10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 21:18:24 +01:00

working on pert rdms

This commit is contained in:
Emmanuel Giner 2019-07-05 15:39:27 +02:00
parent 25b20651ba
commit b1c7c121b2
4 changed files with 226 additions and 154 deletions

View File

@ -0,0 +1,166 @@
use bitmasks
BEGIN_PROVIDER [logical , pert_2rdm ]
implicit none
pert_2rdm = .False.
END_PROVIDER
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
implicit none
n_orb_pert_rdm = n_act_orb
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
implicit none
list_orb_reverse_pert_rdm = list_act_reverse
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
implicit none
list_orb_pert_rdm = list_act
END_PROVIDER
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf, psi_det_connection, psi_coef_connection, n_det_connection)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: n_det_connection
double precision, intent(in) :: psi_coef_connection(n_det_connection,N_states)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
integer :: sze_buff
sze_buff = 5 * mo_num ** 2
allocate(keys(4,sze_buff),values(sze_buff))
nkeys = 0
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef(istate) * coef(istate)
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
end do
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection,n_det_connection,nkeys,keys,values,sze_buff)
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
end if
end do
end do
end

View File

@ -1,9 +1,5 @@
use bitmasks
BEGIN_PROVIDER [logical , pert_2rdm ]
implicit none
pert_2rdm = .False.
END_PROVIDER
use bitmasks
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
implicit none
@ -768,148 +764,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
end do
end
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf, psi_det_connection, psi_coef_connection, n_det_connection)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: n_det_connection
double precision, intent(in) :: psi_coef_connection(n_det_connection,N_states)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
integer :: sze_buff
sze_buff = 5 * mo_num ** 2
allocate(keys(4,sze_buff),values(sze_buff))
nkeys = 0
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef(istate) * coef(istate)
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
end do
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection,n_det_connection,nkeys,keys,values,sze_buff)
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
end if
end do
end do
end
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none

View File

@ -9,5 +9,57 @@ subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connectio
double precision, intent(in) :: psi_coef_connection(n_det_connection, N_states)
integer, intent(inout) :: keys(4,sze_buff),sze_buff
double precision, intent(inout) :: values(sze_buff)
integer :: i
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase, contrib
do i = 1, n_det_connection
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
if(degree.gt.2)cycle
contrib = 0.d0
do j = 1, N_states
contrib += state_average_weight(j) * psi_coef_connection(i,j) * phase * coef(j)
enddo
! case of single excitations
if(degree == 1)then
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff)then
call update_rdms(nkeys,keys,values,sze_buff)
nkeys = 0
endif
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
else
! case of double excitations
if (nkeys+ 4 .ge. sze_buff)then
call update_rdms(nkeys,keys,values,sze_buff)
nkeys = 0
endif
call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
endif
enddo
end
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: nkeys,sze_buff
integer(bit_kind), intent(in) :: det1(N_int,2)
integer(bit_kind), intent(in) :: det2(N_int,2)
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
end
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: nkeys,sze_buff
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
end

View File

@ -166,7 +166,7 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
!$OMP psi_bilinear_matrix_transp_order, N_st, &
!$OMP psi_bilinear_matrix_order_transp_reverse, &
!$OMP psi_bilinear_matrix_columns_loc, &
!$OMP psi_bilinear_matrix_transp_rows_loc,norb, &
!$OMP psi_bilinear_matrix_transp_rows_loc, &
!$OMP istart, iend, istep, irp_here,list_orb_reverse, n_states, state_weights, dim1, &
!$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin,big_array,sze_buff,orb_bitmask) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,c_1, c_2, &
@ -348,13 +348,13 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
enddo
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
! increment the alpha/beta part for single excitations
if (nkeys+ 2 * norb .ge. size(values)) then
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the alpha/alpha part for single excitations
if (nkeys+4 * norb .ge. size(values)) then
if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
@ -381,7 +381,7 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if (nkeys+4 .ge. size(values)) then
if (nkeys+4 .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
@ -452,13 +452,13 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
enddo
if(alpha_beta.or.spin_trace.or.beta_beta)then
! increment the alpha/beta part for single excitations
if (nkeys+2 * norb .ge. size(values)) then
if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the beta /beta part for single excitations
if (nkeys+4 * norb .ge. size(values)) then
if (nkeys+4 * elec_alpha_num .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
@ -484,7 +484,7 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if (nkeys+4 .ge. size(values)) then
if (nkeys+4 .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif