,j) * mo_l_coef(q,i) * ao_two_e_tc_tot(s,r,q,p) * mo_r_coef(p,i) * mo_r_coef(r,j)
|
||||
accu += mo_l_coef(s,j) * mo_l_coef(q,i) * ao_two_e_tc_tot(s,r,q,p) * mo_r_coef(p,i) * mo_r_coef(r,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call dsort(vec,iorder,ao_num**4)
|
||||
accu = 0.d0
|
||||
do i = 1, ao_num**4
|
||||
accu += vec(i)
|
||||
write(34,*)i,vec(i),accu
|
||||
enddo
|
||||
|
||||
print*,'accu = ',accu
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_twoe
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: old, get_mo_two_e_integral_tc_int
|
||||
double precision :: ref,new, accu, contrib, bi_ortho_mo_ints
|
||||
accu = 0.d0
|
||||
print*,'Testing the bi ortho two e'
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
! mo_non_hermit_term(k,l,i,j) = <k l| V(r_12) |i j>
|
||||
! ref = bi_ortho_mo_ints(k,l,i,j)
|
||||
ref = bi_ortho_mo_ints(l,k,j,i)
|
||||
new = mo_bi_ortho_tc_two_e(l,k,j,i)
|
||||
! old = get_mo_two_e_integral_tc_int(k,l,i,j,mo_integrals_tc_int_map)
|
||||
! old += mo_non_hermit_term(l,k,j,i)
|
||||
|
||||
contrib = dabs(ref - new)
|
||||
if(dabs(ref).gt.1.d-10)then
|
||||
if(contrib.gt.1.d-10)then
|
||||
print*,k,l,i,j
|
||||
print*,ref,new,contrib
|
||||
endif
|
||||
endif
|
||||
accu += contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/(dble(mo_num)**4)
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_onee
|
||||
implicit none
|
||||
integer :: i,k
|
||||
double precision :: ref,new,accu,contrib
|
||||
print*,'Testing the bi ortho one e'
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
ref = mo_bi_ortho_tc_one_e_slow(k,i)
|
||||
new = mo_bi_ortho_tc_one_e(k,i)
|
||||
contrib = dabs(ref - new)
|
||||
if(dabs(ref).gt.1.d-10)then
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'i,k',i,k
|
||||
print*,ref,new,contrib
|
||||
endif
|
||||
endif
|
||||
accu += contrib
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/mo_num**2
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
70
src/bi_ort_ints/one_e_bi_ort.irp.f
Normal file
70
src/bi_ort_ints/one_e_bi_ort.irp.f
Normal file
@ -0,0 +1,70 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
ao_one_e_integrals_tc_tot = ao_one_e_integrals
|
||||
|
||||
provide j1b_gauss
|
||||
|
||||
if(j1b_gauss .eq. 1) then
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
|
||||
+ j1b_gauss_hermII (j,i) &
|
||||
+ j1b_gauss_nonherm(j,i) )
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_one_e, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_bi_ortho_tc_one_e(k,i) = <MO^L_k | h_c | MO^R_i>
|
||||
END_DOC
|
||||
integer :: i,k,p,q
|
||||
|
||||
call ao_to_mo_bi_ortho(ao_one_e_integrals_tc_tot, ao_num, mo_bi_ortho_tc_one_e, mo_num)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_x , (mo_num,mo_num)]
|
||||
&BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_y , (mo_num,mo_num)]
|
||||
&BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_z , (mo_num,mo_num)]
|
||||
BEGIN_DOC
|
||||
! array of the integrals of MO_i * x MO_j
|
||||
! array of the integrals of MO_i * y MO_j
|
||||
! array of the integrals of MO_i * z MO_j
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
call ao_to_mo_bi_ortho( &
|
||||
ao_dipole_x, &
|
||||
size(ao_dipole_x,1), &
|
||||
mo_bi_orth_bipole_x, &
|
||||
size(mo_bi_orth_bipole_x,1) &
|
||||
)
|
||||
call ao_to_mo_bi_ortho( &
|
||||
ao_dipole_y, &
|
||||
size(ao_dipole_y,1), &
|
||||
mo_bi_orth_bipole_y, &
|
||||
size(mo_bi_orth_bipole_y,1) &
|
||||
)
|
||||
call ao_to_mo_bi_ortho( &
|
||||
ao_dipole_z, &
|
||||
size(ao_dipole_z,1), &
|
||||
mo_bi_orth_bipole_z, &
|
||||
size(mo_bi_orth_bipole_z,1) &
|
||||
)
|
||||
|
||||
END_PROVIDER
|
||||
|
177
src/bi_ort_ints/semi_num_ints_mo.irp.f
Normal file
177
src/bi_ort_ints/semi_num_ints_mo.irp.f
Normal file
@ -0,0 +1,177 @@
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu, ( mo_num, mo_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_v_ki_bi_ortho_erf_rk_cst_mu(k,i,ip) = int dr chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1 )/(2|r - R_ip|) on the BI-ORTHO MO basis
|
||||
!
|
||||
! where phi_k(r) is a LEFT MOs and phi_i(r) is a RIGHT MO
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
integer :: ipoint
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,v_ij_erf_rk_cst_mu,mo_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho(v_ij_erf_rk_cst_mu(1,1,ipoint),size(v_ij_erf_rk_cst_mu,1),mo_v_ki_bi_ortho_erf_rk_cst_mu(1,1,ipoint),size(mo_v_ki_bi_ortho_erf_rk_cst_mu,1))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu = mo_v_ki_bi_ortho_erf_rk_cst_mu * 0.5d0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, ( n_points_final_grid,mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the BI-ORTHO MO basis
|
||||
END_DOC
|
||||
integer :: ipoint,i,j
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,j,i) = mo_v_ki_bi_ortho_erf_rk_cst_mu(j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu, ( mo_num, mo_num,3,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_x_v_ki_bi_ortho_erf_rk_cst_mu(k,i,m,ip) = int dr x(m) * chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1)/2|r - R_ip| on the BI-ORTHO MO basis
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => x(m) = x, m=2 => x(m) = y, m=3 => x(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
integer :: ipoint,m
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m) &
|
||||
!$OMP SHARED (n_points_final_grid,x_v_ij_erf_rk_cst_mu_transp,mo_x_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do m = 1, 3
|
||||
call ao_to_mo_bi_ortho(x_v_ij_erf_rk_cst_mu_transp(1,1,m,ipoint),size(x_v_ij_erf_rk_cst_mu_transp,1),mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,m,ipoint),size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu,1))
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu = 0.5d0 * mo_x_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
implicit none
|
||||
integer :: i, j, m, ipoint
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,m,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
BEGIN_DOC
|
||||
! x_W_ki_bi_ortho_erf_rk(ip,m,k,i) = \int dr chi_k(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i, k
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
print*,'providing x_W_ki_bi_ortho_erf_rk ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,k,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk(ipoint,m,k,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,k,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'time to provide x_W_ki_bi_ortho_erf_rk = ',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_grid, 3, mo_num)]
|
||||
BEGIN_DOC
|
||||
! x_W_ki_bi_ortho_erf_rk_diag(ip,m,i) = \int dr chi_i(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk_diag,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk_diag(ipoint,m,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,i,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,i,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
304
src/bi_ort_ints/three_body_ijm.irp.f
Normal file
304
src/bi_ort_ints/three_body_ijm.irp.f
Normal file
@ -0,0 +1,304 @@
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the direct terms
|
||||
!
|
||||
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|mji>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_direct_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_direct_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,m,j,i,integral)
|
||||
three_e_3_idx_direct_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_3_idx_direct_bi_ort',wall1 - wall0
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_direct_bi_ort(m,j,i) = three_e_3_idx_direct_bi_ort(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the first cyclic permutation
|
||||
!
|
||||
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|jim>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_cycle_1_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_cycle_1_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_cycle_1_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,j,i,m,integral)
|
||||
three_e_3_idx_cycle_1_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_cycle_1_bi_ort(m,j,i) = three_e_3_idx_cycle_1_bi_ort(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'wall time for three_e_3_idx_cycle_1_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the second cyclic permutation
|
||||
!
|
||||
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|imj>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_cycle_2_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_cycle_2_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_cycle_2_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,i,m,j,integral)
|
||||
three_e_3_idx_cycle_2_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_cycle_2_bi_ort(m,j,i) = three_e_3_idx_cycle_2_bi_ort(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'wall time for three_e_3_idx_cycle_2_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 2 and 3
|
||||
!
|
||||
! three_e_3_idx_exch23_bi_ort(m,j,i) = <mji|-L|jmi>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_exch23_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_exch23_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,j,m,i,integral)
|
||||
three_e_3_idx_exch23_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_exch23_bi_ort(m,j,i) = three_e_3_idx_exch23_bi_ort(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_3_idx_exch23_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 3
|
||||
!
|
||||
! three_e_3_idx_exch13_bi_ort(m,j,i) = <mji|-L|ijm>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_exch13_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_exch13_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_exch13_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,i,j,m,integral)
|
||||
three_e_3_idx_exch13_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_exch13_bi_ort(m,j,i) = three_e_3_idx_exch13_bi_ort(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_3_idx_exch13_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
|
||||
!
|
||||
! three_e_3_idx_exch12_bi_ort(m,j,i) = <mji|-L|mij>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_exch12_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_3_idx_exch12_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,m,i,j,integral)
|
||||
three_e_3_idx_exch12_bi_ort(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_3_idx_exch12_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
|
||||
!
|
||||
! three_e_3_idx_exch12_bi_ort_new(m,j,i) = <mji|-L|mij>
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_3_idx_exch12_bi_ort_new = 0.d0
|
||||
print*,'Providing the three_e_3_idx_exch12_bi_ort_new ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort_new)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,i,m,i,j,integral)
|
||||
three_e_3_idx_exch12_bi_ort_new(m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_3_idx_exch12_bi_ort_new(m,j,i) = three_e_3_idx_exch12_bi_ort_new(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_3_idx_exch12_bi_ort_new',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
228
src/bi_ort_ints/three_body_ijmk.irp.f
Normal file
228
src/bi_ort_ints/three_body_ijmk.irp.f
Normal file
@ -0,0 +1,228 @@
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_direct_bi_ort(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_direct_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_direct_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,m,j,i,integral)
|
||||
three_e_4_idx_direct_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_direct_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_cycle_1_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_cycle_1_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,j,i,m,integral)
|
||||
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_cycle_1_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_cycle_2_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_cycle_2_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,i,m,j,integral)
|
||||
three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_cycle_2_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_exch23_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_exch23_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,j,m,i,integral)
|
||||
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_exch23_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_exch13_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_exch13_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_exch13_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,i,j,m,integral)
|
||||
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_exch13_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_4_idx_exch12_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_4_idx_exch12_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_4_idx_exch12_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,j,k,m,i,j,integral)
|
||||
three_e_4_idx_exch12_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_4_idx_exch12_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
240
src/bi_ort_ints/three_body_ijmkl.irp.f
Normal file
240
src/bi_ort_ints/three_body_ijmkl.irp.f
Normal file
@ -0,0 +1,240 @@
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_direct_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_direct_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,m,j,i,integral)
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_direct_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_cycle_1_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_cycle_1_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,j,i,m,integral)
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_cycle_1_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_cycle_2_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_cycle_2_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,i,m,j,integral)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_cycle_2_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_exch23_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,j,m,i,integral)
|
||||
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_exch23_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_exch13_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_exch13_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,i,j,m,integral)
|
||||
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_exch13_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
!three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
integer :: i,j,k,m,l
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_e_5_idx_exch12_bi_ort = 0.d0
|
||||
print*,'Providing the three_e_5_idx_exch12_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m,l,k,m,i,j,integral)
|
||||
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_e_5_idx_exch12_bi_ort',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
78
src/bi_ort_ints/three_body_ints_bi_ort.irp.f
Normal file
78
src/bi_ort_ints/three_body_ints_bi_ort.irp.f
Normal file
@ -0,0 +1,78 @@
|
||||
BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator
|
||||
!
|
||||
! notice the -1 sign: in this way three_body_ints_bi_ort can be directly used to compute Slater rules :)
|
||||
END_DOC
|
||||
integer :: i,j,k,l,m,n
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
three_body_ints_bi_ort = 0.d0
|
||||
print*,'Providing the three_body_ints_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
name_file = 'six_index_tensor'
|
||||
! if(read_three_body_ints_bi_ort)then
|
||||
! call read_fcidump_3_tc(three_body_ints_bi_ort)
|
||||
! else
|
||||
! if(read_three_body_ints_bi_ort)then
|
||||
! print*,'Reading three_body_ints_bi_ort from disk ...'
|
||||
! call read_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
|
||||
! else
|
||||
provide x_W_ki_bi_ortho_erf_rk mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
|
||||
!$OMP SHARED (mo_num,three_body_ints_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do n = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(n,l,k,m,j,i,integral)
|
||||
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
! endif
|
||||
! endif
|
||||
call wall_time(wall1)
|
||||
print*,'wall time for three_body_ints_bi_ort',wall1 - wall0
|
||||
! if(write_three_body_ints_bi_ort)then
|
||||
! print*,'Writing three_body_ints_bi_ort on disk ...'
|
||||
! call write_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
|
||||
! call ezfio_set_three_body_ints_bi_ort_io_three_body_ints_bi_ort("Read")
|
||||
! endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine give_integrals_3_body_bi_ort(n,l,k,m,j,i,integral)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral
|
||||
integer, intent(in) :: n,l,k,m,j,i
|
||||
double precision :: weight
|
||||
BEGIN_DOC
|
||||
! <n l k|-L|m j i> with a BI ORTHONORMAL ORBITALS
|
||||
END_DOC
|
||||
integer :: ipoint,mm
|
||||
integral = 0.d0
|
||||
do mm = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
* x_W_ki_bi_ortho_erf_rk(ipoint,mm,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,mm,l,j)
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
* x_W_ki_bi_ortho_erf_rk(ipoint,mm,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,mm,k,i)
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
|
||||
* x_W_ki_bi_ortho_erf_rk(ipoint,mm,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,mm,k,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
138
src/bi_ort_ints/total_twoe_pot.irp.f
Normal file
138
src/bi_ort_ints/total_twoe_pot.irp.f
Normal file
@ -0,0 +1,138 @@
|
||||
BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_num) ]
|
||||
integer :: i,j,k,l
|
||||
BEGIN_DOC
|
||||
! ao_two_e_tc_tot(k,i,l,j) = (ki|V^TC(r_12)|lj) = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
|
||||
!
|
||||
! including both hermitian and non hermitian parts. THIS IS IN CHEMIST NOTATION.
|
||||
!
|
||||
! WARNING :: non hermitian ! acts on "the right functions" (i,j)
|
||||
END_DOC
|
||||
double precision :: integral_sym, integral_nsym, get_ao_tc_sym_two_e_pot
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
integral_sym = get_ao_tc_sym_two_e_pot(i,j,k,l,ao_tc_sym_two_e_pot_map)
|
||||
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
|
||||
integral_nsym = ao_non_hermit_term_chemist(k,i,l,j)
|
||||
ao_two_e_tc_tot(k,i,l,j) = integral_sym + integral_nsym
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function bi_ortho_mo_ints(l,k,j,i)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <mo^L_k mo^L_l | V^TC(r_12) | mo^R_i mo^R_j>
|
||||
!
|
||||
! WARNING :: very naive, super slow, only used to DEBUG.
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer :: m,n,p,q
|
||||
bi_ortho_mo_ints = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
! p1h1p2h2 l1 l2 r1 r2
|
||||
bi_ortho_mo_ints += ao_two_e_tc_tot(n,q,m,p) * mo_l_coef(m,l) * mo_l_coef(n,k) * mo_r_coef(p,j) * mo_r_coef(q,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_bi_ortho_tc_two_e_chemist(k,i,l,j) = <k l|V(r_12)|i j> where i,j are right MOs and k,l are left MOs
|
||||
END_DOC
|
||||
integer :: i,j,k,l,m,n,p,q
|
||||
double precision, allocatable :: mo_tmp_1(:,:,:,:),mo_tmp_2(:,:,:,:),mo_tmp_3(:,:,:,:)
|
||||
|
||||
!! TODO :: transform into DEGEMM
|
||||
|
||||
allocate(mo_tmp_1(mo_num,ao_num,ao_num,ao_num))
|
||||
mo_tmp_1 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
do k = 1, mo_num
|
||||
! (k n|p m) = sum_q c_qk * (q n|p m)
|
||||
mo_tmp_1(k,n,p,m) += mo_l_coef_transp(k,q) * ao_two_e_tc_tot(q,n,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
allocate(mo_tmp_2(mo_num,mo_num,ao_num,ao_num))
|
||||
mo_tmp_2 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
! (k i|p m) = sum_n c_ni * (k n|p m)
|
||||
mo_tmp_2(k,i,p,m) += mo_r_coef_transp(i,n) * mo_tmp_1(k,n,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(mo_tmp_1)
|
||||
allocate(mo_tmp_1(mo_num,mo_num,mo_num,ao_num))
|
||||
mo_tmp_1 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do l = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
mo_tmp_1(k,i,l,m) += mo_l_coef_transp(l,p) * mo_tmp_2(k,i,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(mo_tmp_2)
|
||||
mo_bi_ortho_tc_two_e_chemist = 0.d0
|
||||
do m = 1, ao_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
mo_bi_ortho_tc_two_e_chemist(k,i,l,j) += mo_r_coef_transp(j,m) * mo_tmp_1(k,i,l,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_bi_ortho_tc_two_e(k,l,i,j) = <k l| V(r_12) |i j> where i,j are right MOs and k,l are left MOs
|
||||
!
|
||||
! the potential V(r_12) contains ALL TWO-E CONTRIBUTION OF THE TC-HAMILTONIAN
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
! (k i|l j) = <k l|V(r_12)|i j>
|
||||
mo_bi_ortho_tc_two_e(k,l,i,j) = mo_bi_ortho_tc_two_e_chemist(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
2
src/bi_ortho_aos/NEED
Normal file
2
src/bi_ortho_aos/NEED
Normal file
@ -0,0 +1,2 @@
|
||||
basis
|
||||
ao_basis
|
5
src/bi_ortho_aos/README.rst
Normal file
5
src/bi_ortho_aos/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
============
|
||||
bi_ortho_aos
|
||||
============
|
||||
|
||||
TODO
|
97
src/bi_ortho_aos/aos_l.irp.f
Normal file
97
src/bi_ortho_aos/aos_l.irp.f
Normal file
@ -0,0 +1,97 @@
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_l , (ao_num,ao_prim_num_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Primitive coefficients and exponents for each atomic orbital. Copied from shell info.
|
||||
END_DOC
|
||||
|
||||
integer :: i, l
|
||||
do i=1,ao_num
|
||||
l = ao_shell(i)
|
||||
ao_coef_l(i,:) = shell_coef(l,:)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_l_normalized, (ao_num,ao_prim_num_max) ]
|
||||
&BEGIN_PROVIDER [ double precision, ao_coef_l_normalization_factor, (ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Coefficients including the |AO| normalization
|
||||
END_DOC
|
||||
|
||||
do i=1,ao_num
|
||||
l = ao_shell(i)
|
||||
ao_coef_l_normalized(i,:) = shell_coef(l,:) * shell_normalization_factor(l)
|
||||
end do
|
||||
|
||||
double precision :: norm,overlap_x,overlap_y,overlap_z,C_A(3), c
|
||||
integer :: l, powA(3), nz
|
||||
integer :: i,j,k
|
||||
nz=100
|
||||
C_A = 0.d0
|
||||
|
||||
do i=1,ao_num
|
||||
|
||||
powA(1) = ao_power(i,1)
|
||||
powA(2) = ao_power(i,2)
|
||||
powA(3) = ao_power(i,3)
|
||||
|
||||
! Normalization of the primitives
|
||||
if (primitives_normalized) then
|
||||
do j=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,j), &
|
||||
powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
|
||||
ao_coef_l_normalized(i,j) = ao_coef_l_normalized(i,j)/dsqrt(norm)
|
||||
enddo
|
||||
endif
|
||||
! Normalization of the contracted basis functions
|
||||
if (ao_normalized) then
|
||||
norm = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
do k=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
|
||||
norm = norm+c*ao_coef_l_normalized(i,j)*ao_coef_l_normalized(i,k)
|
||||
enddo
|
||||
enddo
|
||||
ao_coef_l_normalization_factor(i) = 1.d0/dsqrt(norm)
|
||||
else
|
||||
ao_coef_l_normalization_factor(i) = 1.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_l_normalized_ordered, (ao_num,ao_prim_num_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sorted primitives to accelerate 4 index |MO| transformation
|
||||
END_DOC
|
||||
|
||||
integer :: iorder(ao_prim_num_max)
|
||||
double precision :: d(ao_prim_num_max,2)
|
||||
integer :: i,j
|
||||
do i=1,ao_num
|
||||
do j=1,ao_prim_num(i)
|
||||
iorder(j) = j
|
||||
d(j,2) = ao_coef_l_normalized(i,j)
|
||||
enddo
|
||||
call dsort(d(1,1),iorder,ao_prim_num(i))
|
||||
call dset_order(d(1,2),iorder,ao_prim_num(i))
|
||||
do j=1,ao_prim_num(i)
|
||||
ao_coef_l_normalized_ordered(i,j) = d(j,2)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_l_normalized_ordered_transp, (ao_prim_num_max,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transposed :c:data:`ao_coef_l_normalized_ordered`
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do j=1, ao_num
|
||||
do i=1, ao_prim_num_max
|
||||
ao_coef_l_normalized_ordered_transp(i,j) = ao_coef_l_normalized_ordered(j,i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
97
src/bi_ortho_aos/aos_r.irp.f
Normal file
97
src/bi_ortho_aos/aos_r.irp.f
Normal file
@ -0,0 +1,97 @@
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_r , (ao_num,ao_prim_num_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Primitive coefficients and exponents for each atomic orbital. Copied from shell info.
|
||||
END_DOC
|
||||
|
||||
integer :: i, l
|
||||
do i=1,ao_num
|
||||
l = ao_shell(i)
|
||||
ao_coef_r(i,:) = shell_coef(l,:)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_r_normalized, (ao_num,ao_prim_num_max) ]
|
||||
&BEGIN_PROVIDER [ double precision, ao_coef_r_normalization_factor, (ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Coefficients including the |AO| normalization
|
||||
END_DOC
|
||||
|
||||
do i=1,ao_num
|
||||
l = ao_shell(i)
|
||||
ao_coef_r_normalized(i,:) = shell_coef(l,:) * shell_normalization_factor(l)
|
||||
end do
|
||||
|
||||
double precision :: norm,overlap_x,overlap_y,overlap_z,C_A(3), c
|
||||
integer :: l, powA(3), nz
|
||||
integer :: i,j,k
|
||||
nz=100
|
||||
C_A = 0.d0
|
||||
|
||||
do i=1,ao_num
|
||||
|
||||
powA(1) = ao_power(i,1)
|
||||
powA(2) = ao_power(i,2)
|
||||
powA(3) = ao_power(i,3)
|
||||
|
||||
! Normalization of the primitives
|
||||
if (primitives_normalized) then
|
||||
do j=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,j), &
|
||||
powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
|
||||
ao_coef_r_normalized(i,j) = ao_coef_r_normalized(i,j)/dsqrt(norm)
|
||||
enddo
|
||||
endif
|
||||
! Normalization of the contracted basis functions
|
||||
if (ao_normalized) then
|
||||
norm = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
do k=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
|
||||
norm = norm+c*ao_coef_r_normalized(i,j)*ao_coef_r_normalized(i,k)
|
||||
enddo
|
||||
enddo
|
||||
ao_coef_r_normalization_factor(i) = 1.d0/dsqrt(norm)
|
||||
else
|
||||
ao_coef_r_normalization_factor(i) = 1.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_r_normalized_ordered, (ao_num,ao_prim_num_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sorted primitives to accelerate 4 index |MO| transformation
|
||||
END_DOC
|
||||
|
||||
integer :: iorder(ao_prim_num_max)
|
||||
double precision :: d(ao_prim_num_max,2)
|
||||
integer :: i,j
|
||||
do i=1,ao_num
|
||||
do j=1,ao_prim_num(i)
|
||||
iorder(j) = j
|
||||
d(j,2) = ao_coef_r_normalized(i,j)
|
||||
enddo
|
||||
call dsort(d(1,1),iorder,ao_prim_num(i))
|
||||
call dset_order(d(1,2),iorder,ao_prim_num(i))
|
||||
do j=1,ao_prim_num(i)
|
||||
ao_coef_r_normalized_ordered(i,j) = d(j,2)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_r_normalized_ordered_transp, (ao_prim_num_max,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transposed :c:data:`ao_coef_r_normalized_ordered`
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do j=1, ao_num
|
||||
do i=1, ao_prim_num_max
|
||||
ao_coef_r_normalized_ordered_transp(i,j) = ao_coef_r_normalized_ordered(j,i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
11
src/bi_ortho_mos/EZFIO.cfg
Normal file
11
src/bi_ortho_mos/EZFIO.cfg
Normal file
@ -0,0 +1,11 @@
|
||||
[mo_r_coef]
|
||||
type: double precision
|
||||
doc: right-coefficient of the i-th |AO| on the j-th |MO|
|
||||
interface: ezfio
|
||||
size: (ao_basis.ao_num,mo_basis.mo_num)
|
||||
|
||||
[mo_l_coef]
|
||||
type: double precision
|
||||
doc: right-coefficient of the i-th |AO| on the j-th |MO|
|
||||
interface: ezfio
|
||||
size: (ao_basis.ao_num,mo_basis.mo_num)
|
3
src/bi_ortho_mos/NEED
Normal file
3
src/bi_ortho_mos/NEED
Normal file
@ -0,0 +1,3 @@
|
||||
mo_basis
|
||||
becke_numerical_grid
|
||||
dft_utils_in_r
|
49
src/bi_ortho_mos/bi_density.irp.f
Normal file
49
src/bi_ortho_mos/bi_density.irp.f
Normal file
@ -0,0 +1,49 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, TCSCF_bi_ort_dm_ao_alpha, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TCSCF_bi_ort_dm_ao_alpha(i,j) = <Chi_0| a^dagger_i,alpha a_j,alpha |Phi_0> where i,j are AO basis.
|
||||
!
|
||||
! This is the equivalent of the alpha density of the HF Slater determinant, but with a couple of bi-orthonormal Slater determinant |Chi_0> and |Phi_0>
|
||||
END_DOC
|
||||
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
|
||||
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
|
||||
, 0.d0, TCSCF_bi_ort_dm_ao_alpha, size(TCSCF_bi_ort_dm_ao_alpha, 1) )
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, TCSCF_bi_ort_dm_ao_beta, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TCSCF_bi_ort_dm_ao_beta(i,j) = <Chi_0| a^dagger_i,beta a_j,beta |Phi_0> where i,j are AO basis.
|
||||
!
|
||||
! This is the equivalent of the beta density of the HF Slater determinant, but with a couple of bi-orthonormal Slater determinant |Chi_0> and |Phi_0>
|
||||
END_DOC
|
||||
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
|
||||
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
|
||||
, 0.d0, TCSCF_bi_ort_dm_ao_beta, size(TCSCF_bi_ort_dm_ao_beta, 1) )
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, TCSCF_bi_ort_dm_ao, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TCSCF_bi_ort_dm_ao(i,j) = <Chi_0| a^dagger_i,beta+alpha a_j,beta+alpha |Phi_0> where i,j are AO basis.
|
||||
!
|
||||
! This is the equivalent of the total electronic density of the HF Slater determinant, but with a couple of bi-orthonormal Slater determinant |Chi_0> and |Phi_0>
|
||||
END_DOC
|
||||
ASSERT ( size(TCSCF_bi_ort_dm_ao, 1) == size(TCSCF_bi_ort_dm_ao_alpha, 1) )
|
||||
if( elec_alpha_num==elec_beta_num ) then
|
||||
TCSCF_bi_ort_dm_ao = TCSCF_bi_ort_dm_ao_alpha + TCSCF_bi_ort_dm_ao_alpha
|
||||
else
|
||||
ASSERT ( size(TCSCF_bi_ort_dm_ao, 1) == size(TCSCF_bi_ort_dm_ao_beta, 1))
|
||||
TCSCF_bi_ort_dm_ao = TCSCF_bi_ort_dm_ao_alpha + TCSCF_bi_ort_dm_ao_beta
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
137
src/bi_ortho_mos/bi_ort_mos_in_r.irp.f
Normal file
137
src/bi_ortho_mos/bi_ort_mos_in_r.irp.f
Normal file
@ -0,0 +1,137 @@
|
||||
|
||||
! TODO: left & right MO without duplicate AO calculation
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array, (mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith RIGHT mo on the jth grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, r, mos_array) &
|
||||
!$OMP SHARED (mos_r_in_r_array, n_points_final_grid, mo_num, final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_r_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array_transp(i,j) = mos_r_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_r_at_r(r, mos_r_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_array(i) = ith RIGHT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_r_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_r_coef_transp, mo_num, aos_array, 1, 0.d0, mos_r_array, 1)
|
||||
|
||||
end subroutine give_all_mos_r_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array, (mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith LEFT mo on the jth grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,mos_array,j) &
|
||||
!$OMP SHARED(mos_l_in_r_array,n_points_final_grid,mo_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_l_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_l_at_r(r, mos_l_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_array(i) = ith LEFT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_l_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_l_coef_transp, mo_num, aos_array, 1, 0.d0, mos_l_array, 1)
|
||||
|
||||
end subroutine give_all_mos_l_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp,(n_points_final_grid,mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array_transp(i,j) = mos_l_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
100
src/bi_ortho_mos/grad_bi_ort_mos_in_r.irp.f
Normal file
100
src/bi_ortho_mos/grad_bi_ort_mos_in_r.irp.f
Normal file
@ -0,0 +1,100 @@
|
||||
BEGIN_PROVIDER[double precision, mos_r_grad_in_r_array,(mo_num,n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_r_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith RIGHT mo on the jth grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: m
|
||||
mos_r_grad_in_r_array = 0.d0
|
||||
do m=1,3
|
||||
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_r_coef_transp,mo_num,aos_grad_in_r_array(1,1,m),ao_num,0.d0,mos_r_grad_in_r_array(1,1,m),mo_num)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_grad_in_r_array_transp,(3,mo_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_r_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth RIGHT mo on the ith grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: m
|
||||
integer :: i,j
|
||||
mos_r_grad_in_r_array_transp = 0.d0
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
do m = 1, 3
|
||||
mos_r_grad_in_r_array_transp(m,j,i) = mos_r_grad_in_r_array(j,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_grad_in_r_array_transp_bis,(3,n_points_final_grid,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_r_grad_in_r_array_transp(i,j,k) = value of the ith component of the gradient on the jth grid point of jth RIGHT MO
|
||||
END_DOC
|
||||
integer :: m
|
||||
integer :: i,j
|
||||
mos_r_grad_in_r_array_transp_bis = 0.d0
|
||||
do j = 1, mo_num
|
||||
do i = 1, n_points_final_grid
|
||||
do m = 1, 3
|
||||
mos_r_grad_in_r_array_transp_bis(m,i,j) = mos_r_grad_in_r_array(j,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_grad_in_r_array,(mo_num,n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_l_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith RIGHT mo on the jth grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: m
|
||||
mos_l_grad_in_r_array = 0.d0
|
||||
do m=1,3
|
||||
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_r_coef_transp,mo_num,aos_grad_in_r_array(1,1,m),ao_num,0.d0,mos_l_grad_in_r_array(1,1,m),mo_num)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_grad_in_r_array_transp,(3,mo_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_l_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth RIGHT mo on the ith grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: m
|
||||
integer :: i,j
|
||||
mos_l_grad_in_r_array_transp = 0.d0
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
do m = 1, 3
|
||||
mos_l_grad_in_r_array_transp(m,j,i) = mos_l_grad_in_r_array(j,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_grad_in_r_array_transp_bis,(3,n_points_final_grid,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_l_grad_in_r_array_transp(i,j,k) = value of the ith component of the gradient on the jth grid point of jth RIGHT MO
|
||||
END_DOC
|
||||
integer :: m
|
||||
integer :: i,j
|
||||
mos_l_grad_in_r_array_transp_bis = 0.d0
|
||||
do j = 1, mo_num
|
||||
do i = 1, n_points_final_grid
|
||||
do m = 1, 3
|
||||
mos_l_grad_in_r_array_transp_bis(m,i,j) = mos_l_grad_in_r_array(j,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
173
src/bi_ortho_mos/mos_rl.irp.f
Normal file
173
src/bi_ortho_mos/mos_rl.irp.f
Normal file
@ -0,0 +1,173 @@
|
||||
subroutine ao_to_mo_bi_ortho(A_ao, LDA_ao, A_mo, LDA_mo)
|
||||
|
||||
BEGIN_DOC
|
||||
! Transform A from the |AO| basis to the BI ORTHONORMAL MOS
|
||||
!
|
||||
! $C_L^\dagger.A_{ao}.C_R$ where C_L and C_R are the LEFT and RIGHT MO coefs
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: LDA_ao,LDA_mo
|
||||
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
|
||||
double precision, intent(out) :: A_mo(LDA_mo,mo_num)
|
||||
double precision, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num,mo_num) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
integer :: i,j,p,q
|
||||
|
||||
call dgemm('N', 'N', ao_num, mo_num, ao_num, &
|
||||
1.d0, A_ao, LDA_ao, &
|
||||
mo_r_coef, size(mo_r_coef, 1), &
|
||||
0.d0, T, size(T, 1))
|
||||
|
||||
call dgemm('T', 'N', mo_num, mo_num, ao_num, &
|
||||
1.d0, mo_l_coef, size(mo_l_coef, 1), &
|
||||
T, ao_num, &
|
||||
0.d0, A_mo, size(A_mo, 1))
|
||||
|
||||
! call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-12)
|
||||
deallocate(T)
|
||||
|
||||
end subroutine ao_to_mo_bi_ortho
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_r_coef, (ao_num, mo_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Molecular right-orbital coefficients on |AO| basis set
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
logical :: exists
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bi_ortho_mos_mo_r_coef(exists)
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_r_coef with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
if (mpi_master) then
|
||||
call ezfio_get_bi_ortho_mos_mo_r_coef(mo_r_coef)
|
||||
write(*,*) 'Read mo_r_coef'
|
||||
endif
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST(mo_r_coef, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_r_coef with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
else
|
||||
|
||||
print*, 'mo_r_coef are mo_coef'
|
||||
do i = 1, mo_num
|
||||
do j = 1, ao_num
|
||||
mo_r_coef(j,i) = mo_coef(j,i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_l_coef, (ao_num, mo_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Molecular left-orbital coefficients on |AO| basis set
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
logical :: exists
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bi_ortho_mos_mo_l_coef(exists)
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_l_coef with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
if (mpi_master) then
|
||||
call ezfio_get_bi_ortho_mos_mo_l_coef(mo_l_coef)
|
||||
write(*,*) 'Read mo_l_coef'
|
||||
endif
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST(mo_l_coef, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_l_coef with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
else
|
||||
|
||||
print*, 'mo_r_coef are mo_coef'
|
||||
do i = 1, mo_num
|
||||
do j = 1, ao_num
|
||||
mo_l_coef(j,i) = mo_coef(j,i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_r_coef_transp, (mo_num, ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: j, m
|
||||
do j = 1, mo_num
|
||||
do m = 1, ao_num
|
||||
mo_r_coef_transp(j,m) = mo_r_coef(m,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_l_coef_transp, (mo_num, ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: j, m
|
||||
do j = 1, mo_num
|
||||
do m = 1, ao_num
|
||||
mo_l_coef_transp(j,m) = mo_l_coef(m,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
120
src/bi_ortho_mos/overlap.irp.f
Normal file
120
src/bi_ortho_mos/overlap.irp.f
Normal file
@ -0,0 +1,120 @@
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, overlap_bi_ortho, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_diag_bi_ortho, (mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Overlap matrix between the RIGHT and LEFT MOs. Should be the identity matrix
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, k, m, n
|
||||
double precision :: accu_d, accu_nd
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
! TODO : re do the DEGEMM
|
||||
|
||||
overlap_bi_ortho = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do m = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
overlap_bi_ortho(k,i) += ao_overlap(n,m) * mo_l_coef(n,k) * mo_r_coef(m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! allocate( tmp(mo_num,ao_num) )
|
||||
!
|
||||
! ! tmp <-- L.T x S_ao
|
||||
! call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
! , mo_l_coef, size(mo_l_coef, 1), ao_overlap, size(ao_overlap, 1) &
|
||||
! , 0.d0, tmp, size(tmp, 1) )
|
||||
!
|
||||
! ! S <-- tmp x R
|
||||
! call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
! , tmp, size(tmp, 1), mo_r_coef, size(mo_r_coef, 1) &
|
||||
! , 0.d0, overlap_bi_ortho, size(overlap_bi_ortho, 1) )
|
||||
!
|
||||
! deallocate( tmp )
|
||||
|
||||
do i = 1, mo_num
|
||||
overlap_diag_bi_ortho(i) = overlap_bi_ortho(i,i)
|
||||
enddo
|
||||
|
||||
accu_d = 0.d0
|
||||
accu_nd = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
if(i==k) then
|
||||
accu_d += dabs(overlap_bi_ortho(k,i))
|
||||
else
|
||||
accu_nd += dabs(overlap_bi_ortho(k,i))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
accu_d = accu_d/dble(mo_num)
|
||||
accu_nd = accu_nd/dble(mo_num**2-mo_num)
|
||||
if(dabs(accu_d-1.d0).gt.1.d-10.or.dabs(accu_nd).gt.1.d-10)then
|
||||
print*,'Warning !!!'
|
||||
print*,'Average trace of overlap_bi_ortho is different from 1 by ', accu_d
|
||||
print*,'And bi orthogonality is off by an average of ',accu_nd
|
||||
print*,'****************'
|
||||
print*,'Overlap matrix betwee mo_l_coef and mo_r_coef '
|
||||
do i = 1, mo_num
|
||||
write(*,'(100(F16.10,X))')overlap_bi_ortho(i,:)
|
||||
enddo
|
||||
endif
|
||||
print*,'Average trace of overlap_bi_ortho (should be 1.)'
|
||||
print*,'accu_d = ',accu_d
|
||||
print*,'Sum of off diagonal terms of overlap_bi_ortho (should be zero)'
|
||||
print*,'accu_nd = ',accu_nd
|
||||
print*,'****************'
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, overlap_mo_r, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_mo_l, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! overlap_mo_r_mo(j,i) = <MO_i|MO_R_j>
|
||||
END_DOC
|
||||
integer :: i,j,p,q
|
||||
overlap_mo_r= 0.d0
|
||||
overlap_mo_l= 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do p = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
overlap_mo_r(j,i) += mo_r_coef(q,i) * mo_r_coef(p,j) * ao_overlap(q,p)
|
||||
overlap_mo_l(j,i) += mo_l_coef(q,i) * mo_l_coef(p,j) * ao_overlap(q,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, overlap_mo_r_mo, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_mo_l_mo, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! overlap_mo_r_mo(j,i) = <MO_j|MO_R_i>
|
||||
END_DOC
|
||||
integer :: i,j,p,q
|
||||
overlap_mo_r_mo = 0.d0
|
||||
overlap_mo_l_mo = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do p = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
overlap_mo_r_mo(j,i) += mo_coef(p,j) * mo_r_coef(q,i) * ao_overlap(q,p)
|
||||
overlap_mo_l_mo(j,i) += mo_coef(p,j) * mo_l_coef(q,i) * ao_overlap(q,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
2
src/non_h_ints_mu/NEED
Normal file
2
src/non_h_ints_mu/NEED
Normal file
@ -0,0 +1,2 @@
|
||||
ao_tc_eff_map
|
||||
bi_ortho_mos
|
11
src/non_h_ints_mu/README.rst
Normal file
11
src/non_h_ints_mu/README.rst
Normal file
@ -0,0 +1,11 @@
|
||||
=============
|
||||
non_h_ints_mu
|
||||
=============
|
||||
|
||||
Computes the non hermitian potential of the mu-TC Hamiltonian on the AO and BI-ORTHO MO basis.
|
||||
The operator is defined in Eq. 33 of JCP 154, 084119 (2021)
|
||||
|
||||
The two providers are :
|
||||
+) ao_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the MO basis.
|
||||
+) mo_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the BI-ORTHO MO basis.
|
||||
|
177
src/non_h_ints_mu/grad_tc_int.irp.f
Normal file
177
src/non_h_ints_mu/grad_tc_int.irp.f
Normal file
@ -0,0 +1,177 @@
|
||||
BEGIN_PROVIDER [double precision, ao_non_hermit_term_chemist, (ao_num, ao_num, ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 1 1 2 2 1 2 1 2
|
||||
!
|
||||
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
|
||||
END_DOC
|
||||
integer :: i,j,k,l,ipoint,m
|
||||
double precision :: weight1,thr,r(3)
|
||||
thr = 1.d-8
|
||||
double precision, allocatable :: b_mat(:,:,:,:),ac_mat(:,:,:,:)
|
||||
! provide v_ij_erf_rk_cst_mu
|
||||
provide v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu
|
||||
call wall_time(wall0)
|
||||
allocate(b_mat(n_points_final_grid,ao_num,ao_num,3),ac_mat(ao_num, ao_num, ao_num, ao_num))
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,k,m,ipoint,r,weight1) &
|
||||
!$OMP SHARED (aos_in_r_array_transp,aos_grad_in_r_array_transp_bis,b_mat)&
|
||||
!$OMP SHARED (ao_num,n_points_final_grid,final_grid_points,final_weight_at_r_vector)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do m = 1, 3
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
b_mat(ipoint,k,i,m) = 0.5d0 * aos_in_r_array_transp(ipoint,k) * r(m) * weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
ac_mat = 0.d0
|
||||
do m = 1, 3
|
||||
! A B^T dim(A,1) dim(B,2) dim(A,2) alpha * A LDA
|
||||
call dgemm("N","N",ao_num*ao_num,ao_num*ao_num,n_points_final_grid,1.d0,v_ij_erf_rk_cst_mu(1,1,1),ao_num*ao_num &
|
||||
,b_mat(1,1,1,m),n_points_final_grid,1.d0,ac_mat,ao_num*ao_num)
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,k,m,ipoint,weight1) &
|
||||
!$OMP SHARED (aos_in_r_array_transp,aos_grad_in_r_array_transp_bis,b_mat,ao_num,n_points_final_grid,final_weight_at_r_vector)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do m = 1, 3
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
b_mat(ipoint,k,i,m) = 0.5d0 * aos_in_r_array_transp(ipoint,k) * weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do m = 1, 3
|
||||
! A B^T dim(A,1) dim(B,2) dim(A,2) alpha * A LDA
|
||||
call dgemm("N","N",ao_num*ao_num,ao_num*ao_num,n_points_final_grid,-1.d0,x_v_ij_erf_rk_cst_mu(1,1,1,m),ao_num*ao_num &
|
||||
,b_mat(1,1,1,m),n_points_final_grid,1.d0,ac_mat,ao_num*ao_num)
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,k,j,l) &
|
||||
!$OMP SHARED (ac_mat,ao_non_hermit_term_chemist,ao_num)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
ao_non_hermit_term_chemist(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
double precision :: wall1, wall0
|
||||
call wall_time(wall1)
|
||||
print*,'wall time dgemm ',wall1 - wall0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_non_hermit_term_chemist, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 1 1 2 2 1 2 1 2
|
||||
!
|
||||
! mo_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the MO basis
|
||||
END_DOC
|
||||
integer :: i,j,k,l,m,n,p,q
|
||||
double precision, allocatable :: mo_tmp_1(:,:,:,:),mo_tmp_2(:,:,:,:),mo_tmp_3(:,:,:,:)
|
||||
|
||||
allocate(mo_tmp_1(mo_num,ao_num,ao_num,ao_num))
|
||||
! TODO :: optimization :: transform into DGEM
|
||||
mo_tmp_1 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
do q = 1, ao_num
|
||||
do k = 1, mo_num
|
||||
! (k n|p m) = sum_q c_qk * (q n|p m)
|
||||
mo_tmp_1(k,n,p,m) += mo_coef_transp(k,q) * ao_non_hermit_term_chemist(q,n,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
free ao_non_hermit_term_chemist
|
||||
allocate(mo_tmp_2(mo_num,mo_num,ao_num,ao_num))
|
||||
mo_tmp_2 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do n = 1, ao_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
! (k i|p m) = sum_n c_ni * (k n|p m)
|
||||
mo_tmp_2(k,i,p,m) += mo_coef_transp(i,n) * mo_tmp_1(k,n,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(mo_tmp_1)
|
||||
allocate(mo_tmp_1(mo_num,mo_num,mo_num,ao_num))
|
||||
mo_tmp_1 = 0.d0
|
||||
do m = 1, ao_num
|
||||
do p = 1, ao_num
|
||||
do l = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
mo_tmp_1(k,i,l,m) += mo_coef_transp(l,p) * mo_tmp_2(k,i,p,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(mo_tmp_2)
|
||||
mo_non_hermit_term_chemist = 0.d0
|
||||
do m = 1, ao_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
mo_non_hermit_term_chemist(k,i,l,j) += mo_coef_transp(j,m) * mo_tmp_1(k,i,l,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_non_hermit_term, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 1 2 1 2 1 2 1 2
|
||||
!
|
||||
! mo_non_hermit_term(k,l,i,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the MO basis
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
mo_non_hermit_term(k,l,i,j) = mo_non_hermit_term_chemist(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
@ -412,6 +412,79 @@ subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Transform the pol centerd on A:
|
||||
! [ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
|
||||
! to a pol centered on B
|
||||
! [ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
! useful for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: iorder(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3)
|
||||
double precision, intent(in) :: A_pol(0:max_dim, 3)
|
||||
double precision, intent(out) :: B_pol(0:max_dim, 3)
|
||||
|
||||
integer :: i, Lmax
|
||||
|
||||
do i = 1, 3
|
||||
Lmax = iorder(i)
|
||||
call pol_modif_center_x( A_center(i), B_center(i), Lmax, A_pol(0:Lmax, i), B_pol(0:Lmax, i) )
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine pol_modif_center
|
||||
|
||||
|
||||
|
||||
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Transform the pol centerd on A:
|
||||
! [ \sum_i ax_i (x-x_A)^i ]
|
||||
! to a pol centered on B
|
||||
! [ \sum_i bx_i (x-x_B)^i ]
|
||||
!
|
||||
! bx_i = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) j! / [ i! (j-i)! ]
|
||||
! = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) binom_func(j,i)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: iorder
|
||||
double precision, intent(in) :: A_center, B_center
|
||||
double precision, intent(in) :: A_pol(0:iorder)
|
||||
double precision, intent(out) :: B_pol(0:iorder)
|
||||
|
||||
integer :: i, j
|
||||
double precision :: fact_tmp, dx
|
||||
|
||||
double precision :: binom_func
|
||||
|
||||
dx = B_center - A_center
|
||||
|
||||
do i = 0, iorder
|
||||
fact_tmp = 0.d0
|
||||
do j = i, iorder
|
||||
fact_tmp += A_pol(j) * binom_func(j, i) * dx**dble(j-i)
|
||||
enddo
|
||||
B_pol(i) = fact_tmp
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine pol_modif_center_x
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user