10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 01:53:49 +01:00

Merge pull request #28 from QuantumPackage/dev-lct

Dev lct
This commit is contained in:
Anthony Scemama 2019-03-21 00:45:36 +01:00 committed by GitHub
commit b2f93a3d8d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 193 additions and 42 deletions

38
ocaml/.gitignore vendored
View File

@ -1,38 +0,0 @@
_build
element_create_db
element_create_db.byte
ezfio.ml
.gitignore
Git.ml
Input_ao_one_e_ints.ml
Input_ao_two_e_erf_ints.ml
Input_ao_two_e_ints.ml
Input_auto_generated.ml
Input_becke_numerical_grid.ml
Input_champ.ml
Input_davidson.ml
Input_density_for_dft.ml
Input_determinants.ml
Input_dft_keywords.ml
Input_dressing.ml
Input_mo_one_e_ints.ml
Input_mo_two_e_erf_ints.ml
Input_mo_two_e_ints.ml
Input_nuclei.ml
Input_perturbation.ml
Input_pseudo.ml
Input_scf_utils.ml
Input_variance.ml
qp_create_ezfio
qp_create_ezfio.native
qp_edit
qp_edit.ml
qp_edit.native
qp_print_basis
qp_print_basis.native
qp_run
qp_run.native
qp_set_mo_class
qp_set_mo_class.native
qptypes_generator.byte
Qptypes.ml

View File

@ -21,8 +21,9 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_s
endif
if(no_core_density .EQ. "no_core_dm")then
integer :: i,j
do i = 1, n_core_orb
integer :: ii,i,j
do ii = 1, n_core_orb
i = list_core(ii)
do j = 1, mo_num
one_e_dm_mo_alpha_for_dft(j,i,:) = 0.d0
one_e_dm_mo_alpha_for_dft(i,j,:) = 0.d0
@ -55,8 +56,9 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_st
endif
if(no_core_density .EQ. "no_core_dm")then
integer :: i,j
do i = 1, n_core_orb
integer :: ii,i,j
do ii = 1, n_core_orb
i = list_core(ii)
do j = 1, mo_num
one_e_dm_mo_beta_for_dft(j,i,:) = 0.d0
one_e_dm_mo_beta_for_dft(i,j,:) = 0.d0
@ -119,3 +121,65 @@ END_PROVIDER
one_body_dm_mo_beta_one_det(i,i, 1:N_states) = 1.d0
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft_no_core, (mo_num,mo_num, N_states)]
implicit none
BEGIN_DOC
! density matrix for alpha electrons in the MO basis without the core orbitals
END_DOC
one_e_dm_mo_alpha_for_dft_no_core = one_e_dm_mo_alpha_for_dft
integer :: ii,i,j
do ii = 1, n_core_orb
i = list_core(ii)
do j = 1, mo_num
one_e_dm_mo_alpha_for_dft_no_core(j,i,:) = 0.d0
one_e_dm_mo_alpha_for_dft_no_core(i,j,:) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft_no_core, (mo_num,mo_num, N_states)]
implicit none
BEGIN_DOC
! density matrix for beta electrons in the MO basis without the core orbitals
END_DOC
one_e_dm_mo_beta_for_dft_no_core = one_e_dm_mo_beta_for_dft
integer :: ii,i,j
do ii = 1, n_core_orb
i = list_core(ii)
do j = 1, mo_num
one_e_dm_mo_beta_for_dft_no_core(j,i,:) = 0.d0
one_e_dm_mo_beta_for_dft_no_core(i,j,:) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft_no_core, (ao_num,ao_num,N_states) ]
&BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft_no_core, (ao_num,ao_num,N_states) ]
BEGIN_DOC
! one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft_no_core
END_DOC
implicit none
integer :: istate
double precision :: mo_alpha,mo_beta
one_e_dm_alpha_ao_for_dft_no_core = 0.d0
one_e_dm_beta_ao_for_dft_no_core = 0.d0
do istate = 1, N_states
call mo_to_ao_no_overlap( one_e_dm_mo_alpha_for_dft_no_core(1,1,istate), &
size(one_e_dm_mo_alpha_for_dft_no_core,1), &
one_e_dm_alpha_ao_for_dft_no_core(1,1,istate), &
size(one_e_dm_alpha_ao_for_dft_no_core,1) )
call mo_to_ao_no_overlap( one_e_dm_mo_beta_for_dft_no_core(1,1,istate), &
size(one_e_dm_mo_beta_for_dft_no_core,1), &
one_e_dm_beta_ao_for_dft_no_core(1,1,istate), &
size(one_e_dm_beta_ao_for_dft_no_core,1) )
enddo
END_PROVIDER

View File

@ -109,6 +109,90 @@ end
grad_dm_b *= 2.d0
end
subroutine dm_dft_alpha_beta_no_core_at_r(r,dm_a,dm_b)
implicit none
BEGIN_DOC
! input: r(1) ==> r(1) = x, r(2) = y, r(3) = z
! output : dm_a = alpha density evaluated at r(3) without the core orbitals
! output : dm_b = beta density evaluated at r(3) without the core orbitals
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out) :: dm_a(N_states),dm_b(N_states)
integer :: istate
double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v
call give_all_aos_at_r(r,aos_array)
do istate = 1, N_states
aos_array_bis = aos_array
! alpha density
call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_alpha_ao_for_dft_no_core(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1)
dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
! beta density
aos_array_bis = aos_array
call dgemv('N',ao_num,ao_num,1.d0,one_e_dm_beta_ao_for_dft_no_core(1,1,istate),ao_num,aos_array,1,0.d0,aos_array_bis,1)
dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
enddo
end
subroutine dens_grad_a_b_no_core_and_aos_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, aos_array, grad_aos_array)
implicit none
BEGIN_DOC
! input:
!
! * r(1) ==> r(1) = x, r(2) = y, r(3) = z
!
! output:
!
! * dm_a = alpha density evaluated at r without the core orbitals
! * dm_b = beta density evaluated at r without the core orbitals
! * aos_array(i) = ao(i) evaluated at r without the core orbitals
! * grad_dm_a(1) = X gradient of the alpha density evaluated in r without the core orbitals
! * grad_dm_a(1) = X gradient of the beta density evaluated in r without the core orbitals
! * grad_aos_array(1) = X gradient of the aos(i) evaluated at r
!
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out) :: dm_a(N_states),dm_b(N_states)
double precision, intent(out) :: grad_dm_a(3,N_states),grad_dm_b(3,N_states)
double precision, intent(out) :: grad_aos_array(3,ao_num)
integer :: i,j,istate
double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v
double precision :: aos_grad_array(ao_num,3), aos_grad_array_bis(ao_num,3)
call give_all_aos_and_grad_at_r(r,aos_array,grad_aos_array)
do i = 1, ao_num
do j = 1, 3
aos_grad_array(i,j) = grad_aos_array(j,i)
enddo
enddo
do istate = 1, N_states
! alpha density
! aos_array_bis = \rho_ao * aos_array
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft_no_core(1,1,istate),size(one_e_dm_alpha_ao_for_dft_no_core,1),aos_array,1,0.d0,aos_array_bis,1)
dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
grad_dm_a(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
grad_dm_a(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
grad_dm_a(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
! aos_grad_array_bis = \rho_ao * aos_grad_array
! beta density
call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft_no_core(1,1,istate),size(one_e_dm_beta_ao_for_dft_no_core,1),aos_array,1,0.d0,aos_array_bis,1)
dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
grad_dm_b(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
grad_dm_b(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
grad_dm_b(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
! aos_grad_array_bis = \rho_ao * aos_grad_array
enddo
grad_dm_a *= 2.d0
grad_dm_b *= 2.d0
end
BEGIN_PROVIDER [double precision, one_e_dm_alpha_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_dm_beta_in_r, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
implicit none
@ -209,3 +293,44 @@ END_PROVIDER
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_no_core_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_dm_no_core_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ]
BEGIN_DOC
! one_e_dm_no_core_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) without core orbitals
! one_e_dm_no_core_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) without core orbitals
! one_e_dm_no_core_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) without core orbitals
! one_e_dm_no_core_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) without core orbitals
! where r_i is the ith point of the grid and istate is the state number
END_DOC
implicit none
integer :: i,j,k,l,m,istate
double precision :: contrib
double precision :: r(3)
double precision, allocatable :: aos_array(:),grad_aos_array(:,:)
double precision, allocatable :: dm_a(:),dm_b(:), dm_a_grad(:,:), dm_b_grad(:,:)
allocate(dm_a(N_states),dm_b(N_states), dm_a_grad(3,N_states), dm_b_grad(3,N_states))
allocate(aos_array(ao_num),grad_aos_array(3,ao_num))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
!!!! Works also with the ao basis
call dens_grad_a_b_no_core_and_aos_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array)
one_e_dm_no_core_and_grad_alpha_in_r(1,i,istate) = dm_a_grad(1,istate)
one_e_dm_no_core_and_grad_alpha_in_r(2,i,istate) = dm_a_grad(2,istate)
one_e_dm_no_core_and_grad_alpha_in_r(3,i,istate) = dm_a_grad(3,istate)
one_e_dm_no_core_and_grad_alpha_in_r(4,i,istate) = dm_a(istate)
one_e_dm_no_core_and_grad_beta_in_r(1,i,istate) = dm_b_grad(1,istate)
one_e_dm_no_core_and_grad_beta_in_r(2,i,istate) = dm_b_grad(2,istate)
one_e_dm_no_core_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate)
one_e_dm_no_core_and_grad_beta_in_r(4,i,istate) = dm_b(istate)
enddo
enddo
END_PROVIDER