10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-23 12:55:37 +01:00

working on complex MO 2e ints

This commit is contained in:
Kevin Gasperich 2020-02-05 17:50:17 -06:00
parent f35c8f4f4c
commit b1e14142c6
6 changed files with 1644 additions and 16 deletions

View File

@ -376,7 +376,9 @@ subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
end
!subroutine get_ao_two_e_integrals_non_zero_periodic(j,k,l,sze,out_val,out_val_index,non_zero_int)
subroutine get_ao_two_e_integrals_non_zero_periodic(j,k,l,sze,out_val,out_val_index,non_zero_int)
print*,'not implemented for periodic',irp_here
stop -1
! use map_module
! implicit none
! BEGIN_DOC
@ -418,8 +420,8 @@ end
! out_val_index(non_zero_int) = i
! out_val(non_zero_int) = tmp
! enddo
!
!end
end
!subroutine get_ao_two_e_integrals_non_zero_jl_periodic(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)

View File

@ -166,7 +166,7 @@ subroutine ao_to_mo_complex(A_ao,LDA_ao,A_mo,LDA_mo)
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! Ct.A_ao.C
! C^\dagger.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
@ -189,6 +189,36 @@ subroutine ao_to_mo_complex(A_ao,LDA_ao,A_mo,LDA_mo)
deallocate(T)
end
subroutine ao_to_mo_noconjg_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^T.A_ao.C
! needed for 4idx tranform in four_idx_novvvv
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, mo_num, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_complex, size(mo_coef_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('T','N', mo_num, mo_num, ao_num, &
(1.d0,0.d0), mo_coef_complex,size(mo_coef_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine ao_ortho_cano_to_ao_complex(A_ao,LDA_ao,A,LDA)
implicit none

View File

@ -0,0 +1,247 @@
BEGIN_PROVIDER [ complex*16, mo_coef_novirt_complex, (ao_num,n_core_inact_act_orb) ]
implicit none
BEGIN_DOC
! MO coefficients without virtual MOs
END_DOC
integer :: j,jj
do j=1,n_core_inact_act_orb
jj = list_core_inact_act(j)
mo_coef_novirt_complex(:,j) = mo_coef_complex(:,jj)
enddo
END_PROVIDER
subroutine ao_to_mo_novirt_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
!
! $C^\dagger.A_{ao}.C$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,n_core_inact_act_orb) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_novirt_complex, size(mo_coef_novirt_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
(1.d0,0.d0), mo_coef_novirt_complex,size(mo_coef_novirt_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine ao_to_mo_novirt_conjg_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
!
! $C^\dagger.A_{ao}.C^*$
! half-transformed ints as handled by four_idx_novvvv need to use this
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,n_core_inact_act_orb) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
dconjg(mo_coef_novirt_complex), size(mo_coef_novirt_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
(1.d0,0.d0), mo_coef_novirt_complex,size(mo_coef_novirt_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine four_idx_novvvv_complex
use map_module
implicit none
BEGIN_DOC
! Retransform MO integrals for next CAS-SCF step
END_DOC
integer :: i,j,k,l,n_integrals1,n_integrals2
logical :: use_map1
complex*16, allocatable :: f(:,:,:), f2(:,:,:), d(:,:), T(:,:,:,:), T2(:,:,:,:)
complex*16, external :: get_ao_two_e_integral_periodic
integer(key_kind), allocatable :: idx1(:),idx2(:)
complex(integral_kind), allocatable :: values1(:),values2(:)
double precision :: sign_tmp
integer(key_kind) :: idx_tmp
integer :: p,q,r,s
allocate( T(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) , &
T2(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) )
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(mo_num,ao_num,T,n_core_inact_act_orb, &
!$OMP mo_integrals_threshold,mo_integrals_map, &
!$OMP mo_integrals_map_2,ao_integrals_map_2, &
!$OMP list_core_inact_act,T2,ao_integrals_map) &
!$OMP PRIVATE(i,j,k,l,p,q,r,s,idx1,idx2,values1,values2,n_integrals1, &
!$OMP n_integrals2,use_map1,idx_tmp,sign_tmp, &
!$OMP f,f2,d)
allocate(f(ao_num,ao_num,ao_num), f2(ao_num,ao_num,ao_num), d(mo_num,mo_num), &
idx1(2*mo_num*mo_num), values1(2*mo_num*mo_num), &
idx2(2*mo_num*mo_num), values2(2*mo_num*mo_num) )
! <aa|vv>
!$OMP DO
do s=1,ao_num
do r=1,ao_num
do q=1,ao_num
do p=1,r
f (p,q,r) = get_ao_two_e_integral_periodic(p,q,r,s,ao_integrals_map,ao_integrals_map_2)
f (r,q,p) = get_ao_two_e_integral_periodic(r,q,p,s,ao_integrals_map,ao_integrals_map_2)
enddo
enddo
enddo
do r=1,ao_num
do q=1,ao_num
do p=1,ao_num
f2(p,q,r) = f(p,r,q)
enddo
enddo
enddo
! f (p,q,r) = <pq|rs>
! f2(p,q,r) = <pr|qs>
do r=1,ao_num
call ao_to_mo_novirt_conjg_complex(f (1,1,r),size(f ,1),T (1,1,r,s),size(T,1))
call ao_to_mo_novirt_complex(f2(1,1,r),size(f2,1),T2(1,1,r,s),size(T,1))
enddo
! T (i,j,p,q) = <ij|rs>
! T2(i,j,p,q) = <ir|js>
enddo
!$OMP END DO
!$OMP DO
do j=1,n_core_inact_act_orb
do i=1,n_core_inact_act_orb
do s=1,ao_num
do r=1,ao_num
f (r,s,1) = T (i,j,r,s)
f2(r,s,1) = T2(i,j,r,s)
enddo
enddo
call ao_to_mo_noconjg_complex(f ,size(f ,1),d,size(d,1))
n_integrals1 = 0
n_integrals2 = 0
do l=1,mo_num
do k=1,mo_num
call ao_two_e_integral_periodic_map_idx_sign(list_core_inact_act(i),list_core_inact_act(j),k,l,use_map1,idx_tmp,sign_tmp)
if (use_map1) then
n_integrals1+=1
values1(n_integrals1) = dble(d(k,l))
idx1(n_integrals1) = idx_tmp
if (sign_tmp /= 0.d0) then ! should always be true, but might change in the future
n_integrals1+=1
values1(n_integrals1) = sign_tmp*dimag(d(k,l))
idx1(n_integrals1) = idx_tmp+1
endif
else
n_integrals2+=1
values2(n_integrals2) = dble(d(k,l))
idx2(n_integrals2) = idx_tmp
if (sign_tmp /= 0.d0) then
n_integrals2+=1
values2(n_integrals2) = sign_tmp*dimag(d(k,l))
idx2(n_integrals2) = idx_tmp+1
endif
endif
enddo
enddo
call map_append(mo_integrals_map, idx1, values1, n_integrals1)
call map_append(mo_integrals_map_2, idx2, values2, n_integrals2)
call ao_to_mo(f2,size(f2,1),d,size(d,1))
n_integrals1 = 0
n_integrals2 = 0
do l=1,mo_num
do k=1,mo_num
call ao_two_e_integral_periodic_map_idx_sign(list_core_inact_act(i),k,list_core_inact_act(j),l,use_map1,idx_tmp,sign_tmp)
if (use_map1) then
n_integrals1+=1
values1(n_integrals1) = dble(d(k,l))
idx1(n_integrals1) = idx_tmp
if (sign_tmp /= 0.d0) then ! should always be true, but might change in the future
n_integrals1+=1
values1(n_integrals1) = sign_tmp*dimag(d(k,l))
idx1(n_integrals1) = idx_tmp+1
endif
else
n_integrals2+=1
values2(n_integrals2) = dble(d(k,l))
idx2(n_integrals2) = idx_tmp
if (sign_tmp /= 0.d0) then
n_integrals2+=1
values2(n_integrals2) = sign_tmp*dimag(d(k,l))
idx2(n_integrals2) = idx_tmp+1
endif
endif
enddo
enddo
call map_append(mo_integrals_map, idx1, values1, n_integrals1)
call map_append(mo_integrals_map_2, idx2, values2, n_integrals2)
enddo
enddo
!$OMP END DO
deallocate(f,f2,d,idx1,idx2,values1,values2)
!$OMP END PARALLEL
deallocate(T,T2)
call map_sort(mo_integrals_map)
call map_unique(mo_integrals_map)
call map_shrink(mo_integrals_map,real(mo_integrals_threshold,integral_kind))
call map_sort(mo_integrals_map_2)
call map_unique(mo_integrals_map_2)
call map_shrink(mo_integrals_map_2,real(mo_integrals_threshold,integral_kind))
end
subroutine four_idx_novvvv2_complex
use bitmasks
implicit none
integer :: i
integer(bit_kind) :: mask_ijkl(N_int,4)
print*, '<ix|ix>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = full_ijkl_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = full_ijkl_bitmask_4(i,1)
enddo
call add_integrals_to_map_complex(mask_ijkl)
print*, '<ii|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map_complex(mask_ijkl)
end

View File

@ -306,7 +306,7 @@ subroutine get_mo_two_e_integrals_coulomb_ii_periodic(k,l,sze,out_val,map,map2)
integer :: i
integer(key_kind) :: hash(sze),hash_re(sze),hash_im(sze)
real(integral_kind) :: tmp_re(sze),tmp_im(sze)
complex*16 :: out_re(sze),out_im(sze)
double precision :: out_re(sze),out_im(sze)
double precision :: sign
PROVIDE mo_two_e_integrals_in_map
@ -400,10 +400,10 @@ subroutine get_mo_two_e_integrals_exch_ii_periodic(k,l,sze,out_val,map,map2)
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map,map2
integer :: i
integer :: i,klmin,klmax
integer(key_kind) :: hash(sze),hash_re(sze),hash_im(sze)
real(integral_kind) :: tmp_re(sze),tmp_im(sze)
complex*16 :: out_re(sze),out_im(sze)
double precision :: out_re(sze),out_im(sze)
double precision :: sign,sign2(sze)
PROVIDE mo_two_e_integrals_in_map

View File

@ -56,11 +56,11 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
if(no_vvvv_integrals)then
print*,'not implemented for periodic',irp_here
stop -1
call four_idx_novvvv_periodic
call four_idx_novvvv_complex
else
print*,'not implemented for periodic',irp_here
stop -1
call add_integrals_to_map_periodic(full_ijkl_bitmask_4)
call add_integrals_to_map_complex(full_ijkl_bitmask_4)
endif
call wall_time(wall_2)
@ -981,13 +981,94 @@ end
! mo_two_e_integrals_jj_exchange_from_ao(i,j) = J_ij
! mo_two_e_integrals_jj_anti_from_ao(i,j) = J_ij - K_ij
END_DOC
integer :: i,j,p,q,r,s
double precision :: c
real(integral_kind) :: integral
integer :: n, pp
real(integral_kind), allocatable :: int_value(:)
integer, allocatable :: int_idx(:)
if (is_periodic) then
complex(integral_kind) :: integral2
complex(integral_kind), allocatable :: int_value2(:)
complex*16 :: cz
complex*16, allocatable :: iqrs2(:,:), iqsr2(:,:), iqis2(:), iqri2(:)
PROVIDE ao_two_e_integrals_in_map mo_coef_complex
mo_two_e_integral_jj_from_ao = 0.d0
mo_two_e_integrals_jj_exchange_from_ao = 0.d0
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: iqrs2, iqsr2
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i,j,p,q,r,s,integral2,c,n,pp,int_value2,int_idx, &
!$OMP iqrs2, iqsr2,iqri2,iqis2,cz) &
!$OMP SHARED(mo_num,mo_coef_transp_complex,mo_coef_transp_complex_conjg,ao_num, &
!$OMP ao_integrals_threshold) &
!$OMP REDUCTION(+:mo_two_e_integral_jj_from_ao,mo_two_e_integrals_jj_exchange_from_ao)
allocate( int_value2(ao_num), int_idx(ao_num), &
iqrs2(mo_num,ao_num), iqis2(mo_num), iqri2(mo_num), &
iqsr2(mo_num,ao_num) )
!$OMP DO SCHEDULE (guided)
do s=1,ao_num
do q=1,ao_num
do j=1,ao_num
do i=1,mo_num
iqrs2(i,j) = (0.d0,0.d0)
iqsr2(i,j) = (0.d0,0.d0)
enddo
enddo
do r=1,ao_num
call get_ao_two_e_integrals_non_zero_periodic(q,r,s,ao_num,int_value2,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral2 = int_value2(pp)
if (cdabs(integral2) > ao_integrals_threshold) then
do i=1,mo_num
iqrs2(i,r) += mo_coef_transp_complex_conjg(i,p) * integral2
enddo
endif
enddo
call get_ao_two_e_integrals_non_zero_periodic(q,s,r,ao_num,int_value2,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral2 = int_value2(pp)
if (cdabs(integral2) > ao_integrals_threshold) then
do i=1,mo_num
iqsr2(i,r) += mo_coef_transp_complex_conjg(i,p) * integral2
enddo
endif
enddo
enddo
iqis2 = (0.d0,0.d0)
iqri2 = (0.d0,0.d0)
do r=1,ao_num
do i=1,mo_num
iqis2(i) += mo_coef_transp_complex(i,r) * iqrs2(i,r)
iqri2(i) += mo_coef_transp_complex(i,r) * iqsr2(i,r)
enddo
enddo
do i=1,mo_num
do j=1,mo_num
cz = mo_coef_transp_complex_conjg(j,q)*mo_coef_transp_complex(j,s)
mo_two_e_integral_jj_from_ao(j,i) += dble(cz * iqis2(i))
mo_two_e_integrals_jj_exchange_from_ao(j,i) += dble(cz * iqri2(i))
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
deallocate(iqrs2,iqsr2,int_value2,int_idx)
!$OMP END PARALLEL
else
real(integral_kind) :: integral
real(integral_kind), allocatable :: int_value(:)
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
@ -1092,7 +1173,7 @@ end
!$OMP END DO NOWAIT
deallocate(iqrs,iqsr,int_value,int_idx)
!$OMP END PARALLEL
endif
mo_two_e_integrals_jj_anti_from_ao = mo_two_e_integral_jj_from_ao - mo_two_e_integrals_jj_exchange_from_ao
@ -1112,11 +1193,100 @@ END_PROVIDER
integer :: i,j,p,q,r,s
integer :: i0,j0
double precision :: c
real(integral_kind) :: integral
integer :: n, pp
real(integral_kind), allocatable :: int_value(:)
integer, allocatable :: int_idx(:)
if (is_periodic) then
complex*16 :: cz
complex(integral_kind) :: integral2
complex(integral_kind), allocatable :: int_value2(:)
complex*16, allocatable :: iqrs2(:,:), iqsr2(:,:), iqis2(:), iqri2(:)
PROVIDE ao_two_e_integrals_in_map mo_coef_complex
mo_two_e_integrals_vv_from_ao = 0.d0
mo_two_e_integrals_vv_exchange_from_ao = 0.d0
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: iqrs2, iqsr2
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i0,j0,i,j,p,q,r,s,integral2,c,n,pp,int_value2,int_idx, &
!$OMP iqrs2, iqsr2,iqri2,iqis2,cz) &
!$OMP SHARED(n_virt_orb,mo_num,list_virt,mo_coef_transp_complex,ao_num, &
!$OMP mo_coef_transp_complex_conjg, &
!$OMP ao_integrals_threshold,do_direct_integrals) &
!$OMP REDUCTION(+:mo_two_e_integrals_vv_from_ao,mo_two_e_integrals_vv_exchange_from_ao)
allocate( int_value2(ao_num), int_idx(ao_num), &
iqrs2(mo_num,ao_num), iqis2(mo_num), iqri2(mo_num),&
iqsr2(mo_num,ao_num) )
!$OMP DO SCHEDULE (guided)
do s=1,ao_num
do q=1,ao_num
do j=1,ao_num
do i0=1,n_virt_orb
i = list_virt(i0)
iqrs2(i,j) = (0.d0,0.d0)
iqsr2(i,j) = (0.d0,0.d0)
enddo
enddo
do r=1,ao_num
call get_ao_two_e_integrals_non_zero_periodic(q,r,s,ao_num,int_value2,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral2 = int_value2(pp)
if (cdabs(integral2) > ao_integrals_threshold) then
do i0=1,n_virt_orb
i =list_virt(i0)
iqrs2(i,r) += mo_coef_transp_complex_conjg(i,p) * integral2
enddo
endif
enddo
call get_ao_two_e_integrals_non_zero_periodic(q,s,r,ao_num,int_value2,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral2 = int_value2(pp)
if (cdabs(integral2) > ao_integrals_threshold) then
do i0=1,n_virt_orb
i = list_virt(i0)
iqsr2(i,r) += mo_coef_transp_complex_conjg(i,p) * integral2
enddo
endif
enddo
enddo
iqis2 = (0.d0,0.d0)
iqri2 = (0.d0,0.d0)
do r=1,ao_num
do i0=1,n_virt_orb
i = list_virt(i0)
iqis2(i) += mo_coef_transp_complex(i,r) * iqrs2(i,r)
iqri2(i) += mo_coef_transp_complex(i,r) * iqsr2(i,r)
enddo
enddo
do i0=1,n_virt_orb
i= list_virt(i0)
do j0=1,n_virt_orb
j = list_virt(j0)
cz = mo_coef_transp_complex_conjg(j,q)*mo_coef_transp_complex(j,s)
mo_two_e_integrals_vv_from_ao(j,i) += dble(cz * iqis2(i))
mo_two_e_integrals_vv_exchange_from_ao(j,i) += dble(cz * iqri2(i))
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
deallocate(iqrs2,iqsr2,iqis2,iqri2,int_value2,int_idx)
!$OMP END PARALLEL
else
real(integral_kind) :: integral
real(integral_kind), allocatable :: int_value(:)
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
if (.not.do_direct_integrals) then
@ -1228,6 +1398,7 @@ END_PROVIDER
!$OMP END DO NOWAIT
deallocate(iqrs,iqsr,int_value,int_idx)
!$OMP END PARALLEL
endif
mo_two_e_integrals_vv_anti_from_ao = mo_two_e_integrals_vv_from_ao - mo_two_e_integrals_vv_exchange_from_ao
! print*, '**********'
@ -1257,7 +1428,18 @@ END_PROVIDER
PROVIDE mo_two_e_integrals_in_map
mo_two_e_integrals_jj = 0.d0
mo_two_e_integrals_jj_exchange = 0.d0
if (is_periodic) then
complex*16 :: get_two_e_integral_periodic
do j=1,mo_num
do i=1,mo_num
mo_two_e_integrals_jj(i,j) = dble(get_two_e_integral_periodic(i,j,i,j,&
mo_integrals_map,mo_integrals_map_2))
mo_two_e_integrals_jj_exchange(i,j) = dble(get_two_e_integral_periodic(i,j,j,i,&
mo_integrals_map,mo_integrals_map_2))
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
enddo
enddo
else
do j=1,mo_num
do i=1,mo_num
mo_two_e_integrals_jj(i,j) = get_two_e_integral(i,j,i,j,mo_integrals_map)
@ -1265,6 +1447,7 @@ END_PROVIDER
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
enddo
enddo
endif
END_PROVIDER
@ -1275,6 +1458,9 @@ subroutine clear_mo_map
! Frees the memory of the MO map
END_DOC
call map_deinit(mo_integrals_map)
if (is_periodic) then
call map_deinit(mo_integrals_map_2)
endif
FREE mo_integrals_map mo_two_e_integrals_jj mo_two_e_integrals_jj_anti
FREE mo_two_e_integrals_jj_exchange mo_two_e_integrals_in_map
end

File diff suppressed because it is too large Load Diff