10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-09 20:48:41 +01:00

removed unused functions from converter

This commit is contained in:
Kevin Gasperich 2020-03-11 15:16:58 -05:00
parent f07bdee9cd
commit b0bf0c79d6

View File

@ -218,203 +218,6 @@ def qp2rename():
shutil.move(old,new)
shutil.copy('e_nuc','E.qp')
def pyscf2QP(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
print_ao_ints_bi=False,
print_mo_ints_bi=False,
print_ao_ints_df=True,
print_mo_ints_df=False,
print_ao_ints_mono=True,
print_mo_ints_mono=False):
'''
kpts = List of kpoints coordinates. Cannot be null, for gamma is other script
kmesh = Mesh of kpoints (optional)
cas_idx = List of active MOs. If not specified all MOs are actives
int_threshold = The integral will be not printed in they are bellow that
'''
from pyscf.pbc import ao2mo
from pyscf.pbc import tools
from pyscf.pbc.gto import ecp
import h5py
mo_coef_threshold = int_threshold
ovlp_threshold = int_threshold
kin_threshold = int_threshold
ne_threshold = int_threshold
bielec_int_threshold = int_threshold
natom = len(cell.atom_coords())
print('n_atom per kpt', natom)
print('num_elec per kpt', cell.nelectron)
mo_coeff = mf.mo_coeff
# Mo_coeff actif
mo_k = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
e_k = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
Nk, nao, nmo = mo_k.shape
print("n Kpts", Nk)
print("n active Mos per kpt", nmo)
print("n AOs per kpt", nao)
naux = mf.with_df.auxcell.nao
print("n df fitting functions", naux)
with open('num_df','w') as f:
f.write(str(naux))
# Write all the parameter need to creat a dummy EZFIO folder who will containt the integral after.
# More an implentation detail than a real thing
with open('param','w') as f:
# Note the use of nmo_tot
f.write(' '.join(map(str,(cell.nelectron*Nk, Nk*nmo, natom*Nk))))
with open('num_ao','w') as f:
f.write(str(nao*Nk))
with open('kpt_num','w') as f:
f.write(str(Nk))
# _
# |\ | _ | _ _. ._ |_) _ ._ | _ o _ ._
# | \| |_| (_ | (/_ (_| | | \ (/_ |_) |_| | _> | (_) | |
# |
#Total energy shift due to Ewald probe charge = -1/2 * Nelec*madelung/cell.vol =
shift = tools.pbc.madelung(cell, kpts)*cell.nelectron * -.5
e_nuc = (cell.energy_nuc() + shift)*Nk
print('nucl_repul', e_nuc)
with open('e_nuc','w') as f:
f.write(str(e_nuc))
# __ __ _
# |\/| | | | _ _ |_ _
# | | |__| |__ (_) (/_ | _>
#
with open('mo_coef_complex','w') as outfile:
c_kpts = np.reshape(mo_k,(Nk,nao,nmo))
for ik in range(Nk):
shift1=ik*nao+1
shift2=ik*nmo+1
for i in range(nao):
for j in range(nmo):
cij = c_kpts[ik,i,j]
if abs(cij) > mo_coef_threshold:
outfile.write('%s %s %s %s\n' % (i+shift1, j+shift2, cij.real, cij.imag))
# ___
# | ._ _|_ _ _ ._ _. | _ |\/| _ ._ _
# _|_ | | |_ (/_ (_| | (_| | _> | | (_) | | (_)
# _|
if mf.cell.pseudo:
v_kpts_ao = np.reshape(mf.with_df.get_pp(kpts=kpts),(Nk,nao,nao))
else:
v_kpts_ao = np.reshape(mf.with_df.get_nuc(kpts=kpts),(Nk,nao,nao))
if len(cell._ecpbas) > 0:
v_kpts_ao += np.reshape(ecp.ecp_int(cell, kpts),(Nk,nao,nao))
ne_ao = ('ne',v_kpts_ao,ne_threshold)
ovlp_ao = ('overlap',np.reshape(mf.get_ovlp(cell=cell,kpts=kpts),(Nk,nao,nao)),ovlp_threshold)
kin_ao = ('kinetic',np.reshape(cell.pbc_intor('int1e_kin',1,1,kpts=kpts),(Nk,nao,nao)),kin_threshold)
for name, intval_kpts_ao, thresh in (ne_ao, ovlp_ao, kin_ao):
if print_ao_ints_mono:
with open('%s_ao_complex' % name,'w') as outfile:
for ik in range(Nk):
shift=ik*nao+1
for i in range(nao):
for j in range(i,nao):
int_ij = intval_kpts_ao[ik,i,j]
if abs(int_ij) > thresh:
outfile.write(stri2z(i+shift, j+shift, int_ij.real, int_ij.imag)+'\n')
if print_mo_ints_mono:
intval_kpts_mo = np.einsum('kim,kij,kjn->kmn',mo_k.conj(),intval_kpts_ao,mo_k)
with open('%s_mo_complex' % name,'w') as outfile:
for ik in range(Nk):
shift=ik*nmo+1
for i in range(nmo):
for j in range(i,nmo):
int_ij = intval_kpts_mo[ik,i,j]
if abs(int_ij) > thresh:
outfile.write(stri2z(i+shift, j+shift, int_ij.real, int_ij.imag)+'\n')
# ___ _
# | ._ _|_ _ _ ._ _. | _ |_) o
# _|_ | | |_ (/_ (_| | (_| | _> |_) |
# _|
#
kconserv = tools.get_kconserv(cell, kpts)
with open('kconserv_complex','w') as outfile:
for a in range(Nk):
for b in range(Nk):
for c in range(Nk):
d = kconserv[a,b,c]
outfile.write('%s %s %s %s\n' % (a+1,c+1,b+1,d+1))
intfile=h5py.File(mf.with_df._cderi,'r')
j3c = intfile.get('j3c')
naosq = nao*nao
naotri = (nao*(nao+1))//2
j3ckeys = list(j3c.keys())
j3ckeys.sort(key=lambda strkey:int(strkey))
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
j3clist = [j3c.get(i+'/0') for i in j3ckeys]
if j3clist==[None]*len(j3clist):
# if using older version, stop before last level
j3clist = [j3c.get(i) for i in j3ckeys]
nkinvsq = 1./np.sqrt(Nk)
# dimensions are (kikj,iaux,jao,kao), where kikj is compound index of kpts i and j
# output dimensions should be reversed (nao, nao, naux, nkptpairs)
j3arr=np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
nkpt_pairs = j3arr.shape[0]
if print_ao_ints_df:
with open('df_ao_integral_array','w') as outfile:
pass
with open('df_ao_integral_array','a') as outfile:
for k,kpt_pair in enumerate(j3arr):
for iaux,dfbasfunc in enumerate(kpt_pair):
for i,i0 in enumerate(dfbasfunc):
for j,v in enumerate(i0):
if (abs(v) > bielec_int_threshold):
outfile.write(stri4z(i+1,j+1,iaux+1,k+1,v.real,v.imag)+'\n')
if print_mo_ints_df:
kpair_list=[]
for i in range(Nk):
for j in range(Nk):
if(i>=j):
kpair_list.append((i,j,idx2_tri((i,j))))
j3mo = np.array([np.einsum('mij,ik,jl->mkl',j3arr[kij],mo_k[ki].conj(),mo_k[kj]) for ki,kj,kij in kpair_list])
with open('df_mo_integral_array','w') as outfile:
pass
with open('df_mo_integral_array','a') as outfile:
for k,kpt_pair in enumerate(j3mo):
for iaux,dfbasfunc in enumerate(kpt_pair):
for i,i0 in enumerate(dfbasfunc):
for j,v in enumerate(i0):
if (abs(v) > bielec_int_threshold):
outfile.write(stri4z(i+1,j+1,iaux+1,k+1,v.real,v.imag)+'\n')
if (print_ao_ints_bi):
print_ao_bi(mf,kconserv,'bielec_ao_complex',bielec_int_threshold)
if (print_mo_ints_bi):
print_mo_bi(mf,kconserv,'bielec_mo_complex',cas_idx,bielec_int_threshold)
def print_mo_bi(mf,kconserv=None,outfilename='W.mo.qp',cas_idx=None,bielec_int_threshold = 1E-8):
cell = mf.cell
@ -474,8 +277,8 @@ def print_ao_bi(mf,kconserv=None,outfilename='W.ao.qp',bielec_int_threshold = 1E
Nk = kpts.shape[0]
if (kconserv is None):
from pyscf.pbc import tools
kconserv = tools.get_kconserv(cell, kpts)
from pyscf.pbc.tools import get_kconserv
kconserv = get_kconserv(cell, kpts)
with open(outfilename,'w') as outfile:
for d, kd in enumerate(kpts):
@ -598,7 +401,12 @@ def get_pot_ao(mf):
def ao_to_mo_1e(ao_kpts,mo_coef):
return np.einsum('kim,kij,kjn->kmn',mo_coef.conj(),ao_kpts_ao,mo_coef)
def get_j3ao(fname,nao,Nk):
def get_j3ao_old(fname,nao,Nk):
'''
returns list of Nk_pair arrays of shape (naux,nao,nao)
if naux is the same for each pair, returns numpy array
if naux is not the same for each pair, returns array of arrays
'''
import h5py
with h5py.File(fname,'r') as intfile:
j3c = intfile.get('j3c')
@ -622,6 +430,42 @@ def get_j3ao(fname,nao,Nk):
# output dimensions should be reversed (nao, nao, naux, nkptpairs)
return np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
def get_j3ao(fname,nao,Nk):
'''
returns padded df AO array
fills in zeros when functions are dropped due to linear dependency
'''
import h5py
with h5py.File(fname,'r') as intfile:
j3c = intfile.get('j3c')
j3ckeys = list(j3c.keys())
nkpairs = len(j3ckeys)
# get num order instead of lex order
j3ckeys.sort(key=lambda strkey:int(strkey))
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
keysub = '/0' if bool(j3c.get('0/0',getclass=True)) else ''
naux = max(map(lambda k: j3c[k+keysub].shape[0],j3c.keys()))
naosq = nao*nao
naotri = (nao*(nao+1))//2
nkinvsq = 1./np.sqrt(Nk)
j3arr = np.zeros((nkpairs,naux,nao,nao),dtype=np.complex128)
for i,kpair in enumerate(j3ckeys):
iaux,dim2 = j3c[kpair+keysub].shape
if (dim2==naosq):
j3arr[i,:iaux,:,:] = j3c[kpair+keysub][()].reshape([iaux,nao,nao]) * nkinvsq
else:
j3arr[i,:iaux,:,:] = makesq3(j3c[kpair+keysub][()],nao) * nkinvsq
return j3arr
def print_df(j3arr,fname,thresh):
with open(fname,'w') as outfile:
for k,kpt_pair in enumerate(j3arr):
@ -642,6 +486,21 @@ def df_pad_ref_test(j3arr,nao,naux,nkpt_pairs):
return df_ao_tmp
def df_ao_to_mo(j3ao,mo_coef):
from itertools import product
Nk = mo_coef.shape[0]
kpair_list = ((i,j,idx2_tri((i,j))) for (i,j) in product(range(Nk),repeat=2) if (i>=j))
return np.array([
np.einsum('mij,ik,jl->mkl',j3ao[kij],mo_coef[ki].conj(),mo_coef[kj])
for ki,kj,kij in kpair_list])
def df_ao_to_mo_test(j3ao,mo_coef):
from itertools import product
Nk = mo_coef.shape[0]
return np.array([
np.einsum('mij,ik,jl->mkl',j3ao[idx2_tri((ki,kj))],mo_coef[ki].conj(),mo_coef[kj])
for ki,kj in product(range(Nk),repeat=2) if (ki>=kj)])
def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
print_ao_ints_bi=False,
@ -853,11 +712,13 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
# #
##########################################
# qph5['ao_two_e_ints'].attrs['df_num']=naux
j3arr = get_j3ao(mf.with_df._cderi,nao,Nk)
# test? should be (Nk*(Nk+1))//2
nkpt_pairs = j3arr.shape[0]
# mf.with_df.get_naoaux() gives correct naux if no linear dependency in auxbasis
# this should work even with linear dependency
naux = max(i.shape[0] for i in j3arr)
print("n df fitting functions", naux)
with h5py.File(qph5path,'a') as qph5:
@ -879,10 +740,11 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_imag',data=df_ao_tmp.imag)
if print_mo_ints_df:
from itertools import product
# WARNING: this is a generator, not a list; don't use it more than once
kpair_list = ((i,j,idx2_tri((i,j))) for (i,j) in product(range(Nk),repeat=2) if (i>=j))
j3mo = np.array([np.einsum('mij,ik,jl->mkl',j3arr[kij],mo_k[ki].conj(),mo_k[kj]) for ki,kj,kij in kpair_list])
j3mo = df_ao_to_mo(j3arr,mo_k)
#j3mo_test = df_ao_to_mo_test(j3arr,mo_k)
#assert(all([abs(i-j).max() <= 1e-12 for (i,j) in zip(j3mo,j3mo_test)]))
print_df(j3mo,'D.mo.qp',bielec_int_threshold)
df_mo_tmp = np.zeros((nmo,nmo,naux,nkpt_pairs),dtype=np.complex128)
@ -900,224 +762,4 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
print_ao_bi(mf,kconserv,'W.qp',bielec_int_threshold)
if (print_mo_ints_bi):
print_mo_bi(mf,kconserv,'W.mo.qp',cas_idx,bielec_int_threshold)
def getj3ao(cell,mf, kpts, cas_idx=None, int_threshold = 1E-8):
'''
kpts = List of kpoints coordinates. Cannot be null, for gamma is other script
kmesh = Mesh of kpoints (optional)
cas_idx = List of active MOs. If not specified all MOs are actives
int_threshold = The integral will be not printed in they are bellow that
'''
from pyscf.pbc import ao2mo
from pyscf.pbc import tools
from pyscf.pbc.gto import ecp
import h5py
import scipy
mo_coef_threshold = int_threshold
ovlp_threshold = int_threshold
kin_threshold = int_threshold
ne_threshold = int_threshold
bielec_int_threshold = int_threshold
mo_coeff = mf.mo_coeff
# Mo_coeff actif
mo_k = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
e_k = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
Nk, nao, nmo = mo_k.shape
print("n Kpts", Nk)
print("n active Mos per kpt", nmo)
print("n AOs per kpt", nao)
# naux = mf.with_df.auxcell.nao
# print("n df fitting functions", naux)
with h5py.File(mf.with_df._cderi) as intfile:
# intfile=h5py.File(mf.with_df._cderi,'r')
j3c = intfile.get('j3c')
naosq = nao*nao
naotri = (nao*(nao+1))//2
j3ckeys = list(j3c.keys())
j3ckeys.sort(key=lambda strkey:int(strkey))
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
j3clist = [j3c.get(i+'/0') for i in j3ckeys]
if j3clist==[None]*len(j3clist):
# if using older version, stop before last level
j3clist = [j3c.get(i) for i in j3ckeys]
nkinvsq = 1./np.sqrt(Nk)
# dimensions are (kikj,iaux,jao,kao), where kikj is compound index of kpts i and j
# output dimensions should be reversed (nao, nao, naux, nkptpairs)
j3arr=np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
return j3arr
#nkpt_pairs = j3arr.shape[0]
#df_ao_tmp = np.zeros((nao,nao,naux,nkpt_pairs),dtype=np.complex128)
#if print_ao_ints_df:
# with open('D.qp','w') as outfile:
# pass
# with open('D.qp','a') as outfile:
# for k,kpt_pair in enumerate(j3arr):
# for iaux,dfbasfunc in enumerate(kpt_pair):
# for i,i0 in enumerate(dfbasfunc):
# for j,v in enumerate(i0):
# if (abs(v) > bielec_int_threshold):
# outfile.write(stri4z(i+1,j+1,iaux+1,k+1,v.real,v.imag)+'\n')
# df_ao_tmp[i,j,iaux,k]=v
#def testpyscf2QP(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8):
# '''
# kpts = List of kpoints coordinates. Cannot be null, for gamma is other script
# kmesh = Mesh of kpoints (optional)
# cas_idx = List of active MOs. If not specified all MOs are actives
# int_threshold = The integral will be not printed in they are bellow that
# '''
#
# from pyscf.pbc import ao2mo
# from pyscf.pbc import tools
# from pyscf.pbc.gto import ecp
#
# mo_coef_threshold = int_threshold
# ovlp_threshold = int_threshold
# kin_threshold = int_threshold
# ne_threshold = int_threshold
# bielec_int_threshold = int_threshold
#
# natom = len(cell.atom_coords())
# print('n_atom per kpt', natom)
# print('num_elec per kpt', cell.nelectron)
#
# mo_coeff = mf.mo_coeff
# # Mo_coeff actif
# mo_k = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
# e_k = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
#
# Nk, nao, nmo = mo_k.shape
# print("n Kpts", Nk)
# print("n active Mos per kpt", nmo)
# print("n AOs per kpt", nao)
#
# naux = mf.with_df.get_naoaux()
# print("n df fitting functions", naux)
#
# # _
# # |\ | _ | _ _. ._ |_) _ ._ | _ o _ ._
# # | \| |_| (_ | (/_ (_| | | \ (/_ |_) |_| | _> | (_) | |
# # |
#
# #Total energy shift due to Ewald probe charge = -1/2 * Nelec*madelung/cell.vol =
# shift = tools.pbc.madelung(cell, kpts)*cell.nelectron * -.5
# e_nuc = (cell.energy_nuc() + shift)*Nk
#
# print('nucl_repul', e_nuc)
#
#
# # ___
# # | ._ _|_ _ _ ._ _. | _ |\/| _ ._ _
# # _|_ | | |_ (/_ (_| | (_| | _> | | (_) | | (_)
# # _|
#
# if mf.cell.pseudo:
# v_kpts_ao = np.reshape(mf.with_df.get_pp(kpts=kpts),(Nk,nao,nao))
# else:
# v_kpts_ao = np.reshape(mf.with_df.get_nuc(kpts=kpts),(Nk,nao,nao))
# if len(cell._ecpbas) > 0:
# v_kpts_ao += np.reshape(ecp.ecp_int(cell, kpts),(Nk,nao,nao))
#
# ne_ao = ('ne',v_kpts_ao,ne_threshold)
# ovlp_ao = ('overlap',np.reshape(mf.get_ovlp(cell=cell,kpts=kpts),(Nk,nao,nao)),ovlp_threshold)
# kin_ao = ('kinetic',np.reshape(cell.pbc_intor('int1e_kin',1,1,kpts=kpts),(Nk,nao,nao)),kin_threshold)
#
#
# # ___ _
# # | ._ _|_ _ _ ._ _. | _ |_) o
# # _|_ | | |_ (/_ (_| | (_| | _> |_) |
# # _|
# #
# kconserv = tools.get_kconserv(cell, kpts)
#
#
# import h5py
#
# intfile=h5py.File(mf.with_df._cderi,'r')
#
# j3c = intfile.get('j3c')
# naosq = nao*nao
# naotri = (nao*(nao+1))//2
# j3keys = list(j3c.keys())
# j3keys.sort(key=lambda x:int(x))
# j3clist = [j3c.get(i) for i in j3keys]
# nkinvsq = 1./np.sqrt(Nk)
#
# # dimensions are (kikj,iaux,jao,kao), where kikj is compound index of kpts i and j
# # output dimensions should be reversed (nao, nao, naux, nkptpairs)
# j3arr=np.array([(pad(i.value.reshape([-1,nao,nao]),[naux,nao,nao]) if (i.shape[1] == naosq) else makesq(i.value,naux,nao)) * nkinvsq for i in j3clist])
#
# nkpt_pairs = j3arr.shape[0]
#
# kpair_list=[]
# for i in range(Nk):
# for j in range(Nk):
# if(i>=j):
# kpair_list.append((i,j,idx2_tri((i,j))))
# j3mo = np.array([np.einsum('mij,ik,jl->mkl',j3arr[kij,:,:,:],mo_k[ki,:,:].conj(),mo_k[kj,:,:]) for ki,kj,kij in kpair_list])
#
#
#
# eri_mo = np.zeros(4*[nmo*Nk],dtype=np.complex128)
# eri_ao = np.zeros(4*[nao*Nk],dtype=np.complex128)
#
# for d, kd in enumerate(kpts):
# for c, kc in enumerate(kpts):
# for b, kb in enumerate(kpts):
# a = kconserv[b,c,d]
# ka = kpts[a]
# eri_4d_ao_kpt = mf.with_df.get_ao_eri(kpts=[ka,kb,kc,kd],compact=False).reshape((nao,)*4)
# eri_4d_ao_kpt *= 1./Nk
# for l in range(nao):
# ll=l+d*nao
# for j in range(nao):
# jj=j+c*nao
# for k in range(nao):
# kk=k+b*nao
# for i in range(nao):
# ii=i+a*nao
# v=eri_4d_ao_kpt[i,k,j,l]
# eri_ao[ii,kk,jj,ll]=v
#
# eri_4d_mo_kpt = mf.with_df.ao2mo([mo_k[a], mo_k[b], mo_k[c], mo_k[d]],
# [ka,kb,kc,kd],compact=False).reshape((nmo,)*4)
# eri_4d_mo_kpt *= 1./Nk
# for l in range(nmo):
# ll=l+d*nmo
# for j in range(nmo):
# jj=j+c*nmo
# for k in range(nmo):
# kk=k+b*nmo
# for i in range(nmo):
# ii=i+a*nmo
# v=eri_4d_mo_kpt[i,k,j,l]
# eri_mo[ii,kk,jj,ll]=v
#
# return (mo_k,j3arr,j3mo,eri_ao,eri_mo,kpair_list)
return