10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 18:16:04 +01:00

Charge_Harmonizer_AO: OK

This commit is contained in:
AbdAmmar 2024-01-23 13:25:16 +01:00
parent ba73d91fd3
commit bb8dd171b8
6 changed files with 629 additions and 102 deletions

View File

@ -13,7 +13,7 @@ default: None
[env_type] [env_type]
type: character*(32) type: character*(32)
doc: type of 1-body Jastrow: [ None | Prod_Gauss | Sum_Gauss | Sum_Slat | Sum_Quartic ] doc: type of envelop for Jastrow: [ None | Prod_Gauss | Sum_Gauss | Sum_Slat | Sum_Quartic ]
interface: ezfio, provider, ocaml interface: ezfio, provider, ocaml
default: Sum_Gauss default: Sum_Gauss
@ -91,10 +91,22 @@ size: (jastrow.j1e_size,nuclei.nucl_num)
[j1e_coef_ao] [j1e_coef_ao]
type: double precision type: double precision
doc: coefficients of the 1-body Jastrow in AOs doc: coefficients of the 1-electrob Jastrow in AOs
interface: ezfio interface: ezfio
size: (ao_basis.ao_num) size: (ao_basis.ao_num)
[j1e_coef_ao2]
type: double precision
doc: coefficients of the 1-electron Jastrow in AOsxAOs
interface: ezfio
size: (ao_basis.ao_num*ao_basis.ao_num)
[j1e_coef_ao3]
type: double precision
doc: coefficients of the 1-electron Jastrow in AOsxAOs
interface: ezfio
size: (ao_basis.ao_num,3)
[j1e_expo] [j1e_expo]
type: double precision type: double precision
doc: exponenets of functions in 1e-Jastrow doc: exponenets of functions in 1e-Jastrow
@ -103,13 +115,13 @@ size: (jastrow.j1e_size,nuclei.nucl_num)
[env_expo] [env_expo]
type: double precision type: double precision
doc: exponents of the 1-body Jastrow doc: exponents of the envelop for Jastrow
interface: ezfio interface: ezfio
size: (nuclei.nucl_num) size: (nuclei.nucl_num)
[env_coef] [env_coef]
type: double precision type: double precision
doc: coefficients of the 1-body Jastrow doc: coefficients of the envelop for Jastrow
interface: ezfio interface: ezfio
size: (nuclei.nucl_num) size: (nuclei.nucl_num)
@ -125,4 +137,10 @@ doc: nb of Gaussians used to fit Jastrow fcts
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 20 default: 20
[a_boys]
type: double precision
doc: cutting of the interaction in the range separated model
interface: ezfio,provider,ocaml
default: 1.0
ezfio_name: a_boys

View File

@ -401,10 +401,10 @@ subroutine test_grad1_u12_withsq_num()
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,ipoint,1) & call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,ipoint,1) &
, tmp_grad1_u12(1,ipoint,2) & , tmp_grad1_u12(1,ipoint,2) &
, tmp_grad1_u12(1,ipoint,3) & , tmp_grad1_u12(1,ipoint,3) &
, tmp_grad1_u12_squared(1,ipoint)) , tmp_grad1_u12_squared(1,ipoint))
do jpoint = 1, n_points_extra_final_grid do jpoint = 1, n_points_extra_final_grid
i_exc = grad1_u12_squared_num(jpoint,ipoint) i_exc = grad1_u12_squared_num(jpoint,ipoint)

View File

@ -70,14 +70,15 @@ END_PROVIDER
&BEGIN_PROVIDER [double precision, j1e_gradz, (n_points_final_grid)] &BEGIN_PROVIDER [double precision, j1e_gradz, (n_points_final_grid)]
implicit none implicit none
integer :: ipoint, i, j, p integer :: ipoint, i, j, ij, p
integer :: ierr integer :: ierr
logical :: exists logical :: exists
double precision :: x, y, z, dx, dy, dz, d2 double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, g, tmp_x, tmp_y, tmp_z double precision :: a, c, g, tmp_x, tmp_y, tmp_z
double precision :: cx, cy, cz
double precision :: time0, time1 double precision :: time0, time1
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:) double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: coef_fit(:) double precision, allocatable :: coef_fit(:), coef_fit2(:), coef_fit3(:,:)
PROVIDE j1e_type PROVIDE j1e_type
@ -162,21 +163,164 @@ END_PROVIDER
deallocate(Pa, Pb, Pt) deallocate(Pa, Pb, Pt)
! elseif(j1e_type .eq. "Charge_Harmonizer_AO") then
!
! ! \grad_1 \sum_{\eta} C_{\eta} \chi_{\eta}
! ! where
! ! \chi_{\eta} are the AOs
! ! C_{\eta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer")
! !
! ! The - sign is in the parameters C_{\eta}
!
! PROVIDE aos_grad_in_r_array
!
! allocate(coef_fit(ao_num))
!
! if(mpi_master) then
! call ezfio_has_jastrow_j1e_coef_ao(exists)
! endif
! IRP_IF MPI_DEBUG
! print *, irp_here, mpi_rank
! call MPI_BARRIER(MPI_COMM_WORLD, ierr)
! IRP_ENDIF
! IRP_IF MPI
! include 'mpif.h'
! call MPI_BCAST(coef_fit, ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read j1e_coef_ao with MPI'
! endif
! IRP_ENDIF
! if(exists) then
! if(mpi_master) then
! write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao ] <<<<< ..'
! call ezfio_get_jastrow_j1e_coef_ao(coef_fit)
! IRP_IF MPI
! call MPI_BCAST(coef_fit, ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read j1e_coef_ao with MPI'
! endif
! IRP_ENDIF
! endif
! else
!
! call get_j1e_coef_fit_ao(ao_num, coef_fit)
! call ezfio_set_jastrow_j1e_coef_ao(coef_fit)
!
! endif
!
! !$OMP PARALLEL &
! !$OMP DEFAULT (NONE) &
! !$OMP PRIVATE (i, ipoint, c) &
! !$OMP SHARED (n_points_final_grid, ao_num, &
! !$OMP aos_grad_in_r_array, coef_fit, &
! !$OMP j1e_gradx, j1e_grady, j1e_gradz)
! !$OMP DO SCHEDULE (static)
! do ipoint = 1, n_points_final_grid
!
! j1e_gradx(ipoint) = 0.d0
! j1e_grady(ipoint) = 0.d0
! j1e_gradz(ipoint) = 0.d0
! do i = 1, ao_num
! c = coef_fit(i)
! j1e_gradx(ipoint) = j1e_gradx(ipoint) + c * aos_grad_in_r_array(i,ipoint,1)
! j1e_grady(ipoint) = j1e_grady(ipoint) + c * aos_grad_in_r_array(i,ipoint,2)
! j1e_gradz(ipoint) = j1e_gradz(ipoint) + c * aos_grad_in_r_array(i,ipoint,3)
! enddo
! enddo
! !$OMP END DO
! !$OMP END PARALLEL
!
! deallocate(coef_fit)
!
! elseif(j1e_type .eq. "Charge_Harmonizer_AO2") then
!
! ! \grad_1 \sum_{\eta,\beta} C_{\eta,\beta} \chi_{\eta} \chi_{\beta}
! ! where
! ! \chi_{\eta} are the AOs
! ! C_{\eta,\beta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer")
! !
! ! The - sign is in the parameters C_{\eta,\beta}
!
! PROVIDE aos_grad_in_r_array
!
! allocate(coef_fit2(ao_num*ao_num))
!
! if(mpi_master) then
! call ezfio_has_jastrow_j1e_coef_ao2(exists)
! endif
! IRP_IF MPI_DEBUG
! print *, irp_here, mpi_rank
! call MPI_BARRIER(MPI_COMM_WORLD, ierr)
! IRP_ENDIF
! IRP_IF MPI
! call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read j1e_coef_ao2 with MPI'
! endif
! IRP_ENDIF
! if(exists) then
! if(mpi_master) then
! write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
! call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
! IRP_IF MPI
! call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read j1e_coef_ao2 with MPI'
! endif
! IRP_ENDIF
! endif
! else
!
! call get_j1e_coef_fit_ao2(ao_num*ao_num, coef_fit2)
! call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
!
! endif
!
! !$OMP PARALLEL &
! !$OMP DEFAULT (NONE) &
! !$OMP PRIVATE (i, j, ij, ipoint, c) &
! !$OMP SHARED (n_points_final_grid, ao_num, &
! !$OMP aos_grad_in_r_array, coef_fit2, &
! !$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz)
! !$OMP DO SCHEDULE (static)
! do ipoint = 1, n_points_final_grid
!
! j1e_gradx(ipoint) = 0.d0
! j1e_grady(ipoint) = 0.d0
! j1e_gradz(ipoint) = 0.d0
!
! do i = 1, ao_num
! do j = 1, ao_num
! ij = (i-1)*ao_num + j
!
! c = coef_fit2(ij)
!
! j1e_gradx(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,1) + aos_grad_in_r_array(i,ipoint,1) * aos_in_r_array(j,ipoint))
! j1e_grady(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,2) + aos_grad_in_r_array(i,ipoint,2) * aos_in_r_array(j,ipoint))
! j1e_gradz(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,3) + aos_grad_in_r_array(i,ipoint,3) * aos_in_r_array(j,ipoint))
! enddo
! enddo
! enddo
! !$OMP END DO
! !$OMP END PARALLEL
!
! deallocate(coef_fit2)
elseif(j1e_type .eq. "Charge_Harmonizer_AO") then elseif(j1e_type .eq. "Charge_Harmonizer_AO") then
! \grad_1 \sum_{\eta} C_{\eta} \chi_{\eta} ! \sum_{\eta} \vec{C}_{\eta} \chi_{\eta}
! where ! where
! \chi_{\eta} are the AOs ! \chi_{\eta} are the AOs
! C_{\eta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer") ! \vec{C}_{\eta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer")
! !
! The - sign is in the parameters C_{\eta} ! The - sign is in the parameters \vec{C}_{\eta}
PROVIDE aos_grad_in_r_array PROVIDE aos_grad_in_r_array
allocate(coef_fit(ao_num)) allocate(coef_fit3(ao_num,3))
if(mpi_master) then if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao(exists) call ezfio_has_jastrow_j1e_coef_ao3(exists)
endif endif
IRP_IF MPI_DEBUG IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank print *, irp_here, mpi_rank
@ -184,36 +328,35 @@ END_PROVIDER
IRP_ENDIF IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
call MPI_BCAST(coef_fit, ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST(coef_fit3, (ao_num*3), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao with MPI' stop 'Unable to read j1e_coef_ao3 with MPI'
endif endif
IRP_ENDIF IRP_ENDIF
if(exists) then if(exists) then
if(mpi_master) then if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao ] <<<<< ..' write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao3 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao(coef_fit) call ezfio_get_jastrow_j1e_coef_ao3(coef_fit3)
IRP_IF MPI IRP_IF MPI
call MPI_BCAST(coef_fit, ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST(coef_fit3, (ao_num*3), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao with MPI' stop 'Unable to read j1e_coef_ao3 with MPI'
endif endif
IRP_ENDIF IRP_ENDIF
endif endif
else else
call get_j1e_coef_fit_ao(ao_num, coef_fit) call get_j1e_coef_fit_ao3(ao_num, coef_fit3)
call ezfio_set_jastrow_j1e_coef_ao(coef_fit) call ezfio_set_jastrow_j1e_coef_ao3(coef_fit3)
endif endif
!$OMP PARALLEL &
!$OMP PARALLEL & !$OMP DEFAULT (NONE) &
!$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, ipoint, cx, cy, cz) &
!$OMP PRIVATE (i, ipoint, c) & !$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP SHARED (n_points_final_grid, ao_num, & !$OMP aos_grad_in_r_array, coef_fit3, &
!$OMP aos_grad_in_r_array, coef_fit, & !$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz)
!$OMP j1e_gradx, j1e_grady, j1e_gradz)
!$OMP DO SCHEDULE (static) !$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
@ -221,16 +364,19 @@ END_PROVIDER
j1e_grady(ipoint) = 0.d0 j1e_grady(ipoint) = 0.d0
j1e_gradz(ipoint) = 0.d0 j1e_gradz(ipoint) = 0.d0
do i = 1, ao_num do i = 1, ao_num
c = coef_fit(i) cx = coef_fit3(i,1)
j1e_gradx(ipoint) = j1e_gradx(ipoint) + c * aos_grad_in_r_array(i,ipoint,1) cy = coef_fit3(i,2)
j1e_grady(ipoint) = j1e_grady(ipoint) + c * aos_grad_in_r_array(i,ipoint,2) cz = coef_fit3(i,3)
j1e_gradz(ipoint) = j1e_gradz(ipoint) + c * aos_grad_in_r_array(i,ipoint,3)
j1e_gradx(ipoint) += cx * aos_in_r_array(i,ipoint)
j1e_grady(ipoint) += cy * aos_in_r_array(i,ipoint)
j1e_gradz(ipoint) += cz * aos_in_r_array(i,ipoint)
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
deallocate(coef_fit) deallocate(coef_fit3)
else else

View File

@ -107,5 +107,288 @@ end
! --- ! ---
subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
implicit none
integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit)
integer :: i, j, k, l, ipoint
integer :: ij, kl
double precision :: g
double precision :: t0, t1
double precision, allocatable :: A(:,:), b(:), A_inv(:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:)
PROVIDE j1e_type
PROVIDE int2_u2e_ao
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs x AOx ... '
! --- --- ---
! get u1e(r)
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
allocate(u1e_tmp(n_points_final_grid))
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_u2e_ao, ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp, 1)
FREE int2_u2e_ao
deallocate(Pa, Pb, Pt)
! --- --- ---
! get A
allocate(A(ao_num*ao_num,ao_num*ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ij, kl, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, A)
!$OMP DO COLLAPSE(2)
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
A(ij,kl) = 0.d0
do ipoint = 1, n_points_final_grid
A(ij,kl) += final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) &
* aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
print *, ' A'
do ij = 1, ao_num*ao_num
write(*, '(100000(f15.7))') (A(ij,kl), kl = 1, ao_num*ao_num)
enddo
! --- --- ---
! get b
allocate(b(ao_num*ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ij, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b)
!$OMP DO COLLAPSE(2)
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
b(ij) = 0.d0
do ipoint = 1, n_points_final_grid
b(ij) = b(ij) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) * u1e_tmp(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(u1e_tmp)
! --- --- ---
! solve Ax = b
allocate(A_inv(ao_num*ao_num,ao_num*ao_num))
call get_inverse(A, ao_num*ao_num, ao_num*ao_num, A_inv, ao_num*ao_num)
integer :: mn
print *, ' check A_inv'
do ij = 1, ao_num*ao_num
do kl = 1, ao_num*ao_num
tmp = 0.d0
do mn = 1, ao_num*ao_num
tmp += A(ij,mn) * A_inv(mn,kl)
enddo
print*, ij, kl, tmp
enddo
enddo
! coef_fit = A_inv x b
!call dgemv("N", ao_num*ao_num, ao_num*ao_num, 1.d0, A_inv, ao_num*ao_num, b, 1, 0.d0, coef_fit(1,1), 1)
do ij = 1, ao_num*ao_num
coef_fit(ij) = 0.d0
do kl = 1, ao_num*ao_num
coef_fit(ij) += A_inv(ij,kl) * b(kl)
enddo
enddo
double precision :: tmp
print *, ' check A_inv'
do ij = 1, ao_num*ao_num
tmp = 0.d0
do kl = 1, ao_num*ao_num
tmp += A(ij,kl) * coef_fit(kl)
enddo
tmp = tmp - b(ij)
print*, ij, tmp
enddo
deallocate(A)
deallocate(A_inv, b)
call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0
return
end
! ---
subroutine get_j1e_coef_fit_ao3(dim_fit, coef_fit)
implicit none
integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit,3)
integer :: i, d, ipoint
double precision :: g
double precision :: t0, t1
double precision, allocatable :: A(:,:), b(:,:), A_inv(:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:,:)
PROVIDE j1e_type
PROVIDE int2_grad1_u2e_ao
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
PROVIDE ao_overlap
call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs ... '
! --- --- ---
! get u1e(r)
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
allocate(u1e_tmp(n_points_final_grid,3))
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
do d = 1, 3
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,d), ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp(1,d), 1)
enddo
deallocate(Pa, Pb, Pt)
! --- --- ---
! get A & b
allocate(A(ao_num,ao_num), b(ao_num,3))
A(1:ao_num,1:ao_num) = ao_overlap(1:ao_num,1:ao_num)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
b(i,1) = 0.d0
b(i,2) = 0.d0
b(i,3) = 0.d0
do ipoint = 1, n_points_final_grid
b(i,1) = b(i,1) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,1)
b(i,2) = b(i,2) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,2)
b(i,3) = b(i,3) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,3)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(u1e_tmp)
! --- --- ---
! solve Ax = b
allocate(A_inv(ao_num,ao_num))
call get_inverse(A, ao_num, ao_num, A_inv, ao_num)
! coef_fit = A_inv x b
do d = 1, 3
call dgemv("N", ao_num, ao_num, 1.d0, A_inv, ao_num, b(1,d), 1, 0.d0, coef_fit(1,d), 1)
enddo
integer :: j
double precision :: tmp, acc, nrm
acc = 0.d0
nrm = 0.d0
print *, ' check A_inv'
do d = 1, 3
do i = 1, ao_num
tmp = 0.d0
do j = 1, ao_num
tmp += ao_overlap(i,j) * coef_fit(j,d)
enddo
tmp = tmp - b(i,d)
if(dabs(tmp) .gt. 1d-8) then
print*, d, i, tmp
endif
acc += dabs(tmp)
nrm += dabs(b(i,d))
enddo
enddo
print *, ' Relative Error (%) =', 100.d0*acc/nrm
deallocate(A, A_inv, b)
call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0
return
end
! ---

View File

@ -1,7 +1,7 @@
! --- ! ---
subroutine get_grad1_u12_withsq_r1_seq(r1, n_grid2, resx, resy, resz, res) subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
BEGIN_DOC BEGIN_DOC
! !
@ -12,82 +12,93 @@ subroutine get_grad1_u12_withsq_r1_seq(r1, n_grid2, resx, resy, resz, res)
END_DOC END_DOC
implicit none implicit none
integer, intent(in) :: n_grid2 integer, intent(in) :: ipoint, n_grid2
double precision, intent(in) :: r1(3)
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2) double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2)
integer :: jpoint integer :: jpoint
double precision :: env_r1 double precision :: env_r1, tmp
double precision :: grad1_env(3) double precision :: grad1_env(3), r1(3)
double precision, allocatable :: env_r2(:) double precision, allocatable :: env_r2(:)
double precision, allocatable :: u2b_r12(:) double precision, allocatable :: u2b_r12(:)
double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:) double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
double precision, external :: env_nucl double precision, external :: env_nucl
PROVIDE j1e_type j2e_type env_type PROVIDE j1e_type j2e_type env_type
PROVIDE final_grid_points
PROVIDE final_grid_points_extra PROVIDE final_grid_points_extra
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. & r1(1) = final_grid_points(1,ipoint)
(j2e_type .eq. "Mur") ) then r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
call grad1_j12_mu_r1_seq(r1, n_grid2, resx, resy, resz) if( (j2e_type .eq. "Mu") .or. &
do jpoint = 1, n_points_extra_final_grid (j2e_type .eq. "Mur") .or. &
res(jpoint) = resx(jpoint) * resx(jpoint) + resy(jpoint) * resy(jpoint) + resz(jpoint) * resz(jpoint) (j2e_type .eq. "Boys") ) then
enddo
elseif((j2e_type .eq. "Mu") .and. (env_type .ne. "None")) then if(env_type .eq. "None") then
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2) call grad1_j12_r1_seq(r1, n_grid2, resx, resy, resz)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
allocate(env_r2(n_grid2)) else
allocate(u2b_r12(n_grid2))
allocate(gradx1_u2b(n_grid2))
allocate(grady1_u2b(n_grid2))
allocate(gradz1_u2b(n_grid2))
env_r1 = env_nucl(r1) ! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
call grad1_env_nucl(r1, grad1_env) ! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
call env_nucl_r1_seq(n_grid2, env_r2) allocate(env_r2(n_grid2))
call j12_mu_r1_seq(r1, n_grid2, u2b_r12) allocate(u2b_r12(n_grid2))
call grad1_j12_mu_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b) allocate(gradx1_u2b(n_grid2))
allocate(grady1_u2b(n_grid2))
allocate(gradz1_u2b(n_grid2))
do jpoint = 1, n_points_extra_final_grid env_r1 = env_nucl(r1)
resx(jpoint) = (gradx1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(1)) * env_r2(jpoint) call grad1_env_nucl(r1, grad1_env)
resy(jpoint) = (grady1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(3)) * env_r2(jpoint)
res (jpoint) = resx(jpoint) * resx(jpoint) + resy(jpoint) * resy(jpoint) + resz(jpoint) * resz(jpoint)
enddo
deallocate(env_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b) call env_nucl_r1_seq(n_grid2, env_r2)
call j12_r1_seq(r1, n_grid2, u2b_r12)
call grad1_j12_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = (gradx1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(1)) * env_r2(jpoint)
resy(jpoint) = (grady1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(3)) * env_r2(jpoint)
enddo
deallocate(env_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
endif ! env_type
else else
print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow' print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow'
stop stop
endif ! j2e_type
if(j1e_type .ne. "None") then
PROVIDE j1e_gradx j1e_grady j1e_gradz
PROVIDE elec_num
tmp = 1.d0 / (dble(elec_num) - 1.d0)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = resx(jpoint) + tmp * j1e_gradx(ipoint)
resy(jpoint) = resy(jpoint) + tmp * j1e_grady(ipoint)
resz(jpoint) = resz(jpoint) + tmp * j1e_gradz(ipoint)
enddo
endif endif
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = resx(jpoint) * resx(jpoint) + resy(jpoint) * resy(jpoint) + resz(jpoint) * resz(jpoint)
enddo
return return
end end
! --- ! ---
subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz) subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
BEGIN_DOC BEGIN_DOC
! !
! gradient of j(mu(r1,r2),r12) form of jastrow.
!
! if mu(r1,r2) = cst --->
!
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! if mu(r1,r2) /= cst --->
!
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
! !
END_DOC END_DOC
@ -107,6 +118,9 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
if(j2e_type .eq. "Mu") then if(j2e_type .eq. "Mu") then
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint) r2(1) = final_grid_points_extra(1,jpoint)
@ -134,6 +148,9 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
elseif(j2e_type .eq. "Mur") then elseif(j2e_type .eq. "Mur") then
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint) r2(1) = final_grid_points_extra(1,jpoint)
@ -166,9 +183,40 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = gradz(jpoint) + tmp * dz gradz(jpoint) = gradz(jpoint) + tmp * dz
enddo enddo
elseif(j2e_type .eq. "Boys") then
! j(r12) = 0.5 r12 / (1 + a_boys r_12)
PROVIDE a_boys
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 1.d0 + a_boys * r12
tmp = 0.5d0 / (r12 * tmp * tmp)
gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy
gradz(jpoint) = tmp * dz
enddo
else else
print *, ' Error in grad1_j12_mu_r1_seq: Unknown j2e_type = ', j2e_type print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
stop stop
endif ! j2e_type endif ! j2e_type
@ -178,7 +226,7 @@ end
! --- ! ---
subroutine j12_mu_r1_seq(r1, n_grid2, res) subroutine j12_r1_seq(r1, n_grid2, res)
include 'constants.include.F' include 'constants.include.F'
@ -189,23 +237,57 @@ subroutine j12_mu_r1_seq(r1, n_grid2, res)
integer :: jpoint integer :: jpoint
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz
double precision :: mu_tmp, r12 double precision :: mu_tmp, r12
PROVIDE final_grid_points_extra PROVIDE final_grid_points_extra
do jpoint = 1, n_points_extra_final_grid ! r2 if(j2e_type .eq. "Mu") then
r2(1) = final_grid_points_extra(1,jpoint) PROVIDE mu_erf
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) & do jpoint = 1, n_points_extra_final_grid ! r2
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) ) r2(1) = final_grid_points_extra(1,jpoint)
mu_tmp = mu_erf * r12 r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf mu_tmp = mu_erf * r12
enddo
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
enddo
elseif(j2e_type .eq. "Boys") then
! j(r12) = 0.5 r12 / (1 + a_boys r_12)
PROVIDE a_boys
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
res(jpoint) = 0.5d0 * r12 / (1.d0 + a_boys * r12)
enddo
else
print *, ' Error in j12_r1_seq: Unknown j2e_type = ', j2e_type
stop
endif ! j2e_type
return return
end end

View File

@ -6,7 +6,7 @@
BEGIN_DOC BEGIN_DOC
! !
! int2_grad1_u12_ao_num(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2) ! int2_grad1_u12_ao_num(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
! !
! int2_grad1_u12_square_ao_num = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2 ! int2_grad1_u12_square_ao_num = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
! !
@ -73,10 +73,10 @@
!$OMP DO !$OMP DO
do i_blocks = 1, n_blocks do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1 ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1) & call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1) &
, tmp_grad1_u12(1,i_blocks,2) & , tmp_grad1_u12(1,i_blocks,2) &
, tmp_grad1_u12(1,i_blocks,3) & , tmp_grad1_u12(1,i_blocks,3) &
, tmp_grad1_u12_squared(1,i_blocks)) , tmp_grad1_u12_squared(1,i_blocks))
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
@ -109,10 +109,10 @@
!$OMP DO !$OMP DO
do i_rest = 1, n_rest do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1 ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1) & call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1) &
, tmp_grad1_u12(1,i_rest,2) & , tmp_grad1_u12(1,i_rest,2) &
, tmp_grad1_u12(1,i_rest,3) & , tmp_grad1_u12(1,i_rest,3) &
, tmp_grad1_u12_squared(1,i_rest)) , tmp_grad1_u12_squared(1,i_rest))
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
@ -144,7 +144,7 @@ END_PROVIDER
BEGIN_DOC BEGIN_DOC
! !
! int2_grad1_u12_ao_num_1shot(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2) ! int2_grad1_u12_ao_num_1shot(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
! !
! int2_grad1_u12_square_ao_num_1shot = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2 ! int2_grad1_u12_square_ao_num_1shot = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
! !
@ -178,9 +178,7 @@ END_PROVIDER
!$OMP END PARALLEL !$OMP END PARALLEL
do m = 1, 3 do m = 1, 3
!call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, -1.d0 & call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
! this work also because of the symmetry in K(1,2) and sign compensation in L(1,2,3)
call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, +1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, grad1_u12_num(1,1,m), n_points_extra_final_grid & , tmp(1,1,1), n_points_extra_final_grid, grad1_u12_num(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao_num_1shot(1,1,1,m), ao_num*ao_num) , 0.d0, int2_grad1_u12_ao_num_1shot(1,1,1,m), ao_num*ao_num)
enddo enddo