10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 10:59:45 +01:00

Merge olympe:qp2 into dev

This commit is contained in:
Anthony Scemama 2022-01-28 20:16:25 +01:00
commit bd188abd39
2 changed files with 192 additions and 125 deletions

View File

@ -1,4 +1,3 @@
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -21,133 +21,201 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
BEGIN_DOC BEGIN_DOC
! Eigenvectors/values of the CI matrix ! Eigenvectors/values of the CI matrix
END_DOC END_DOC
implicit none implicit none
double precision :: ovrlp,u_dot_v double precision :: ovrlp,u_dot_v
integer :: i_good_state integer :: i_good_state
integer, allocatable :: index_good_state_array(:) integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:) logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:) double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:) double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
integer :: i_state integer :: i_state
double precision :: e_0 double precision :: e_0
integer :: i,j,k,mrcc_state integer :: i,j,k,mrcc_state
double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:) double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:) integer, allocatable :: iorder(:)
logical :: converged
logical :: do_csf
PROVIDE threshold_davidson nthreads_davidson PROVIDE threshold_davidson nthreads_davidson
! Guess values for the "N_states" states of the CI_eigenvectors_dressed ! Guess values for the "N_states" states of the CI_eigenvectors_dressed
do j=1,min(N_states,N_det) do j=1,min(N_states,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j) CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo enddo
enddo enddo
do j=min(N_states,N_det)+1,N_states_diag do j=min(N_states,N_det)+1,N_states_diag
do i=1,N_det do i=1,N_det
CI_eigenvectors_dressed(i,j) = 0.d0 CI_eigenvectors_dressed(i,j) = 0.d0
enddo enddo
enddo enddo
if (diag_algorithm == "Davidson") then do_csf = s2_eig .and. only_expected_s2 .and. csf_based
do j=1,min(N_states,N_det) if (diag_algorithm == "Davidson") then
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
logical :: converged
converged = .False.
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
else if (diag_algorithm == "Lapack") then do j=1,min(N_states,N_det)
do i=1,N_det
allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo enddo
if(i_state .ne.0)then enddo
! Fill the first "i_state" states that have a correct S^2 value converged = .False.
do j = 1, i_state if (do_csf) then
do i=1,N_det call davidson_diag_H_csf(psi_det,CI_eigenvectors_dressed, &
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j)) size(CI_eigenvectors_dressed,1),CI_electronic_energy_dressed, &
enddo N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
do i=1,N_det
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors_dressed'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else else
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,& call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
min(N_det,N_states_diag),size(eigenvectors,1)) size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
! Select the "N_states_diag" states of lowest energy N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
do j=1,min(N_det,N_states_diag)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
enddo
endif endif
deallocate(eigenvectors,eigenvalues)
endif integer :: N_states_diag_save
N_states_diag_save = N_states_diag
do while (.not.converged)
double precision, allocatable :: CI_electronic_energy_tmp (:)
double precision, allocatable :: CI_eigenvectors_tmp (:,:)
double precision, allocatable :: CI_s2_tmp (:)
N_states_diag *= 2
TOUCH N_states_diag
if (do_csf) then
allocate (CI_electronic_energy_tmp (N_states_diag) )
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
call davidson_diag_H_csf(psi_det,CI_eigenvectors_tmp, &
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
deallocate (CI_electronic_energy_tmp)
deallocate (CI_eigenvectors_tmp)
else
allocate (CI_electronic_energy_tmp (N_states_diag) )
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
allocate (CI_s2_tmp (N_states_diag) )
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
CI_s2_tmp(1:N_states_diag_save) = CI_eigenvectors_s2_dressed(1:N_states_diag_save)
call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, &
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
CI_eigenvectors_s2_dressed(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save)
deallocate (CI_electronic_energy_tmp)
deallocate (CI_eigenvectors_tmp)
deallocate (CI_s2_tmp)
endif
enddo
if (N_states_diag > N_states_diag_save) then
N_states_diag = N_states_diag_save
TOUCH N_states_diag
endif
else if (diag_algorithm == "Lapack") then
print *, 'Diagonalization of H using Lapack'
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
do i=1,N_det
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors_dressed'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER END_PROVIDER