10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-21 20:52:28 +02:00

1st term of grad2 added

This commit is contained in:
AbdAmmar 2022-10-13 19:22:12 +02:00
parent 7a4f732e15
commit b913277daa
8 changed files with 976 additions and 164 deletions

View File

@ -0,0 +1,213 @@
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b3_size]
implicit none
List_all_comb_b3_size = 3**nucl_num
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b3, (nucl_num, List_all_comb_b3_size)]
implicit none
integer :: i, j, ii, jj
integer, allocatable :: M(:,:), p(:)
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_all_comb_b3(:,:) = 0
List_all_comb_b3(:,List_all_comb_b3_size) = 2
allocate(p(nucl_num))
p = 0
do i = 2, List_all_comb_b3_size-1
do j = 1, nucl_num
ii = 0
do jj = 1, j-1, 1
ii = ii + p(jj) * 3**(jj-1)
enddo
p(j) = modulo(i-1-ii, 3**j) / 3**(j-1)
List_all_comb_b3(j,i) = p(j)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_comb_b3_coef, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_expo, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_cent, (3, List_all_comb_b3_size)]
implicit none
integer :: i, j, k, phase
double precision :: tmp_alphaj, tmp_alphak, facto
provide j1b_pen
List_all_comb_b3_coef = 0.d0
List_all_comb_b3_expo = 0.d0
List_all_comb_b3_cent = 0.d0
do i = 1, List_all_comb_b3_size
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b3_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(3,i) = List_all_comb_b3_cent(3,i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b3(k,i)) * j1b_pen(k)
List_all_comb_b3_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
List_all_comb_b3_coef(i) = List_all_comb_b3_coef(i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_all_comb_b3(j,i)
enddo
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u_grad2u_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), int_fit, expo_fit, coef_fit
double precision :: coef, beta, B_center(3)
double precision :: wall0, wall1
double precision, allocatable :: tmp(:,:,:)
double precision, external :: overlap_gauss_r12_ao_with1s
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
int2_grad1u_grad2u_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, n_max_fit_slat, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u_grad2u_j1b)
allocate( tmp(ao_num,ao_num,n_points_final_grid) )
tmp = 0.d0
!$OMP DO
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = i, ao_num
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i_1s = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
do i_fit = 1, n_max_fit_slat
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp(j,i,ipoint) += -0.25d0 * coef * coef_fit * int_fit
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = i, ao_num
int2_grad1u_grad2u_j1b(j,i,ipoint) += tmp(j,i,ipoint)
enddo
enddo
enddo
!$OMP END CRITICAL
deallocate( tmp )
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, i-1
int2_grad1u_grad2u_j1b(j,i,ipoint) = int2_grad1u_grad2u_j1b(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u_grad2u_j1b', wall1 - wall0
END_PROVIDER
! ---

View File

@ -1,17 +1,17 @@
! ---
BEGIN_PROVIDER [ integer, List_all_comb_size]
BEGIN_PROVIDER [ integer, List_all_comb_b2_size]
implicit none
List_all_comb_size = 2**nucl_num
List_all_comb_b2_size = 2**nucl_num
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb, (nucl_num, List_all_comb_size)]
BEGIN_PROVIDER [ integer, List_all_comb_b2, (nucl_num, List_all_comb_b2_size)]
implicit none
integer :: i, j
@ -21,12 +21,12 @@ BEGIN_PROVIDER [ integer, List_all_comb, (nucl_num, List_all_comb_size)]
stop
endif
List_all_comb = 0
List_all_comb_b2 = 0
do i = 0, List_all_comb_size-1
do i = 0, List_all_comb_b2_size-1
do j = 0, nucl_num-1
if (btest(i,j)) then
List_all_comb(j+1,i+1) = 1
List_all_comb_b2(j+1,i+1) = 1
endif
enddo
enddo
@ -35,9 +35,9 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_j1b1s_coef, ( List_all_comb_size)]
&BEGIN_PROVIDER [ double precision, List_all_j1b1s_expo, ( List_all_comb_size)]
&BEGIN_PROVIDER [ double precision, List_all_j1b1s_cent, (3, List_all_comb_size)]
BEGIN_PROVIDER [ double precision, List_all_comb_b2_coef, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_expo, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_cent, (3, List_all_comb_b2_size)]
implicit none
integer :: i, j, k, phase
@ -45,60 +45,60 @@ END_PROVIDER
provide j1b_pen
List_all_j1b1s_coef = 0.d0
List_all_j1b1s_expo = 0.d0
List_all_j1b1s_cent = 0.d0
List_all_comb_b2_coef = 0.d0
List_all_comb_b2_expo = 0.d0
List_all_comb_b2_cent = 0.d0
do i = 1, List_all_comb_size
do i = 1, List_all_comb_b2_size
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb(j,i)) * j1b_pen(j)
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
List_all_j1b1s_expo(i) += tmp_alphaj
List_all_j1b1s_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_j1b1s_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_j1b1s_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
List_all_comb_b2_expo(i) += tmp_alphaj
List_all_comb_b2_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b2_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b2_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
ASSERT(List_all_j1b1s_expo(i) .gt. 0d0)
if(List_all_j1b1s_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b2_expo(i) .gt. 0d0)
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_j1b1s_cent(1,i) = List_all_j1b1s_cent(1,i) / List_all_j1b1s_expo(i)
List_all_j1b1s_cent(2,i) = List_all_j1b1s_cent(2,i) / List_all_j1b1s_expo(i)
List_all_j1b1s_cent(3,i) = List_all_j1b1s_cent(3,i) / List_all_j1b1s_expo(i)
List_all_comb_b2_cent(1,i) = List_all_comb_b2_cent(1,i) / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(2,i) = List_all_comb_b2_cent(2,i) / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(3,i) = List_all_comb_b2_cent(3,i) / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_size
do i = 1, List_all_comb_b2_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb(j,i)) * j1b_pen(j)
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb(k,i)) * j1b_pen(k)
tmp_alphak = dble(List_all_comb_b2(k,i)) * j1b_pen(k)
List_all_j1b1s_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
List_all_comb_b2_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_j1b1s_expo(i) .lt. 1d-10) cycle
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_j1b1s_coef(i) = List_all_j1b1s_coef(i) / List_all_j1b1s_expo(i)
List_all_comb_b2_coef(i) = List_all_comb_b2_coef(i) / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_size
do i = 1, List_all_comb_b2_size
phase = 0
do j = 1, nucl_num
phase += List_all_comb(j,i)
phase += List_all_comb_b2(j,i)
enddo
List_all_j1b1s_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_j1b1s_coef(i))
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
enddo
END_PROVIDER
@ -129,8 +129,8 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_size, final_grid_points, &
!$OMP List_all_j1b1s_coef, List_all_j1b1s_expo, List_all_j1b1s_cent, &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP v_ij_erf_rk_cst_mu_j1b, mu_erf)
allocate( tmp(ao_num,ao_num,n_points_final_grid) )
@ -144,13 +144,13 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i_1s = 1, List_all_comb_size
do i_1s = 1, List_all_comb_b2_size
coef = List_all_j1b1s_coef (i_1s)
beta = List_all_j1b1s_expo (i_1s)
B_center(1) = List_all_j1b1s_cent(1,i_1s)
B_center(2) = List_all_j1b1s_cent(2,i_1s)
B_center(3) = List_all_j1b1s_cent(3,i_1s)
coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
@ -238,8 +238,8 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_size, final_grid_points, &
!$OMP List_all_j1b1s_coef, List_all_j1b1s_expo, List_all_j1b1s_cent, &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points,&
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_tmp_j1b, mu_erf)
allocate( tmp(3,ao_num,ao_num,n_points_final_grid) )
@ -253,13 +253,13 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i_1s = 1, List_all_comb_size
do i_1s = 1, List_all_comb_b2_size
coef = List_all_j1b1s_coef (i_1s)
beta = List_all_j1b1s_expo (i_1s)
B_center(1) = List_all_j1b1s_cent(1,i_1s)
B_center(2) = List_all_j1b1s_cent(2,i_1s)
B_center(3) = List_all_j1b1s_cent(3,i_1s)
coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
@ -291,15 +291,15 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, i-1
x_v_ij_erf_rk_cst_mu_tmp(1,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp(1,i,j,ipoint)
x_v_ij_erf_rk_cst_mu_tmp(2,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp(2,i,j,ipoint)
x_v_ij_erf_rk_cst_mu_tmp(3,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp(3,i,j,ipoint)
x_v_ij_erf_rk_cst_mu_tmp_j1b(1,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp_j1b(1,i,j,ipoint)
x_v_ij_erf_rk_cst_mu_tmp_j1b(2,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp_j1b(2,i,j,ipoint)
x_v_ij_erf_rk_cst_mu_tmp_j1b(3,j,i,ipoint) = x_v_ij_erf_rk_cst_mu_tmp_j1b(3,i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for x_v_ij_erf_rk_cst_mu_tmp', wall1 - wall0
print*, ' wall time for x_v_ij_erf_rk_cst_mu_tmp_j1b', wall1 - wall0
END_PROVIDER
@ -330,11 +330,11 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, n_max_fit_slat, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_j1b1s_coef, List_all_j1b1s_expo, &
!$OMP List_all_j1b1s_cent, v_ij_u_cst_mu_j1b)
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
allocate( tmp(ao_num,ao_num,n_points_final_grid) )
tmp = 0.d0
@ -347,13 +347,13 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i_1s = 1, List_all_comb_size
do i_1s = 1, List_all_comb_b2_size
coef = List_all_j1b1s_coef (i_1s)
beta = List_all_j1b1s_expo (i_1s)
B_center(1) = List_all_j1b1s_cent(1,i_1s)
B_center(2) = List_all_j1b1s_cent(2,i_1s)
B_center(3) = List_all_j1b1s_cent(3,i_1s)
coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
do i_fit = 1, n_max_fit_slat

View File

@ -134,7 +134,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp, (3, ao_num, ao_num,
call NAI_pol_x_mult_erf_ao(i, j, 1.d+9 , r, ints_coulomb)
do m = 1, 3
x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint) = (ints(m) - ints_coulomb(m))
x_v_ij_erf_rk_cst_mu_tmp(m,j,i,ipoint) = (ints(m) - ints_coulomb(m))
enddo
enddo
enddo
@ -153,7 +153,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp, (3, ao_num, ao_num,
enddo
call wall_time(wall1)
print*,'wall time for x_v_ij_erf_rk_cst_mu_tmp',wall1 - wall0
print*, ' wall time for x_v_ij_erf_rk_cst_mu_tmp', wall1 - wall0
END_PROVIDER

View File

@ -0,0 +1,93 @@
! --
program debug_integ_jmu_modif
implicit none
my_grid_becke = .True.
!my_n_pt_r_grid = 30
!my_n_pt_a_grid = 50
my_n_pt_r_grid = 100
my_n_pt_a_grid = 170
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen
call test_grad_1_u_ij_mu()
end
! ---
subroutine test_grad_1_u_ij_mu()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num
double precision, external :: num_grad_1_u_ij_mu_x
double precision, external :: num_grad_1_u_ij_mu_y
double precision, external :: num_grad_1_u_ij_mu_z
print*, ' test_grad_1_u_ij_mu ...'
PROVIDE grad_1_u_ij_mu
! PROVIDE num_grad_1_u_ij_mu
eps_ij = 1d-6
acc_tot = 0.d0
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = grad_1_u_ij_mu(i,j,ipoint,1)
!i_num = num_grad_1_u_ij_mu(i,j,ipoint,1)
i_num = num_grad_1_u_ij_mu_x(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in x part of grad_1_u_ij_mu on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
i_exc = grad_1_u_ij_mu(i,j,ipoint,2)
!i_num = num_grad_1_u_ij_mu(i,j,ipoint,2)
i_num = num_grad_1_u_ij_mu_y(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in y part of grad_1_u_ij_mu on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
i_exc = grad_1_u_ij_mu(i,j,ipoint,3)
!i_num = num_grad_1_u_ij_mu(i,j,ipoint,3)
i_num = num_grad_1_u_ij_mu_z(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in y part of grad_1_u_ij_mu on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
enddo
enddo
enddo
acc_tot = acc_tot / dble(ao_num*ao_num*n_points_final_grid)
print*, ' normalized acc = ', acc_tot
return
end subroutine test_grad_1_u_ij_mu
! ---

View File

@ -1,72 +1,112 @@
BEGIN_PROVIDER [ double precision, grad_1_squared_u_ij_mu, ( ao_num, ao_num,n_points_final_grid)]
implicit none
integer :: ipoint,i,j,m,igauss
BEGIN_DOC
! grad_1_squared_u_ij_mu(j,i,ipoint) = -1/2 \int dr2 phi_j(r2) phi_i(r2) |\grad_r1 u(r1,r2,\mu)|^2
! |\grad_r1 u(r1,r2,\mu)|^2 = 1/4 * (1 - erf(mu*r12))^2
! ! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
END_DOC
double precision :: r(3),delta,coef
double precision :: overlap_gauss_r12_ao,time0,time1
print*,'providing grad_1_squared_u_ij_mu ...'
call wall_time(time0)
!TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
! \int dr2 phi_j(r2) phi_i(r2) (1 - erf(mu*r12))^2
! = \sum_i coef_gauss_1_erf_x_2(i) \int dr2 phi_j(r2) phi_i(r2) exp(-expo_gauss_1_erf_x_2(i) * (r_1 - r_2)^2)
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
grad_1_squared_u_ij_mu(j,i,ipoint) += -0.25 * coef * overlap_gauss_r12_ao(r,delta,i,j)
enddo
enddo
enddo
enddo
call wall_time(time1)
print*,'Wall time for grad_1_squared_u_ij_mu = ',time1 - time0
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
implicit none
BEGIN_DOC
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
!
END_DOC
integer :: ipoint,i,j,k,l
double precision :: contrib,weight1
double precision, allocatable :: ac_mat(:,:,:,:)
allocate(ac_mat(ao_num, ao_num, ao_num, ao_num))
ac_mat = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
contrib = weight1 *0.5D0* (aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i))
! \int dr1 phi_k(r1) phi_i(r1) . \int dr2 |\grad_1 u(r1,r2)|^2 \phi_l(r2) \phi_j(r2)
ac_mat(k,i,l,j) += grad_1_squared_u_ij_mu(l,j,ipoint) * contrib
! ---
! TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num,n_points_final_grid)]
BEGIN_DOC
!
! -1/2 [ (grad_1 u)^2 + (grad_2 u^2)] = - 1/4 * (1 - erf(mu*r12))^2
!
! and
! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
!
END_DOC
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: r(3), delta, coef
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing gradu_squared_u_ij_mu ...'
call wall_time(time0)
PROVIDE j1b_type j1b_pen
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
gradu_squared_u_ij_mu(j,i,ipoint) += fact3_j12(ipoint) * int2_grad1u_grad2u_j1b(i,j,ipoint)
enddo
enddo
enddo
enddo
enddo
enddo
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
else
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
gradu_squared_u_ij_mu(j,i,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
endif
call wall_time(time1)
print*, ' Wall time for gradu_squared_u_ij_mu = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: contrib, weight1
double precision, allocatable :: ac_mat(:,:,:,:)
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
ac_mat = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
contrib = weight1 * 0.5d0 * (aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i))
! \int dr1 phi_k(r1) phi_i(r1) . \int dr2 |\grad_1 u(r1,r2)|^2 \phi_l(r2) \phi_j(r2)
ac_mat(k,i,l,j) += gradu_squared_u_ij_mu(l,j,ipoint) * contrib
enddo
enddo
enddo
enddo
enddo
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
enddo
enddo
enddo
enddo
deallocate(ac_mat)
END_PROVIDER
! ---

View File

@ -0,0 +1,266 @@
! ---
double precision function jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, external :: j12_mu, j12_nucl
jmu_modif = j12_mu(r1, r2) * j12_nucl(r1, r2)
return
end function jmu_modif
! ---
double precision function j12_mu(r1, r2)
include 'constants.include.F'
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: mu_r12, r12
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
mu_r12 = mu_erf * r12
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_r12)) - inv_sq_pi_2 * dexp(-mu_r12*mu_r12) / mu_erf
return
end function j12_mu
! ---
double precision function j12_nucl(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
integer :: i, j
double precision :: a1, d1, e1, a2, d2, e2
j12_nucl = 1.d0
do i = 1, nucl_num
a1 = j1b_pen(i)
d1 = ( (r1(1) - nucl_coord(i,1)) * (r1(1) - nucl_coord(i,1)) &
+ (r1(2) - nucl_coord(i,2)) * (r1(2) - nucl_coord(i,2)) &
+ (r1(3) - nucl_coord(i,3)) * (r1(3) - nucl_coord(i,3)) )
e1 = 1.d0 - exp(-a1*d1)
do j = 1, nucl_num
a2 = j1b_pen(j)
d2 = ( (r2(1) - nucl_coord(j,1)) * (r2(1) - nucl_coord(j,1)) &
+ (r2(2) - nucl_coord(j,2)) * (r2(2) - nucl_coord(j,2)) &
+ (r2(3) - nucl_coord(j,3)) * (r2(3) - nucl_coord(j,3)) )
e2 = 1.d0 - exp(-a2*d2)
j12_nucl = j12_nucl * e1 * e2
enddo
enddo
return
end function j12_nucl
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(1)))
r1_eps(1) = r1_eps(1) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(1) = r1_eps(1) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_x_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_jmu_modif
double precision function grad1_y_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(2)))
r1_eps(2) = r1_eps(2) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(2) = r1_eps(2) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_y_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_jmu_modif
double precision function grad1_z_jmu_modif(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: jmu_modif
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(3)))
r1_eps(3) = r1_eps(3) + delta
fp = jmu_modif(r1_eps, r2)
r1_eps(3) = r1_eps(3) - 2.d0 * delta
fm = jmu_modif(r1_eps, r2)
grad1_z_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_jmu_modif
! ---------------------------------------------------------------------------------------
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(1)))
r1_eps(1) = r1_eps(1) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(1) = r1_eps(1) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_x_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_j12_mu_num
double precision function grad1_y_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(2)))
r1_eps(2) = r1_eps(2) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(2) = r1_eps(2) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_y_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_j12_mu_num
double precision function grad1_z_j12_mu_num(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r1_eps(3), eps, fp, fm, delta
double precision, external :: j12_mu
eps = 1d-7
r1_eps = r1
delta = max(eps, dabs(eps*r1(3)))
r1_eps(3) = r1_eps(3) + delta
fp = j12_mu(r1_eps, r2)
r1_eps(3) = r1_eps(3) - 2.d0 * delta
fm = j12_mu(r1_eps, r2)
grad1_z_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_j12_mu_num
! ---------------------------------------------------------------------------------------
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_j12_mu_exc(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r12
grad1_x_j12_mu_exc = 0.d0
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
if(r12 .lt. 1d-10) return
grad1_x_j12_mu_exc = 0.5d0 * (1.d0 - derf(mu_erf * r12)) * (r1(1) - r2(1)) / r12
return
end function grad1_x_j12_mu_exc
double precision function grad1_y_j12_mu_exc(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r12
grad1_y_j12_mu_exc = 0.d0
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
if(r12 .lt. 1d-10) return
grad1_y_j12_mu_exc = 0.5d0 * (1.d0 - derf(mu_erf * r12)) * (r1(2) - r2(2)) / r12
return
end function grad1_y_j12_mu_exc
double precision function grad1_z_j12_mu_exc(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision :: r12
grad1_z_j12_mu_exc = 0.d0
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
if(r12 .lt. 1d-10) return
grad1_z_j12_mu_exc = 0.5d0 * (1.d0 - derf(mu_erf * r12)) * (r1(3) - r2(3)) / r12
return
end function grad1_z_j12_mu_exc
! ---------------------------------------------------------------------------------------
! ---

View File

@ -1,7 +1,85 @@
! ---
BEGIN_PROVIDER [ double precision, grad_1_u_ij_mu, (ao_num, ao_num,n_points_final_grid, 3)]
BEGIN_PROVIDER [ double precision, fact1_j12, ( n_points_final_grid)]
&BEGIN_PROVIDER [ double precision, fact2_j12, (3, n_points_final_grid)]
&BEGIN_PROVIDER [ double precision, fact3_j12, ( n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: a, d, e, fact_r, fact_r_sq
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
! ---
fact_r = 1.d0
fact_r_sq = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = x*x + y*y + z*z
e = 1.d0 - dexp(-a*d)
fact_r = fact_r * e
fact_r_sq = fact_r_sq * e * e
enddo
fact1_j12(ipoint) = fact_r
fact3_j12(ipoint) = fact_r_sq
! ---
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
phase = 0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
e = -2.d0 * (-1.d0)**dble(phase) * dexp(-a_expo)
fact_x += e * ax_der
fact_y += e * ay_der
fact_z += e * az_der
enddo
fact2_j12(1,ipoint) = fact_x
fact2_j12(2,ipoint) = fact_y
fact2_j12(3,ipoint) = fact_z
! ---
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_1_u_ij_mu, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
!
@ -13,45 +91,32 @@ BEGIN_PROVIDER [ double precision, grad_1_u_ij_mu, (ao_num, ao_num,n_points_fina
END_DOC
implicit none
integer :: ipoint, i, j, i_1s
double precision :: r(3)
double precision :: a, d, e, tmp1, tmp2, fact_r, fact_xyz(3)
integer :: ipoint, i, j
double precision :: x, y, z, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
PROVIDE j1b_type j1b_pen
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp0 = fact1_j12(ipoint)
tmp_x = fact2_j12(1,ipoint)
tmp_y = fact2_j12(2,ipoint)
tmp_z = fact2_j12(3,ipoint)
fact_r = 1.d0
fact_xyz(1) = 1.d0
fact_xyz(2) = 1.d0
fact_xyz(3) = 1.d0
do i_1s = 1, nucl_num
a = j1b_pen(i_1s)
d = (r(1) - nucl_coord(i_1s,1)) * (r(1) - nucl_coord(i_1s,1)) &
+ (r(2) - nucl_coord(i_1s,2)) * (r(2) - nucl_coord(i_1s,2)) &
+ (r(3) - nucl_coord(i_1s,3)) * (r(3) - nucl_coord(i_1s,3))
e = dexp(-a*d)
fact_r = fact_r * (1.d0 - e)
fact_xyz(1) = fact_xyz(1) * (2.d0 * a * (r(1) - nucl_coord(i_1s,1)) * e)
fact_xyz(2) = fact_xyz(2) * (2.d0 * a * (r(2) - nucl_coord(i_1s,2)) * e)
fact_xyz(3) = fact_xyz(3) * (2.d0 * a * (r(3) - nucl_coord(i_1s,3)) * e)
enddo
do j = 1, ao_num
do i = 1, ao_num
tmp1 = fact_r * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b (i,j,ipoint)
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint)
grad_1_u_ij_mu(i,j,ipoint,1) = tmp1 * r(1) - fact_r * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) + fact_xyz(1) * tmp2
grad_1_u_ij_mu(i,j,ipoint,2) = tmp1 * r(2) - fact_r * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) + fact_xyz(2) * tmp2
grad_1_u_ij_mu(i,j,ipoint,3) = tmp1 * r(3) - fact_r * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) + fact_xyz(3) * tmp2
grad_1_u_ij_mu(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) + tmp_x * tmp2
grad_1_u_ij_mu(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) + tmp_y * tmp2
grad_1_u_ij_mu(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) + tmp_z * tmp2
enddo
enddo
enddo
@ -59,14 +124,14 @@ BEGIN_PROVIDER [ double precision, grad_1_u_ij_mu, (ao_num, ao_num,n_points_fina
else
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
grad_1_u_ij_mu(i,j,ipoint,1) = v_ij_erf_rk_cst_mu(i,j,ipoint) * r(1) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,1)
grad_1_u_ij_mu(i,j,ipoint,2) = v_ij_erf_rk_cst_mu(i,j,ipoint) * r(2) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,2)
grad_1_u_ij_mu(i,j,ipoint,3) = v_ij_erf_rk_cst_mu(i,j,ipoint) * r(3) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,3)
grad_1_u_ij_mu(i,j,ipoint,1) = v_ij_erf_rk_cst_mu(i,j,ipoint) * x - x_v_ij_erf_rk_cst_mu(i,j,ipoint,1)
grad_1_u_ij_mu(i,j,ipoint,2) = v_ij_erf_rk_cst_mu(i,j,ipoint) * y - x_v_ij_erf_rk_cst_mu(i,j,ipoint,2)
grad_1_u_ij_mu(i,j,ipoint,3) = v_ij_erf_rk_cst_mu(i,j,ipoint) * z - x_v_ij_erf_rk_cst_mu(i,j,ipoint,3)
enddo
enddo
enddo

View File

@ -0,0 +1,135 @@
! ---
!
! \int dr2 [-1 * \grad_r1 u(r1,r2)] \phi_i(r2) \phi_j(r2) x 1s_j1b(r2)
!
BEGIN_PROVIDER [ double precision, num_grad_1_u_ij_mu, (ao_num, ao_num, n_points_final_grid, 3)]
implicit none
integer :: i, j, ipoint, jpoint
double precision :: tmp, r1(3), r2(3)
double precision, external :: ao_value
double precision, external :: j12_nucl
double precision, external :: grad1_x_j12_mu_num, grad1_x_j12_mu_exc
double precision, external :: grad1_y_j12_mu_num, grad1_y_j12_mu_exc
double precision, external :: grad1_z_j12_mu_num, grad1_z_j12_mu_exc
num_grad_1_u_ij_mu = 0.d0
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
tmp = ao_value(i, r2) * ao_value(j, r2) * j12_nucl(r1, r2) * final_weight_at_r_vector(jpoint)
num_grad_1_u_ij_mu(i,j,ipoint,1) += tmp * (-1.d0 * grad1_x_j12_mu_exc(r1, r2))
num_grad_1_u_ij_mu(i,j,ipoint,2) += tmp * (-1.d0 * grad1_y_j12_mu_exc(r1, r2))
num_grad_1_u_ij_mu(i,j,ipoint,3) += tmp * (-1.d0 * grad1_z_j12_mu_exc(r1, r2))
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
double precision function num_grad_1_u_ij_mu_x(i, j, ipoint)
implicit none
integer, intent(in) :: i, j, ipoint
integer :: jpoint
double precision :: tmp, r1(3), r2(3)
double precision, external :: ao_value
double precision, external :: j12_nucl
double precision, external :: grad1_x_j12_mu_num, grad1_x_j12_mu_exc
num_grad_1_u_ij_mu_x = 0.d0
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
tmp = ao_value(i, r2) * ao_value(j, r2) * j12_nucl(r1, r2) * final_weight_at_r_vector(jpoint)
num_grad_1_u_ij_mu_x += tmp * (-1.d0 * grad1_x_j12_mu_exc(r1, r2))
enddo
end function num_grad_1_u_ij_mu_x
! ---
double precision function num_grad_1_u_ij_mu_y(i, j, ipoint)
implicit none
integer, intent(in) :: i, j, ipoint
integer :: jpoint
double precision :: tmp, r1(3), r2(3)
double precision, external :: ao_value
double precision, external :: j12_nucl
double precision, external :: grad1_y_j12_mu_num, grad1_y_j12_mu_exc
num_grad_1_u_ij_mu_y = 0.d0
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
tmp = ao_value(i, r2) * ao_value(j, r2) * j12_nucl(r1, r2) * final_weight_at_r_vector(jpoint)
num_grad_1_u_ij_mu_y += tmp * (-1.d0 * grad1_y_j12_mu_exc(r1, r2))
enddo
end function num_grad_1_u_ij_mu_y
! ---
double precision function num_grad_1_u_ij_mu_z(i, j, ipoint)
implicit none
integer, intent(in) :: i, j, ipoint
integer :: jpoint
double precision :: tmp, r1(3), r2(3)
double precision, external :: ao_value
double precision, external :: j12_nucl
double precision, external :: grad1_z_j12_mu_num, grad1_z_j12_mu_exc
num_grad_1_u_ij_mu_z = 0.d0
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
tmp = ao_value(i, r2) * ao_value(j, r2) * j12_nucl(r1, r2) * final_weight_at_r_vector(jpoint)
num_grad_1_u_ij_mu_z += tmp * (-1.d0 * grad1_z_j12_mu_exc(r1, r2))
enddo
end function num_grad_1_u_ij_mu_z
! ---