10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-24 03:21:54 +01:00

added casscf_cipsi

This commit is contained in:
eginer 2023-06-18 21:42:40 +02:00
parent 55fed4b487
commit b2e44beb3e
27 changed files with 3448 additions and 0 deletions

View File

@ -0,0 +1,49 @@
#!/usr/bin/env bats
source $QP_ROOT/tests/bats/common.bats.sh
source $QP_ROOT/quantum_package.rc
function run_stoch() {
thresh=$2
test_exe casscf || skip
qp set perturbation do_pt2 True
qp set determinants n_det_max $3
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 4
qp run casscf | tee casscf.out
energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
eq $energy1 $1 $thresh
}
@test "F2" { # 18.0198s
rm -rf f2_casscf
qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf
qp set_file f2_casscf
qp run scf
qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]"
run_stoch -198.773366970 1.e-4 100000
}
@test "N2" { # 18.0198s
rm -rf n2_casscf
qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf
qp set_file n2_casscf
qp run scf
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
run_stoch -109.0961643162 1.e-4 100000
}
@test "N2_stretched" {
rm -rf n2_stretched_casscf
qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf
qp set_file n2_stretched_casscf
qp run scf | tee scf.out
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
qp set electrons elec_alpha_num 7
qp set electrons elec_beta_num 7
run_stoch -108.7860471300 1.e-4 100000
#
}

View File

@ -0,0 +1,75 @@
[energy]
type: double precision
doc: Calculated Selected |FCI| energy
interface: ezfio
size: (determinants.n_states)
[energy_pt2]
type: double precision
doc: Calculated |FCI| energy + |PT2|
interface: ezfio
size: (determinants.n_states)
[state_following_casscf]
type: logical
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
interface: ezfio,provider,ocaml
default: False
[diag_hess_cas]
type: logical
doc: If |true|, only the DIAGONAL part of the hessian is retained for the CASSCF
interface: ezfio,provider,ocaml
default: False
[hess_cv_cv]
type: logical
doc: If |true|, the core-virtual - core-virtual part of the hessian is computed
interface: ezfio,provider,ocaml
default: True
[level_shift_casscf]
type: Positive_float
doc: Energy shift on the virtual MOs to improve SCF convergence
interface: ezfio,provider,ocaml
default: 0.005
[fast_2rdm]
type: logical
doc: If true, the two-rdm are computed with a fast algo
interface: ezfio,provider,ocaml
default: True
[criterion_casscf]
type: character*(32)
doc: choice of the criterion for the convergence of the casscf: can be energy or gradients or e_pt2
interface: ezfio, provider, ocaml
default: e_pt2
[thresh_casscf]
type: Threshold
doc: Threshold on the convergence of the CASCF energy.
interface: ezfio,provider,ocaml
default: 1.e-06
[pt2_min_casscf]
type: Threshold
doc: Minimum value of the pt2_max parameter for the CIPSI in the CASSCF iterations.
interface: ezfio,provider,ocaml
default: 1.e-04
[n_big_act_orb]
type: integer
doc: Number of active orbitals from which the active space is considered as large, and therefore pt2_min_casscf is activated.
interface: ezfio,provider,ocaml
default: 16
[adaptive_pt2_max]
type: logical
doc: If |true|, the pt2_max value in the CIPSI iterations will automatically adapt, otherwise it is fixed at the value given in the EZFIO folder
interface: ezfio,provider,ocaml
default: True

5
src/casscf_cipsi/NEED Normal file
View File

@ -0,0 +1,5 @@
cipsi
selectors_full
generators_cas
two_body_rdm
dav_general_mat

View File

@ -0,0 +1,5 @@
======
casscf
======
|CASSCF| program with the CIPSI algorithm.

View File

@ -0,0 +1,6 @@
! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard]
! bavard=.true.
bavard=.false.
END_PROVIDER

View File

@ -0,0 +1,155 @@
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
real*8 :: mo_two_e_integral
bielec_PQxx(:,:,:,:) = 0.d0
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,ii,j,jj,i3,j3) &
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, &
!$OMP n_act_orb,mo_integrals_map,list_act)
!$OMP DO
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do j=i,n_core_inact_orb
jj=list_core_inact(j)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map)
bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j)
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map)
bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3)
end do
end do
!$OMP END DO
!$OMP DO
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_inact_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map)
bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3)
end do
end do
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
BEGIN_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
PROVIDE mo_two_e_integrals_in_map
bielec_PxxQ = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) &
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, &
!$OMP n_act_orb,mo_integrals_map,list_act)
allocate(integrals_array(mo_num,mo_num))
!$OMP DO
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do j=i,n_core_inact_orb
jj=list_core_inact(j)
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
end do
end do
end do
end do
!$OMP END DO
! (ip|qj)
!$OMP DO
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_inact_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
end do
end do
end do
end do
!$OMP END DO
deallocate(integrals_array)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, external :: mo_two_e_integral
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,p,t,u,v) &
!$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI)
do p=1,mo_num
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
do i=1,n_act_orb
t=list_act(i)
bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p)
end do
end do
end do
end do
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -0,0 +1,369 @@
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
BEGIN_DOC
! integral (pq|xx) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
d(n_act_orb,mo_num,n_core_inact_act_orb))
!$OMP DO
do l=1,n_core_inact_act_orb
bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l)
do k=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
end do
end do
do j=1,mo_num
do p=1,n_act_orb
f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, n_act_orb, &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
do j=1,mo_num
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate (f,d)
allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb))
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l)
end do
end do
end do
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
f, mo_num*mo_num, &
natorbsCI, n_act_orb, &
0.d0, &
d, mo_num*mo_num)
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p)
end do
end do
end do
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
f, mo_num*mo_num, &
natorbsCI, n_act_orb, &
0.d0, &
d, mo_num*mo_num)
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
deallocate (f,d)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
BEGIN_DOC
! integral (px|xq) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), &
d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb))
!$OMP DO
do j=1,mo_num
bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j)
do l=1,n_core_inact_act_orb
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do l=1,n_core_inact_act_orb
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate (f,d)
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
d(n_act_orb,mo_num,n_core_inact_act_orb))
!$OMP DO
do k=1,mo_num
do l=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do l=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate(f,d)
allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), &
d(mo_num,n_core_inact_act_orb,n_act_orb) )
!$OMP DO
do k=1,mo_num
do p=1,n_act_orb
do l=1,n_core_inact_act_orb
do j=1,mo_num
f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)
end do
end do
end do
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
f, mo_num*n_core_inact_act_orb, &
natorbsCI, size(natorbsCI,1), &
0.d0, &
d, mo_num*n_core_inact_act_orb)
do p=1,n_act_orb
do l=1,n_core_inact_act_orb
do j=1,mo_num
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,n_core_inact_act_orb
do j=1,mo_num
f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)
end do
end do
end do
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
f, mo_num*n_core_inact_act_orb, &
natorbsCI, size(natorbsCI,1), &
0.d0, &
d, mo_num*n_core_inact_act_orb)
do p=1,n_act_orb
do k=1,n_core_inact_act_orb
do j=1,mo_num
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate(f,d)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! integrals (tu|vp) in the basis of natural MOs
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
allocate (f(n_act_orb,n_act_orb,mo_num), &
d(n_act_orb,n_act_orb,mo_num))
!$OMP DO
do l=1,mo_num
bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l)
do k=1,n_act_orb
do j=1,n_act_orb
do p=1,n_act_orb
f(p,j,k)=bielecCI_no(p,j,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_act_orb
do j=1,n_act_orb
do p=1,n_act_orb
bielecCI_no(p,j,k,l)=d(p,j,k)
end do
end do
do j=1,n_act_orb
do p=1,n_act_orb
f(p,j,k)=bielecCI_no(j,p,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
natorbsCI, n_act_orb, &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_act_orb
do p=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,p,k,l)=d(p,j,k)
end do
end do
end do
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
f(j,k,p)=bielecCI_no(j,k,p,l)
end do
end do
end do
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
f, n_act_orb*n_act_orb, &
natorbsCI, n_act_orb, &
0.d0, &
d, n_act_orb*n_act_orb)
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,k,p,l)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
!$OMP DO
do l=1,n_act_orb
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
f(j,k,p)=bielecCI_no(j,k,l,list_act(p))
end do
end do
end do
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
f, n_act_orb*n_act_orb, &
natorbsCI, n_act_orb, &
0.d0, &
d, n_act_orb*n_act_orb)
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
deallocate(d,f)
!$OMP END PARALLEL
END_PROVIDER

View File

@ -0,0 +1,110 @@
program casscf
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
call reorder_orbitals_for_casscf
! no_vvvv_integrals = .True.
! touch no_vvvv_integrals
n_det_max_full = 500
touch n_det_max_full
pt2_relative_error = 0.04
touch pt2_relative_error
! call run_stochastic_cipsi
call run
end
subroutine run
implicit none
double precision :: energy_old, energy, pt2_max_before, ept2_before,delta_E
logical :: converged,state_following_casscf_save
integer :: iteration
converged = .False.
energy = 0.d0
mo_label = "MCSCF"
iteration = 1
state_following_casscf_save = state_following_casscf
state_following_casscf = .True.
touch state_following_casscf
ept2_before = 0.d0
if(adaptive_pt2_max)then
pt2_max = 0.005
SOFT_TOUCH pt2_max
endif
do while (.not.converged)
print*,'pt2_max = ',pt2_max
call run_stochastic_cipsi
energy_old = energy
energy = eone+etwo+ecore
pt2_max_before = pt2_max
call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration = ')
call write_double(6,energy,'CAS-SCF energy = ')
if(n_states == 1)then
double precision :: E_PT2, PT2
call ezfio_get_casscf_energy_pt2(E_PT2)
call ezfio_get_casscf_energy(PT2)
PT2 -= E_PT2
call write_double(6,E_PT2,'E + PT2 energy = ')
call write_double(6,PT2,' PT2 = ')
call write_double(6,pt2_max,' PT2_MAX = ')
endif
print*,''
call write_double(6,norm_grad_vec2,'Norm of gradients = ')
call write_double(6,norm_grad_vec2_tab(1), ' Core-active gradients = ')
call write_double(6,norm_grad_vec2_tab(2), ' Core-virtual gradients = ')
call write_double(6,norm_grad_vec2_tab(3), ' Active-virtual gradients = ')
print*,''
call write_double(6,energy_improvement, 'Predicted energy improvement = ')
if(criterion_casscf == "energy")then
converged = dabs(energy_improvement) < thresh_scf
else if (criterion_casscf == "gradients")then
converged = norm_grad_vec2 < thresh_scf
else if (criterion_casscf == "e_pt2")then
delta_E = dabs(E_PT2 - ept2_before)
converged = dabs(delta_E) < thresh_casscf
endif
ept2_before = E_PT2
if(adaptive_pt2_max)then
pt2_max = dabs(energy_improvement / (pt2_relative_error))
pt2_max = min(pt2_max, pt2_max_before)
if(n_act_orb.ge.n_big_act_orb)then
pt2_max = max(pt2_max,pt2_min_casscf)
endif
endif
print*,''
call write_double(6,pt2_max, 'PT2_MAX for next iteration = ')
mo_coef = NewOrbs
mo_occ = occnum
call save_mos
if(.not.converged)then
iteration += 1
if(norm_grad_vec2.gt.0.01d0)then
N_det = N_states
else
N_det = max(N_det/8 ,N_states)
endif
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
read_wf = .True.
call clear_mo_map
SOFT_TOUCH mo_coef N_det psi_det psi_coef
if(adaptive_pt2_max)then
SOFT_TOUCH pt2_max
endif
if(iteration .gt. 3)then
state_following_casscf = state_following_casscf_save
soft_touch state_following_casscf
endif
endif
enddo
end

View File

@ -0,0 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the CAS case, all those are always false except do_only_cas
END_DOC
do_only_cas = .True.
do_only_1h1p = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -0,0 +1,45 @@
subroutine davidson_diag_sx_mat(N_st, u_in, energies)
implicit none
integer, intent(in) :: N_st
double precision, intent(out) :: u_in(nMonoEx+1,n_states_diag), energies(N_st)
integer :: i,j,N_st_tmp, dim_in, sze, N_st_diag_in
integer, allocatable :: list_guess(:)
double precision, allocatable :: H_jj(:)
logical :: converged
N_st_diag_in = n_states_diag
provide SXmatrix
sze = nMonoEx+1
dim_in = sze
allocate(H_jj(sze), list_guess(sze))
H_jj(1) = 0.d0
N_st_tmp = 1
list_guess(1) = 1
do j = 2, nMonoEx+1
H_jj(j) = SXmatrix(j,j)
if(H_jj(j).lt.0.d0)then
list_guess(N_st_tmp) = j
N_st_tmp += 1
endif
enddo
if(N_st_tmp .ne. N_st)then
print*,'Pb in davidson_diag_sx_mat'
print*,'N_st_tmp .ne. N_st'
print*,N_st_tmp, N_st
stop
endif
print*,'Number of possibly interesting states = ',N_st
print*,'Corresponding diagonal elements of the SX matrix '
u_in = 0.d0
do i = 1, min(N_st, N_st_diag_in)
! do i = 1, N_st
j = list_guess(i)
print*,'i,j',i,j
print*,'SX(i,i) = ',H_jj(j)
u_in(j,i) = 1.d0
enddo
call davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,SXmatrix)
print*,'energies = ',energies
end

View File

@ -0,0 +1,67 @@
use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
implicit none
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs.
! matrix is state averaged.
END_DOC
integer :: t,u
do u=1,n_act_orb
do t=1,n_act_orb
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
! The values are state averaged
!
! We use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
END_DOC
implicit none
integer :: t,u,v,x
integer :: tt,uu,vv,xx
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
if (bavard) then
write(6,*) ' providing the 2 body RDM on the active part'
endif
P0tuvx= 0.d0
if(fast_2rdm)then
do istate=1,N_states
do x = 1, n_act_orb
do v = 1, n_act_orb
do u = 1, n_act_orb
do t = 1, n_act_orb
! 1 1 2 2 1 2 1 2
P0tuvx(t,u,v,x) = 0.5d0 * state_av_act_2_rdm_spin_trace_mo(t,v,u,x)
enddo
enddo
enddo
enddo
enddo
else
P0tuvx = P0tuvx_peter
endif
END_PROVIDER

View File

@ -0,0 +1,150 @@
use bitmasks
BEGIN_PROVIDER [real*8, P0tuvx_peter, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! the second-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
END_DOC
implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
if (bavard) then
write(6,*) ' providing density matrix P0'
endif
P0tuvx_peter = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb
ipart=list_act(t)
do u=1,n_act_orb
ihole=list_act(u)
! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx_peter(t,v,v,u)-=term
end do
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
do v=1,n_act_orb
P0tuvx_peter(t,v,v,u)-=term
end do
end do
end if
end do
end do
end do
! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do v=1,n_act_orb
ipart=list_act(v)
do x=1,n_act_orb
ihole=list_act(x)
! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then
do istate=1,n_states
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
*phase11*phase1
end do
end if
if (nu12.ne.-1) then
do istate=1,n_states
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
*phase12*phase1
end do
end if
end do
end do
end if
! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then
do istate=1,n_states
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
*phase21*phase2
end do
end if
if (nu22.ne.-1) then
do istate=1,n_states
P0tuvx_peter(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
*phase22*phase2
end do
end if
end do
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
do u=1,n_act_orb
do t=1,n_act_orb
P0tuvx_peter(t,u,v,x)*=0.5D0/dble(N_states)
end do
end do
end do
end do
END_PROVIDER

View File

@ -0,0 +1,125 @@
use bitmasks
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr)
BEGIN_DOC
! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants
END_DOC
implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:)
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
real*8 :: phase
logical :: found
allocate(keytmp(N_int,2))
nu=-1
phase=1.D0
ierr=0
call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then
! excitation is possible
! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list
found=.false.
nu=0
!TODO BOTTLENECK
do while (.not.found)
nu+=1
if (nu.gt.N_det) then
! the determinant is possible, but not in the list
found=.true.
nu=-1
else
call det_extract(keytmp,nu,N_int)
integer :: i,ii
found=.true.
do ii=1,2
do i=1,N_int
if (keytmp(i,ii).ne.key2(i,ii)) then
found=.false.
end if
end do
end do
end if
end do
end if
!
! we found the new string, the phase, and possibly the number in the list
!
end subroutine do_signed_mono_excitation
subroutine det_extract(key,nu,Nint)
BEGIN_DOC
! extract a determinant from the list of determinants
END_DOC
implicit none
integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2)
do ispin=1,2
do i=1,Nint
key(i,ispin)=psi_det(i,ispin,nu)
end do
end do
end subroutine det_extract
subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC
! copy a determinant from key1 to key2
END_DOC
implicit none
integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
do ispin=1,2
do i=1,Nint
key2(i,ispin)=key1(i,ispin)
end do
end do
end subroutine det_copy
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result
!
END_DOC
implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2)
integer :: ihole,ipart,ierr,jerr,nu1,nu2
integer :: ispin
real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int)
! spin alpha
ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int)
! end if
! spin beta
ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int)
! end if
end subroutine do_spinfree_mono_excitation

View File

@ -0,0 +1,3 @@
subroutine driver_optorb
implicit none
end

View File

@ -0,0 +1,51 @@
program print_2rdm
implicit none
BEGIN_DOC
! get the active part of the bielectronic energy on a given wave function.
!
! useful to test the active part of the spin trace 2 rdms
END_DOC
!no_vvvv_integrals = .True.
read_wf = .True.
!touch read_wf no_vvvv_integrals
!call routine
!call routine_bis
call print_grad
end
subroutine print_grad
implicit none
integer :: i
do i = 1, nMonoEx
if(dabs(gradvec2(i)).gt.1.d-5)then
print*,''
print*,i,gradvec2(i),excit(:,i)
endif
enddo
end
subroutine routine
integer :: i,j,k,l
integer :: ii,jj,kk,ll
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
thr = 1.d-10
accu = 0.d0
do ll = 1, n_act_orb
l = list_act(ll)
do kk = 1, n_act_orb
k = list_act(kk)
do jj = 1, n_act_orb
j = list_act(jj)
do ii = 1, n_act_orb
i = list_act(ii)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
accu(1) += state_av_act_2_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu(1)
end

View File

@ -0,0 +1,74 @@
BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
call calc_grad_elem(ihole,ipart,res)
gradvec_old(indx)=res
end do
real*8 :: norm_grad
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec_old(indx)*gradvec_old(indx)
end do
norm_grad=sqrt(norm_grad)
if (bavard) then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
endif
END_PROVIDER
subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC
implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_psi_array(N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res=0.D0
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do
end if
end do
end do
! state-averaged gradient
res*=2.D0/dble(N_states)
end subroutine calc_grad_elem

View File

@ -0,0 +1,215 @@
use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, n_c_a_prov]
&BEGIN_PROVIDER [integer, n_c_v_prov]
&BEGIN_PROVIDER [integer, n_a_v_prov]
implicit none
n_c_a_prov = n_core_inact_orb * n_act_orb
n_c_v_prov = n_core_inact_orb * n_virt_orb
n_a_v_prov = n_act_orb * n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
indx=0
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
indx_tmp += 1
list_idx_c_a(1,indx_tmp) = indx
list_idx_c_a(2,indx_tmp) = ii
list_idx_c_a(3,indx_tmp) = tt
mat_idx_c_a(ii,tt) = indx
end do
end do
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
indx_tmp += 1
list_idx_c_v(1,indx_tmp) = indx
list_idx_c_v(2,indx_tmp) = ii
list_idx_c_v(3,indx_tmp) = aa
mat_idx_c_v(ii,aa) = indx
end do
end do
indx_tmp = 0
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
indx_tmp += 1
list_idx_a_v(1,indx_tmp) = indx
list_idx_a_v(2,indx_tmp) = tt
list_idx_a_v(3,indx_tmp) = aa
mat_idx_a_v(tt,aa) = indx
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
&BEGIN_PROVIDER [real*8, norm_grad_vec2]
&BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
indx=0
norm_grad_vec2_tab = 0.d0
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx)
end do
end do
do i=1,n_core_inact_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx)
end do
end do
norm_grad_vec2=0.d0
do indx=1,nMonoEx
norm_grad_vec2+=gradvec2(indx)*gradvec2(indx)
end do
do i = 1, 3
norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i))
enddo
norm_grad_vec2=sqrt(norm_grad_vec2)
if(bavard)then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2
write(6,*)
endif
END_PROVIDER
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core/inactive -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
ii=list_core_inact(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb ! active
vv=list_act(v)
do x=1,n_act_orb ! active
x3=x+n_core_inact_orb ! list_act(x)
do y=1,n_act_orb ! active
y3=y+n_core_inact_orb ! list_act(y)
! Gamma(2) a a a a 1/r12 i a a a
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core/inactive -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core_inact(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta

View File

@ -0,0 +1,539 @@
use bitmasks
real*8 function hessmat_itju(i,t,j,u)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, core/inactive -> active
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
!
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2
ii=list_core_inact(i)
tt=list_act(t)
if (i.eq.j) then
if (t.eq.u) then
! diagonal element
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
-bielec_pqxx_no(tt,tt,i,i))
term-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
else
! it/iu, t != u
uu=list_act(u)
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=occnum(tt)*Fipq(uu,tt)
term-=(occnum(tt)+occnum(uu)) &
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
do v=1,n_act_orb
vv=list_act(v)
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
end do
end do
end do
end if
else
! it/ju
jj=list_core_inact(j)
uu=list_act(u)
if (t.eq.u) then
term=occnum(tt)*Fipq(ii,jj)
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
else
term=0.D0
end if
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=(occnum(tt)+occnum(uu))* &
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(uu,tt,i,j))
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,j,xx))
end do
end do
end if
term*=2.D0
hessmat_itju=term
end function hessmat_itju
real*8 function hessmat_itja(i,t,j,a)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
END_DOC
implicit none
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term
! it/ja
ii=list_core_inact(i)
tt=list_act(t)
jj=list_core_inact(j)
aa=list_virt(a)
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
if (i.eq.j) then
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
end if
term*=2.D0
hessmat_itja=term
end function hessmat_itja
real*8 function hessmat_itua(i,t,u,a)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, active -> virtual
END_DOC
implicit none
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term
ii=list_core_inact(i)
tt=list_act(t)
t3=t+n_core_inact_orb
uu=list_act(u)
u3=u+n_core_inact_orb
aa=list_virt(a)
if (t.eq.u) then
term=-occnum(tt)*Fipq(aa,ii)
else
term=0.D0
end if
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
+bielec_pxxq_no(aa,t3,u3,ii))
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
integer :: x3
xx=list_act(x)
x3=x+n_core_inact_orb
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
*bielec_pqxx_no(aa,xx,v3,i))
end do
end do
if (t.eq.u) then
term+=Fipq(aa,ii)+Fapq(aa,ii)
end if
term*=2.D0
hessmat_itua=term
end function hessmat_itua
real*8 function hessmat_iajb(i,a,j,b)
BEGIN_DOC
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
END_DOC
implicit none
integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term
ii=list_core_inact(i)
aa=list_virt(a)
if (i.eq.j) then
if (a.eq.b) then
! ia/ia
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
else
bb=list_virt(b)
! ia/ib
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
end if
else
! ia/jb
jj=list_core_inact(j)
bb=list_virt(b)
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
-bielec_pxxq_no(aa,j,i,bb))
if (a.eq.b) then
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
end if
end if
term*=2.D0
hessmat_iajb=term
end function hessmat_iajb
real*8 function hessmat_iatb(i,a,t,b)
BEGIN_DOC
! the orbital hessian for core/inactive -> virtual, active -> virtual
END_DOC
implicit none
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term
ii=list_core_inact(i)
aa=list_virt(a)
tt=list_act(t)
bb=list_virt(b)
t3=t+n_core_inact_orb
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
-bielec_pqxx_no(aa,bb,i,t3))
if (a.eq.b) then
term-=Fipq(tt,ii)+Fapq(tt,ii)
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
end do
end do
end do
end if
term*=2.D0
hessmat_iatb=term
end function hessmat_iatb
real*8 function hessmat_taub(t,a,u,b)
BEGIN_DOC
! the orbital hessian for act->virt,act->virt
END_DOC
implicit none
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
integer :: v3,x3
real*8 :: term,t1,t2,t3
tt=list_act(t)
aa=list_virt(a)
if (t == u) then
if (a == b) then
! ta/ta
t1=occnum(tt)*Fipq(aa,aa)
t2=0.D0
t3=0.D0
t1-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(aa,x3,v3,aa))
do y=1,n_act_orb
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
term=t1+t2+t3
else
bb=list_virt(b)
! ta/tb b/=a
term=occnum(tt)*Fipq(aa,bb)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
end if
else
! ta/ub t/=u
uu=list_act(u)
bb=list_virt(b)
term=0.D0
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
if (a.eq.b) then
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
do v=1,n_act_orb
do y=1,n_act_orb
do x=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
end do
end do
end do
end if
end if
term*=2.D0
hessmat_taub=term
end function hessmat_taub
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
BEGIN_DOC
! the diagonal of the Hessian, needed for the Davidson procedure
END_DOC
implicit none
integer :: i,t,a,indx,indx_shift
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
!$OMP PRIVATE(i,indx,t,a,indx_shift)
!$OMP DO
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx = t + (i-1)*n_act_orb
hessdiag(indx)=hessmat_itju(i,t,i,t)
end do
end do
!$OMP END DO NOWAIT
indx_shift = n_core_inact_orb*n_act_orb
!$OMP DO
do a=1,n_virt_orb
do i=1,n_core_inact_orb
indx = a + (i-1)*n_virt_orb + indx_shift
hessdiag(indx)=hessmat_iajb(i,a,i,a)
end do
end do
!$OMP END DO NOWAIT
indx_shift += n_core_inact_orb*n_virt_orb
!$OMP DO
do a=1,n_virt_orb
do t=1,n_act_orb
indx = a + (t-1)*n_virt_orb + indx_shift
hessdiag(indx)=hessmat_taub(t,a,t,a)
end do
end do
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [double precision, hessmat, (nMonoEx,nMonoEx)]
implicit none
integer :: i,j,t,u,a,b
integer :: indx,indx_tmp, jndx, jndx_tmp
integer :: ustart,bstart
real*8 :: hessmat_itju
real*8 :: hessmat_itja
real*8 :: hessmat_itua
real*8 :: hessmat_iajb
real*8 :: hessmat_iatb
real*8 :: hessmat_taub
! c-a c-v a-v
! c-a | X X X
! c-v | X X
! a-v | X
provide mo_two_e_integrals_in_map
hessmat = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_c_a_prov,list_idx_c_a,n_core_inact_orb,n_act_orb,mat_idx_c_a) &
!$OMP PRIVATE(indx_tmp,indx,i,t,j,u,ustart,jndx)
!$OMP DO
!!!! < Core-active| H |Core-active >
! Core-active excitations
do indx_tmp = 1, n_c_a_prov
indx = list_idx_c_a(1,indx_tmp)
i = list_idx_c_a(2,indx_tmp)
t = list_idx_c_a(3,indx_tmp)
! Core-active excitations
do j = 1, n_core_inact_orb
if (i.eq.j) then
ustart=t
else
ustart=1
end if
do u=ustart,n_act_orb
jndx = mat_idx_c_a(j,u)
hessmat(jndx,indx) = hessmat_itju(i,t,j,u)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_c_a_prov,n_c_v_prov,list_idx_c_a,list_idx_c_v) &
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,j,a,jndx)
!$OMP DO
!!!! < Core-active| H |Core-VIRTUAL >
! Core-active excitations
do indx_tmp = 1, n_c_a_prov
indx = list_idx_c_a(1,indx_tmp)
i = list_idx_c_a(2,indx_tmp)
t = list_idx_c_a(3,indx_tmp)
! Core-VIRTUAL excitations
do jndx_tmp = 1, n_c_v_prov
jndx = list_idx_c_v(1,jndx_tmp)
j = list_idx_c_v(2,jndx_tmp)
a = list_idx_c_v(3,jndx_tmp)
hessmat(jndx,indx) = hessmat_itja(i,t,j,a)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_c_a_prov,n_a_v_prov,list_idx_c_a,list_idx_a_v) &
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,u,a,jndx)
!$OMP DO
!!!! < Core-active| H |ACTIVE-VIRTUAL >
! Core-active excitations
do indx_tmp = 1, n_c_a_prov
indx = list_idx_c_a(1,indx_tmp)
i = list_idx_c_a(2,indx_tmp)
t = list_idx_c_a(3,indx_tmp)
! ACTIVE-VIRTUAL excitations
do jndx_tmp = 1, n_a_v_prov
jndx = list_idx_a_v(1,jndx_tmp)
u = list_idx_a_v(2,jndx_tmp)
a = list_idx_a_v(3,jndx_tmp)
hessmat(jndx,indx) = hessmat_itua(i,t,u,a)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
if(hess_cv_cv)then
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_c_v_prov,list_idx_c_v,n_core_inact_orb,n_virt_orb,mat_idx_c_v) &
!$OMP PRIVATE(indx_tmp,indx,i,a,j,b,bstart,jndx)
!$OMP DO
!!!!! < Core-VIRTUAL | H |Core-VIRTUAL >
! Core-VIRTUAL excitations
do indx_tmp = 1, n_c_v_prov
indx = list_idx_c_v(1,indx_tmp)
i = list_idx_c_v(2,indx_tmp)
a = list_idx_c_v(3,indx_tmp)
! Core-VIRTUAL excitations
do j = 1, n_core_inact_orb
if (i.eq.j) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
jndx = mat_idx_c_v(j,b)
hessmat(jndx,indx) = hessmat_iajb(i,a,j,b)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
endif
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_c_v_prov,n_a_v_prov,list_idx_c_v,list_idx_a_v) &
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,a,t,b,jndx)
!$OMP DO
!!!! < Core-VIRTUAL | H |Active-VIRTUAL >
! Core-VIRTUAL excitations
do indx_tmp = 1, n_c_v_prov
indx = list_idx_c_v(1,indx_tmp)
i = list_idx_c_v(2,indx_tmp)
a = list_idx_c_v(3,indx_tmp)
! Active-VIRTUAL excitations
do jndx_tmp = 1, n_a_v_prov
jndx = list_idx_a_v(1,jndx_tmp)
t = list_idx_a_v(2,jndx_tmp)
b = list_idx_a_v(3,jndx_tmp)
hessmat(jndx,indx) = hessmat_iatb(i,a,t,b)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat,n_a_v_prov,list_idx_a_v,n_act_orb,n_virt_orb,mat_idx_a_v) &
!$OMP PRIVATE(indx_tmp,indx,t,a,u,b,bstart,jndx)
!$OMP DO
!!!! < Active-VIRTUAL | H |Active-VIRTUAL >
! Active-VIRTUAL excitations
do indx_tmp = 1, n_a_v_prov
indx = list_idx_a_v(1,indx_tmp)
t = list_idx_a_v(2,indx_tmp)
a = list_idx_a_v(3,indx_tmp)
! Active-VIRTUAL excitations
do u=t,n_act_orb
if (t.eq.u) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
jndx = mat_idx_a_v(u,b)
hessmat(jndx,indx) = hessmat_taub(t,a,u,b)
hessmat(indx,jndx) = hessmat(jndx,indx)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL
END_PROVIDER

View File

@ -0,0 +1,310 @@
use bitmasks
BEGIN_PROVIDER [real*8, hessmat_old, (nMonoEx,nMonoEx)]
BEGIN_DOC
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
! determinant per determinant, as for the gradient
!
! we assume that we have natural active orbitals
END_DOC
implicit none
integer :: indx,ihole,ipart
integer :: jndx,jhole,jpart
character*3 :: iexc,jexc
real*8 :: res
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat_old '
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx
do jndx=1,nMonoEx
hessmat_old(indx,jndx)=0.D0
end do
end do
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
iexc=excit_class(indx)
do jndx=indx,nMonoEx
jhole=excit(1,jndx)
jpart=excit(2,jndx)
jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
hessmat_old(indx,jndx)=res
hessmat_old(jndx,indx)=res
end do
end do
END_PROVIDER
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
BEGIN_DOC
! eq 19 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
! average over all states is performed.
! no transition between states.
END_DOC
implicit none
integer :: ihole,ipart,ispin,mu,istate
integer :: jhole,jpart,jspin
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:)
integer(bit_kind), allocatable :: det_nu(:,:)
integer(bit_kind), allocatable :: det_mu_pq(:,:)
integer(bit_kind), allocatable :: det_mu_rs(:,:)
integer(bit_kind), allocatable :: det_nu_rs(:,:)
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
real*8 :: i_H_j_element
allocate(det_mu(N_int,2))
allocate(det_nu(N_int,2))
allocate(det_mu_pq(N_int,2))
allocate(det_mu_rs(N_int,2))
allocate(det_nu_rs(N_int,2))
allocate(det_mu_pqrs(N_int,2))
allocate(det_mu_rspq(N_int,2))
integer :: mu_pq_possible
integer :: mu_rs_possible
integer :: nu_rs_possible
integer :: mu_pqrs_possible
integer :: mu_rspq_possible
res=0.D0
! the terms <0|E E H |0>
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation pq on it
call det_copy(det_mu,det_mu_pq,N_int)
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
,ihole,ipart,ispin,phase,mu_pq_possible)
if (mu_pq_possible.eq.1) then
! possible, but not necessarily in the list
! do the second excitation
do jspin=1,2
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
! try the de-excitation with opposite sign
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
phase2=-phase2
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
end do
end if
! exchange the notion of pq and rs
! do the monoexcitation rs on the initial determinant
call det_copy(det_mu,det_mu_rs,N_int)
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
,jhole,jpart,ispin,phase2,mu_rs_possible)
if (mu_rs_possible.eq.1) then
! do the second excitation
do jspin=1,2
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ihole,ipart,jspin,phase3,mu_rspq_possible)
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
! we may try the de-excitation, with opposite sign
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ipart,ihole,jspin,phase3,mu_rspq_possible)
phase3=-phase3
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
end do
end if
!
! the operator E H E, we have to do a double loop over the determinants
! we still have the determinant mu_pq and the phase in memory
if (mu_pq_possible.eq.1) then
do nu=1,N_det
call det_extract(det_nu,nu,N_int)
do jspin=1,2
call det_copy(det_nu,det_nu_rs,N_int)
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
,jhole,jpart,jspin,phase2,nu_rs_possible)
! excitation possible ?
if (nu_rs_possible.eq.1) then
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
do istate=1,N_states
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
*psi_coef(nu,istate)*phase*phase2
end do
end if
end do
end do
end if
end do
end do
! state-averaged Hessian
res*=1.D0/dble(N_states)
end subroutine calc_hess_elem
BEGIN_PROVIDER [real*8, hessmat_peter, (nMonoEx,nMonoEx)]
BEGIN_DOC
! explicit hessian matrix from density matrices and integrals
! of course, this will be used for a direct Davidson procedure later
! we will not store the matrix in real life
! formulas are broken down as functions for the 6 classes of matrix elements
!
END_DOC
implicit none
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
real*8 :: hessmat_itju
real*8 :: hessmat_itja
real*8 :: hessmat_itua
real*8 :: hessmat_iajb
real*8 :: hessmat_iatb
real*8 :: hessmat_taub
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat_peter '
write(6,*) ' nMonoEx = ',nMonoEx
endif
provide mo_two_e_integrals_in_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat_peter,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
!$OMP DO
! (DOUBLY OCCUPIED ---> ACT )
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx = t + (i-1)*n_act_orb
jndx=indx
! (DOUBLY OCCUPIED ---> ACT )
do j=i,n_core_inact_orb
if (i.eq.j) then
ustart=t
else
ustart=1
end if
do u=ustart,n_act_orb
hessmat_peter(jndx,indx)=hessmat_itju(i,t,j,u)
jndx+=1
end do
end do
! (DOUBLY OCCUPIED ---> VIRTUAL)
do j=1,n_core_inact_orb
do a=1,n_virt_orb
hessmat_peter(jndx,indx)=hessmat_itja(i,t,j,a)
jndx+=1
end do
end do
! (ACTIVE ---> VIRTUAL)
do u=1,n_act_orb
do a=1,n_virt_orb
hessmat_peter(jndx,indx)=hessmat_itua(i,t,u,a)
jndx+=1
end do
end do
end do
end do
!$OMP END DO NOWAIT
indx_shift = n_core_inact_orb*n_act_orb
!$OMP DO
! (DOUBLY OCCUPIED ---> VIRTUAL)
do a=1,n_virt_orb
do i=1,n_core_inact_orb
indx = a + (i-1)*n_virt_orb + indx_shift
jndx=indx
! (DOUBLY OCCUPIED ---> VIRTUAL)
do j=i,n_core_inact_orb
if (i.eq.j) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat_peter(jndx,indx)=hessmat_iajb(i,a,j,b)
jndx+=1
end do
end do
! (ACT ---> VIRTUAL)
do t=1,n_act_orb
do b=1,n_virt_orb
hessmat_peter(jndx,indx)=hessmat_iatb(i,a,t,b)
jndx+=1
end do
end do
end do
end do
!$OMP END DO NOWAIT
indx_shift += n_core_inact_orb*n_virt_orb
!$OMP DO
! (ACT ---> VIRTUAL)
do a=1,n_virt_orb
do t=1,n_act_orb
indx = a + (t-1)*n_virt_orb + indx_shift
jndx=indx
! (ACT ---> VIRTUAL)
do u=t,n_act_orb
if (t.eq.u) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat_peter(jndx,indx)=hessmat_taub(t,a,u,b)
jndx+=1
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
do jndx=1,nMonoEx
do indx=1,jndx-1
hessmat_peter(indx,jndx) = hessmat_peter(jndx,indx)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,80 @@
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
BEGIN_DOC
! the inactive Fock matrix, in molecular orbitals
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)=one_ints_no(p,q)
end do
end do
! the inactive Fock matrix
do k=1,n_core_inact_orb
kk=list_core_inact(k)
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the active active Fock matrix, in molecular orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
Fapq = 0.d0
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb
tt=list_act(t)
do q=1,mo_num
do p=1,mo_num
Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the effective Fock matrix over MOs'
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER

View File

@ -0,0 +1,231 @@
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_inact_orb
occnum(list_core_inact(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(i)
end do
if (bavard) then
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
endif
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
double precision :: Vt(n_act_orb,n_act_orb)
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
if (bavard) then
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! 4-index transformation of 2part matrices
END_DOC
integer :: i,j,k,l,p,q
real*8 :: d(n_act_orb)
! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,l,p)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! Transformed one-e integrals
END_DOC
integer :: i,j, p, q
real*8 :: d(n_act_orb)
one_ints_no(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(j,list_act(p))=d(p)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Rotation matrix from current MOs to the CI natural MOs
END_DOC
integer :: p,q
NatOrbsCI_mos(:,:) = 0.d0
do q = 1,mo_num
NatOrbsCI_mos(q,q) = 1.d0
enddo
do q = 1,n_act_orb
do p = 1,n_act_orb
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
mo_coef, size(mo_coef,1), &
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
NatOrbsFCI, size(NatOrbsFCI,1))
END_PROVIDER

View File

@ -0,0 +1,253 @@
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [integer, n_guess_sx_mat ]
implicit none
BEGIN_DOC
! Single-excitation matrix
END_DOC
integer :: i,j
do i=1,nMonoEx+1
do j=1,nMonoEx+1
SXmatrix(i,j)=0.D0
end do
end do
do i=1,nMonoEx
SXmatrix(1,i+1)=gradvec2(i)
SXmatrix(1+i,1)=gradvec2(i)
end do
if(diag_hess_cas)then
do i = 1, nMonoEx
SXmatrix(i+1,i+1) = hessdiag(i)
enddo
else
do i=1,nMonoEx
do j=1,nMonoEx
SXmatrix(i+1,j+1)=hessmat(i,j)
SXmatrix(j+1,i+1)=hessmat(i,j)
end do
end do
endif
do i = 1, nMonoEx
SXmatrix(i+1,i+1) += level_shift_casscf
enddo
n_guess_sx_mat = 1
do i = 1, nMonoEx
if(SXmatrix(i+1,i+1).lt.0.d0 )then
n_guess_sx_mat += 1
endif
enddo
if (bavard) then
do i=2,nMonoEx
write(6,*) ' diagonal of the Hessian : ',i,hessmat(i,i)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
if(nMonoEx+1.gt.n_det_max_full)then
if(bavard)then
print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
endif
double precision, allocatable :: u_in(:,:),energies(:)
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
integer :: i,j
SXeigenvec = 0.d0
SXeigenval = 0.d0
do i = 1, n_guess_sx_mat
SXeigenval(i) = energies(i)
do j = 1, nMonoEx+1
SXeigenvec(j,i) = u_in(j,i)
enddo
enddo
else
if(bavard)then
print*,'Diagonalize the SXmatrix with Jacobi'
endif
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
endif
if (bavard) then
write(6,*) ' SXdiag : lowest eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
if(n_guess_sx_mat.gt.0)then
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
endif
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, energy_improvement]
implicit none
if(state_following_casscf)then
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
else
energy_improvement = SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
implicit none
integer :: i
double precision :: c0
best_overlap_casscf = 0.D0
best_vector_ovrlp_casscf = -1000
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (dabs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
best_overlap_casscf=dabs(SXeigenvec(1,i))
best_vector_ovrlp_casscf = i
end if
end if
end do
if(best_vector_ovrlp_casscf.lt.0)then
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
endif
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
write(6,*) ' weight of the 1st element ',c0
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Best eigenvector of the single-excitation matrix
END_DOC
integer :: i
double precision :: c0
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Updated orbitals
END_DOC
integer :: i,j,ialph
if(state_following_casscf)then
print*,'Using the state following casscf '
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
else
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
print*,'Taking the lowest root for the CASSCF'
print*,'!!! SWAPPING MOS !!!!!!'
level_shift_casscf *= 2.D0
level_shift_casscf = min(level_shift_casscf,0.5d0)
print*,'level_shift_casscf = ',level_shift_casscf
NewOrbs = switch_mo_coef
!mo_coef = switch_mo_coef
!soft_touch mo_coef
!call save_mos_no_occ
!stop
else
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
endif
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Orbital rotation matrix
END_DOC
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
logical :: converged
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
real*8 :: Tmat(mo_num,mo_num)
real*8 :: f
! the orbital rotation matrix T
Tmat(:,:)=0.D0
indx=1
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do t=1,n_act_orb
tt=list_act(t)
indx+=1
Tmat(ii,tt)= SXvector(indx)
Tmat(tt,ii)=-SXvector(indx)
end do
end do
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(ii,aa)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx)
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(tt,aa)= SXvector(indx)
Tmat(aa,tt)=-SXvector(indx)
end do
end do
! Form the exponential
Tpotmat(:,:)=0.D0
Umat(:,:) =0.D0
do i=1,mo_num
Tpotmat(i,i)=1.D0
Umat(i,i) =1.d0
end do
iter=0
converged=.false.
do while (.not.converged)
iter+=1
f = 1.d0 / dble(iter)
Tpotmat2(:,:) = Tpotmat(:,:) * f
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
Tpotmat2, size(Tpotmat2,1), &
Tmat, size(Tmat,1), 0.d0, &
Tpotmat, size(Tpotmat,1))
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do
END_PROVIDER

View File

@ -0,0 +1,70 @@
subroutine reorder_orbitals_for_casscf
implicit none
BEGIN_DOC
! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual
END_DOC
integer :: i,j,iorb
integer, allocatable :: iorder(:),array(:)
allocate(iorder(mo_num),array(mo_num))
do i = 1, n_core_orb
iorb = list_core(i)
array(iorb) = i
enddo
do i = 1, n_inact_orb
iorb = list_inact(i)
array(iorb) = mo_num + i
enddo
do i = 1, n_act_orb
iorb = list_act(i)
array(iorb) = 2 * mo_num + i
enddo
do i = 1, n_virt_orb
iorb = list_virt(i)
array(iorb) = 3 * mo_num + i
enddo
do i = 1, mo_num
iorder(i) = i
enddo
call isort(array,iorder,mo_num)
double precision, allocatable :: mo_coef_new(:,:)
allocate(mo_coef_new(ao_num,mo_num))
do i = 1, mo_num
mo_coef_new(:,i) = mo_coef(:,iorder(i))
enddo
mo_coef = mo_coef_new
touch mo_coef
list_core_reverse = 0
do i = 1, n_core_orb
list_core(i) = i
list_core_reverse(i) = i
mo_class(i) = "Core"
enddo
list_inact_reverse = 0
do i = 1, n_inact_orb
list_inact(i) = i + n_core_orb
list_inact_reverse(i+n_core_orb) = i
mo_class(i+n_core_orb) = "Inactive"
enddo
list_act_reverse = 0
do i = 1, n_act_orb
list_act(i) = n_core_inact_orb + i
list_act_reverse(n_core_inact_orb + i) = i
mo_class(n_core_inact_orb + i) = "Active"
enddo
list_virt_reverse = 0
do i = 1, n_virt_orb
list_virt(i) = n_core_inact_orb + n_act_orb + i
list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i
mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual"
enddo
touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse
end

View File

@ -0,0 +1,9 @@
subroutine save_energy(E,pt2)
implicit none
BEGIN_DOC
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E(N_states), pt2(N_states)
call ezfio_set_casscf_energy(E(1:N_states))
call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states))
end

View File

@ -0,0 +1,207 @@
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
!
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
!
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
END_DOC
super_ci_dm = 0.d0
integer :: i,j,iorb,jorb
integer :: a,aorb,b,borb
integer :: t,torb,v,vorb,u,uorb,x,xorb
double precision :: c0,ci
c0 = SXeigenvec(1,1)
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
! loop over the core/inact
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
! loop over the core/inact
do j = 1, n_core_inact_orb
jorb = list_core_inact(j)
! loop over the virtual
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
enddo
do t = 1, n_act_orb
torb = list_act(t)
! thrid term of the B3.a
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
enddo
enddo
enddo
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
enddo
enddo
enddo
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
enddo
enddo
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
do x = 1, n_act_orb
xorb = list_act(x)
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
enddo
do u = 1, n_act_orb
uorb = list_act(u)
! second term of equation B3.d
do x = 1, n_act_orb
xorb = list_act(x)
do v = 1, n_act_orb
vorb = list_act(v)
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
enddo
enddo
! third term of equation B3.d
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
enddo
enddo
enddo
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do t = 1, n_act_orb
torb = list_act(t)
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
enddo
enddo
enddo
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do a = 1, n_virt_orb
aorb = list_virt(a)
do b = 1, n_virt_orb
borb= list_virt(b)
! First term of equation B3.f
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
enddo
! Second term of equation B3.f
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
implicit none
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
END_PROVIDER
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
!
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
END_DOC
integer :: a,aorb,i,iorb
integer :: x,xorb,v,vorb
mat_tmp_dm_super_ci = 0.d0
do v = 1, n_act_orb
vorb = list_act(v)
do x = 1, n_act_orb
xorb = list_act(x)
do a = 1, n_virt_orb
aorb = list_virt(a)
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
enddo
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
implicit none
integer :: i,j,iorb,jorb
integer :: a, aorb,t, torb
double precision :: sqrt2
sqrt2 = 1.d0/dsqrt(2.d0)
do i = 1, nMonoEx
iorb = excit(1,i)
jorb = excit(2,i)
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
enddo
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do t = 1, n_act_orb
torb = list_act(t)
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
enddo
enddo
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do a = 1, n_virt_orb
aorb = list_virt(a)
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
enddo
enddo
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do a = 1, n_virt_orb
aorb = list_virt(a)
do t = 1, n_act_orb
torb = list_act(t)
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,132 @@
BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)]
implicit none
integer :: i
do i=2,nMonoEx+1
SXvector_lowest(i-1)=SXeigenvec(i,1)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, thresh_overlap_switch]
implicit none
thresh_overlap_switch = 0.5d0
END_PROVIDER
BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)]
&BEGIN_PROVIDER [integer, n_max_overlap]
&BEGIN_PROVIDER [integer, dim_n_max_overlap]
implicit none
double precision, allocatable :: vec_tmp(:)
integer, allocatable :: iorder(:)
allocate(vec_tmp(nMonoEx),iorder(nMonoEx))
integer :: i
do i = 1, nMonoEx
iorder(i) = i
vec_tmp(i) = -dabs(SXvector_lowest(i))
enddo
call dsort(vec_tmp,iorder,nMonoEx)
n_max_overlap = 0
do i = 1, nMonoEx
if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then
n_max_overlap += 1
max_overlap(n_max_overlap) = iorder(i)
endif
enddo
dim_n_max_overlap = max(1,n_max_overlap)
END_PROVIDER
BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)]
&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)]
&BEGIN_PROVIDER [integer, n_orb_swap ]
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer :: i,imono,iorb,jorb,j
n_orb_swap = 0
do i = 1, n_max_overlap
imono = max_overlap(i)
iorb = excit(1,imono)
jorb = excit(2,imono)
if (excit_class(imono) == "c-a" .and.hessmat(imono,imono).gt.0.d0)then ! core --> active rotation
n_orb_swap += 1
orb_swap(1,n_orb_swap) = iorb ! core
orb_swap(2,n_orb_swap) = jorb ! active
index_orb_swap(n_orb_swap) = imono
else if (excit_class(imono) == "a-v" .and.hessmat(imono,imono).gt.0.d0)then ! active --> virtual rotation
n_orb_swap += 1
orb_swap(1,n_orb_swap) = jorb ! virtual
orb_swap(2,n_orb_swap) = iorb ! active
index_orb_swap(n_orb_swap) = imono
endif
enddo
integer,allocatable :: orb_swap_tmp(:,:)
allocate(orb_swap_tmp(2,dim_n_max_overlap))
do i = 1, n_orb_swap
orb_swap_tmp(1,i) = orb_swap(1,i)
orb_swap_tmp(2,i) = orb_swap(2,i)
enddo
integer(bit_kind), allocatable :: det_i(:),det_j(:)
allocate(det_i(N_int),det_j(N_int))
logical, allocatable :: good_orb_rot(:)
allocate(good_orb_rot(n_orb_swap))
integer, allocatable :: index_orb_swap_tmp(:)
allocate(index_orb_swap_tmp(dim_n_max_overlap))
index_orb_swap_tmp = index_orb_swap
good_orb_rot = .True.
integer :: icount,k
do i = 1, n_orb_swap
if(.not.good_orb_rot(i))cycle
det_i = 0_bit_kind
call set_bit_to_integer(orb_swap(1,i),det_i,N_int)
call set_bit_to_integer(orb_swap(2,i),det_i,N_int)
do j = i+1, n_orb_swap
det_j = 0_bit_kind
call set_bit_to_integer(orb_swap(1,j),det_j,N_int)
call set_bit_to_integer(orb_swap(2,j),det_j,N_int)
icount = 0
do k = 1, N_int
icount += popcnt(ior(det_i(k),det_j(k)))
enddo
if (icount.ne.4)then
good_orb_rot(i) = .False.
good_orb_rot(j) = .False.
exit
endif
enddo
enddo
icount = n_orb_swap
n_orb_swap = 0
do i = 1, icount
if(good_orb_rot(i))then
n_orb_swap += 1
index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i)
orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i)
orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i)
endif
enddo
if(n_orb_swap.gt.0)then
print*,'n_orb_swap = ',n_orb_swap
endif
do i = 1, n_orb_swap
print*,'imono = ',index_orb_swap(i)
print*,orb_swap(1,i),'-->',orb_swap(2,i)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)]
implicit none
integer :: i,j,iorb,jorb
switch_mo_coef = NatOrbsFCI
do i = 1, n_orb_swap
iorb = orb_swap(1,i)
jorb = orb_swap(2,i)
do j = 1, ao_num
switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb)
enddo
do j = 1, ao_num
switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,101 @@
BEGIN_PROVIDER [real*8, etwo]
&BEGIN_PROVIDER [real*8, eone]
&BEGIN_PROVIDER [real*8, eone_bis]
&BEGIN_PROVIDER [real*8, etwo_bis]
&BEGIN_PROVIDER [real*8, etwo_ter]
&BEGIN_PROVIDER [real*8, ecore]
&BEGIN_PROVIDER [real*8, ecore_bis]
implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_inact_orb
ii=list_core_inact(i)
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_inact_orb
jj=list_core_inact(j)
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_inact_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_inact_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do v=1,n_act_orb
v3=v+n_core_inact_orb
do x=1,n_act_orb
x3=x+n_core_inact_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
end do
end do
end do
end do
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_inact_orb
ii=list_core_inact(i)
ecore +=2.D0*mo_one_e_integrals(ii,ii)
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_inact_orb
jj=list_core_inact(j)
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_inact_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_inact_orb
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_inact_orb
ii=list_core_inact(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
-bielec_PxxQ(tt,i,i,uu))
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx(tt,uu,v3,x3)
h2=bielec_PxxQ(tt,u3,v3,xx)
h3=bielecCI(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((h1.ne.h2).or.(h1.ne.h3)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
END_PROVIDER