mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 01:55:59 +01:00
Merge branch 'dev-stable' into torus
This commit is contained in:
commit
ad3e0d7268
@ -17,12 +17,15 @@ program bi_ort_ints
|
||||
! call test_3e
|
||||
! call test_5idx
|
||||
! call test_5idx2
|
||||
call test_4idx()
|
||||
! call test_4idx()
|
||||
!call test_4idx_n4()
|
||||
!call test_4idx2()
|
||||
!call test_5idx2
|
||||
!call test_5idx
|
||||
|
||||
call test_mos_in_r()
|
||||
call test_int2_grad1_u12_bimo_t()
|
||||
|
||||
end
|
||||
|
||||
subroutine test_5idx2
|
||||
@ -472,4 +475,94 @@ subroutine test_4idx()
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_mos_in_r()
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j
|
||||
double precision :: err_tot, nrm_tot, err_loc, acc_thr
|
||||
|
||||
PROVIDE mos_l_in_r_array_transp_old mos_r_in_r_array_transp_old
|
||||
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
|
||||
|
||||
acc_thr = 1d-13
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, n_points_final_grid
|
||||
err_loc = dabs(mos_l_in_r_array_transp_old(j,i) - mos_l_in_r_array_transp(j,i))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", j, i
|
||||
print*, " old res", mos_l_in_r_array_transp_old(j,i)
|
||||
print*, " new res", mos_l_in_r_array_transp (j,i)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(mos_l_in_r_array_transp_old(j,i))
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on mos_l_in_r_array_transp (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, n_points_final_grid
|
||||
err_loc = dabs(mos_r_in_r_array_transp_old(j,i) - mos_r_in_r_array_transp(j,i))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", j, i
|
||||
print*, " old res", mos_r_in_r_array_transp_old(j,i)
|
||||
print*, " new res", mos_r_in_r_array_transp (j,i)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(mos_r_in_r_array_transp_old(j,i))
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on mos_r_in_r_array_transp (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_int2_grad1_u12_bimo_t()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, m
|
||||
double precision :: err_tot, nrm_tot, err_loc, acc_thr
|
||||
|
||||
PROVIDE int2_grad1_u12_bimo_t_old
|
||||
PROVIDE int2_grad1_u12_bimo_t
|
||||
|
||||
acc_thr = 1d-13
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
err_loc = dabs(int2_grad1_u12_bimo_t_old(ipoint,m,j,i) - int2_grad1_u12_bimo_t(ipoint,m,j,i))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", ipoint, m, j, i
|
||||
print*, " old res", int2_grad1_u12_bimo_t_old(ipoint,m,j,i)
|
||||
print*, " new res", int2_grad1_u12_bimo_t (ipoint,m,j,i)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(int2_grad1_u12_bimo_t_old(ipoint,m,j,i))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on int2_grad1_u12_bimo_t (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
@ -710,6 +710,8 @@ BEGIN_PROVIDER [double precision, noL_0e]
|
||||
|
||||
endif
|
||||
|
||||
print*, " noL_0e =", noL_0e
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -1,360 +1,54 @@
|
||||
|
||||
! ---
|
||||
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! mo_v_ki_bi_ortho_erf_rk_cst_mu(k,i,ip) = int dr chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1 )/(2|r - R_ip|) on the BI-ORTHO MO basis
|
||||
!
|
||||
! where phi_k(r) is a LEFT MOs and phi_i(r) is a RIGHT MO
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,v_ij_erf_rk_cst_mu,mo_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho( v_ij_erf_rk_cst_mu (1,1,ipoint), size(v_ij_erf_rk_cst_mu, 1) &
|
||||
, mo_v_ki_bi_ortho_erf_rk_cst_mu(1,1,ipoint), size(mo_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu = mo_v_ki_bi_ortho_erf_rk_cst_mu * 0.5d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the BI-ORTHO MO basis
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,j,i) = mo_v_ki_bi_ortho_erf_rk_cst_mu(j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, 3, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! mo_x_v_ki_bi_ortho_erf_rk_cst_mu(k,i,m,ip) = int dr x(m) * chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1)/2|r - R_ip| on the BI-ORTHO MO basis
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => x(m) = x, m=2 => x(m) = y, m=3 => x(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,x_v_ij_erf_rk_cst_mu_transp,mo_x_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,1,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,1,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,2,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,2,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,3,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,3,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu = 0.5d0 * mo_x_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3, n_points_final_grid)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print *, ' providing int2_grad1_u12_ao_transp ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
if(test_cycle_tc) then
|
||||
|
||||
PROVIDE int2_grad1_u12_ao_test
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
FREE int2_grad1_u12_ao_test
|
||||
|
||||
else
|
||||
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_ao_transp (min) = ', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE int2_grad1_u12_ao_transp
|
||||
|
||||
!print *, ' providing int2_grad1_u12_bimo_transp ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,int2_grad1_u12_ao_transp,int2_grad1_u12_bimo_transp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!FREE int2_grad1_u12_ao_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_bimo_transp (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!call wall_time(wall0)
|
||||
!print *, ' providing int2_grad1_u12_bimo_t ...'
|
||||
integer :: i, j, ipoint
|
||||
double precision :: tt1, tt2
|
||||
double precision, allocatable :: tmp(:,:,:,:)
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE int2_grad1_u12_bimo_transp
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
|
||||
call wall_time(tt1)
|
||||
|
||||
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
|
||||
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
int2_grad1_u12_bimo_t(ipoint,1,j,i) = int2_grad1_u12_bimo_transp(j,i,1,ipoint)
|
||||
int2_grad1_u12_bimo_t(ipoint,2,j,i) = int2_grad1_u12_bimo_transp(j,i,2,ipoint)
|
||||
int2_grad1_u12_bimo_t(ipoint,3,j,i) = int2_grad1_u12_bimo_transp(j,i,3,ipoint)
|
||||
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
|
||||
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
|
||||
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
FREE int2_grad1_u12_bimo_transp
|
||||
deallocate(tmp)
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_bimo_t (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!call wall_time(wall0)
|
||||
!print *, ' providing int2_grad1_u12_ao_t ...'
|
||||
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_t(ipoint,1,j,i) = int2_grad1_u12_ao(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_t(ipoint,2,j,i) = int2_grad1_u12_ao(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_t(ipoint,3,j,i) = int2_grad1_u12_ao(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_ao_t (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,1,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,1,ipoint)
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,2,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,2,ipoint)
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,3,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,3,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! x_W_ki_bi_ortho_erf_rk(ip,m,k,i) = \int dr chi_k(r) \frac{(1 - erf(mu |r-R_ip|))}{2|r-R_ip|} (x(m)-R_ip(m)) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i, k
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,k,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk(ipoint,m,k,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,k,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_grid, 3, mo_num)]
|
||||
BEGIN_DOC
|
||||
! x_W_ki_bi_ortho_erf_rk_diag(ip,m,i) = \int dr chi_i(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk_diag,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk_diag(ipoint,m,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,i,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,i,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
|
||||
call wall_time(tt2)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for int2_grad1_u12_bimo_t (sec) = ', (tt2 - tt1)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
362
plugins/local/bi_ort_ints/semi_num_ints_mo_old.irp.f
Normal file
362
plugins/local/bi_ort_ints/semi_num_ints_mo_old.irp.f
Normal file
@ -0,0 +1,362 @@
|
||||
|
||||
! ---
|
||||
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! mo_v_ki_bi_ortho_erf_rk_cst_mu(k,i,ip) = int dr chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1 )/(2|r - R_ip|) on the BI-ORTHO MO basis
|
||||
!
|
||||
! where phi_k(r) is a LEFT MOs and phi_i(r) is a RIGHT MO
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,v_ij_erf_rk_cst_mu,mo_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho( v_ij_erf_rk_cst_mu (1,1,ipoint), size(v_ij_erf_rk_cst_mu, 1) &
|
||||
, mo_v_ki_bi_ortho_erf_rk_cst_mu(1,1,ipoint), size(mo_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu = mo_v_ki_bi_ortho_erf_rk_cst_mu * 0.5d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the BI-ORTHO MO basis
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, i, j
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,j,i) = mo_v_ki_bi_ortho_erf_rk_cst_mu(j,i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
! TODO :: optimization : transform into a DGEMM
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, 3, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! mo_x_v_ki_bi_ortho_erf_rk_cst_mu(k,i,m,ip) = int dr x(m) * chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1)/2|r - R_ip| on the BI-ORTHO MO basis
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => x(m) = x, m=2 => x(m) = y, m=3 => x(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,x_v_ij_erf_rk_cst_mu_transp,mo_x_v_ki_bi_ortho_erf_rk_cst_mu)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,1,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,1,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,2,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,2,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,3,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
|
||||
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,3,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu = 0.5d0 * mo_x_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3, n_points_final_grid)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print *, ' providing int2_grad1_u12_ao_transp ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
if(test_cycle_tc) then
|
||||
|
||||
PROVIDE int2_grad1_u12_ao_test
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
FREE int2_grad1_u12_ao_test
|
||||
|
||||
else
|
||||
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_ao_transp (min) = ', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE int2_grad1_u12_ao_transp
|
||||
|
||||
!print *, ' providing int2_grad1_u12_bimo_transp ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid,int2_grad1_u12_ao_transp,int2_grad1_u12_bimo_transp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
|
||||
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!FREE int2_grad1_u12_ao_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_bimo_transp (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t_old, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!call wall_time(wall0)
|
||||
!print *, ' providing int2_grad1_u12_bimo_t_old ...'
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE int2_grad1_u12_bimo_transp
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
int2_grad1_u12_bimo_t_old(ipoint,1,j,i) = int2_grad1_u12_bimo_transp(j,i,1,ipoint)
|
||||
int2_grad1_u12_bimo_t_old(ipoint,2,j,i) = int2_grad1_u12_bimo_transp(j,i,2,ipoint)
|
||||
int2_grad1_u12_bimo_t_old(ipoint,3,j,i) = int2_grad1_u12_bimo_transp(j,i,3,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
FREE int2_grad1_u12_bimo_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_bimo_t_old (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!call wall_time(wall0)
|
||||
!print *, ' providing int2_grad1_u12_ao_t ...'
|
||||
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
int2_grad1_u12_ao_t(ipoint,1,j,i) = int2_grad1_u12_ao(j,i,ipoint,1)
|
||||
int2_grad1_u12_ao_t(ipoint,2,j,i) = int2_grad1_u12_ao(j,i,ipoint,2)
|
||||
int2_grad1_u12_ao_t(ipoint,3,j,i) = int2_grad1_u12_ao(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_ao_t (min) =', (wall1 - wall0) / 60.d0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,1,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,1,ipoint)
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,2,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,2,ipoint)
|
||||
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,3,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,3,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! x_W_ki_bi_ortho_erf_rk(ip,m,k,i) = \int dr chi_k(r) \frac{(1 - erf(mu |r-R_ip|))}{2|r-R_ip|} (x(m)-R_ip(m)) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i, k
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,k,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk(ipoint,m,k,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,k,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_grid, 3, mo_num)]
|
||||
BEGIN_DOC
|
||||
! x_W_ki_bi_ortho_erf_rk_diag(ip,m,i) = \int dr chi_i(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
|
||||
!
|
||||
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
|
||||
!
|
||||
! R_ip = the "ip"-th point of the DFT Grid
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: ipoint, m, i
|
||||
double precision :: xyz
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
|
||||
!call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint,m,i,xyz) &
|
||||
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk_diag,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
xyz = final_grid_points(m,ipoint)
|
||||
x_W_ki_bi_ortho_erf_rk_diag(ipoint,m,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,i,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,i,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -1,135 +1,70 @@
|
||||
|
||||
! TODO: left & right MO without duplicate AO calculation
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array, (mo_num, n_points_final_grid)]
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid, mo_num)]
|
||||
&BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith RIGHT mo on the jth grid point
|
||||
!
|
||||
! mos_l_in_r_array_transp(i,j) = value of the jth left-mo on the ith grid point
|
||||
! mos_r_in_r_array_transp(i,j) = value of the jth right-mo on the ith grid point
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, r, mos_array) &
|
||||
!$OMP SHARED (mos_r_in_r_array, n_points_final_grid, mo_num, final_grid_points)
|
||||
integer :: i
|
||||
double precision :: tt0, tt1, tt2, tt3
|
||||
double precision :: r(3)
|
||||
double precision, allocatable :: aos_r(:,:)
|
||||
|
||||
call wall_time(tt0)
|
||||
|
||||
allocate(aos_r(ao_num,n_points_final_grid))
|
||||
|
||||
! provide everything required before OpenMP
|
||||
r(1) = final_grid_points(1,1)
|
||||
r(2) = final_grid_points(2,1)
|
||||
r(3) = final_grid_points(3,1)
|
||||
call give_all_aos_at_r(r, aos_r(1,1))
|
||||
|
||||
|
||||
call wall_time(tt2)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, r) &
|
||||
!$OMP SHARED(n_points_final_grid, final_grid_points, aos_r)
|
||||
!$OMP DO
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_r_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
call give_all_aos_at_r(r, aos_r(1,i))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! ---
|
||||
call wall_time(tt3)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for AOs on r (sec) = ', (tt3 - tt2)
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
call dgemm("T", "N", n_points_final_grid, mo_num, ao_num, &
|
||||
1.d0, &
|
||||
aos_r(1,1), ao_num, &
|
||||
mo_l_coef(1,1), ao_num, &
|
||||
0.d0, &
|
||||
mos_l_in_r_array_transp(1,1), n_points_final_grid)
|
||||
|
||||
implicit none
|
||||
integer :: i,j
|
||||
call dgemm("T", "N", n_points_final_grid, mo_num, ao_num, &
|
||||
1.d0, &
|
||||
aos_r(1,1), ao_num, &
|
||||
mo_r_coef(1,1), ao_num, &
|
||||
0.d0, &
|
||||
mos_r_in_r_array_transp(1,1), n_points_final_grid)
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array_transp(i,j) = mos_r_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_r_at_r(r, mos_r_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_array(i) = ith RIGHT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_r_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_r_coef_transp, mo_num, aos_array, 1, 0.d0, mos_r_array, 1)
|
||||
|
||||
end subroutine give_all_mos_r_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array, (mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith LEFT mo on the jth grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,mos_array,j) &
|
||||
!$OMP SHARED(mos_l_in_r_array,n_points_final_grid,mo_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_l_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_l_at_r(r, mos_l_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_array(i) = ith LEFT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_l_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_l_coef_transp, mo_num, aos_array, 1, 0.d0, mos_l_array, 1)
|
||||
|
||||
end subroutine give_all_mos_l_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid,mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array_transp(i,j) = mos_l_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
deallocate(aos_r)
|
||||
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for mos_l_in_r_array_transp & mos_r_in_r_array_transp (sec) = ', (tt1 - tt0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
137
plugins/local/bi_ortho_mos/bi_ort_mos_in_r_old.irp.f
Normal file
137
plugins/local/bi_ortho_mos/bi_ort_mos_in_r_old.irp.f
Normal file
@ -0,0 +1,137 @@
|
||||
|
||||
! TODO: left & right MO without duplicate AO calculation
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array, (mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith RIGHT mo on the jth grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, r, mos_array) &
|
||||
!$OMP SHARED (mos_r_in_r_array, n_points_final_grid, mo_num, final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_r_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp_old, (n_points_final_grid, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_in_r_array_transp_old(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_r_in_r_array_transp_old(i,j) = mos_r_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_r_at_r(r, mos_r_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_r_array(i) = ith RIGHT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_r_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_r_coef_transp, mo_num, aos_array, 1, 0.d0, mos_r_array, 1)
|
||||
|
||||
end subroutine give_all_mos_r_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array, (mo_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith LEFT mo on the jth grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,mos_array,j) &
|
||||
!$OMP SHARED(mos_l_in_r_array,n_points_final_grid,mo_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_l_at_r(r, mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array(j,i) = mos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_all_mos_l_at_r(r, mos_l_array)
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_array(i) = ith LEFT MO function evaluated at "r"
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_l_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
||||
call give_all_aos_at_r(r, aos_array)
|
||||
call dgemv('N', mo_num, ao_num, 1.d0, mo_l_coef_transp, mo_num, aos_array, 1, 0.d0, mos_l_array, 1)
|
||||
|
||||
end subroutine give_all_mos_l_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp_old, (n_points_final_grid,mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_in_r_array_transp_old(i,j) = value of the jth mo on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, mo_num
|
||||
mos_l_in_r_array_transp_old(i,j) = mos_l_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -155,6 +155,7 @@ subroutine run_stochastic_cipsi
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
|
||||
call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
|
||||
|
@ -1,7 +1,25 @@
|
||||
[log_jpsi]
|
||||
type: logical
|
||||
doc: If |true|, the Jpsi is taken as log(1+psi_cor)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[mu_of_r_tc]
|
||||
type: character*(32)
|
||||
doc: type of the mu(r): [ Standard | Erfmu | Erfmugauss ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: Standard
|
||||
|
||||
[mu_of_r_av]
|
||||
type: logical
|
||||
doc: If |true|, take the second formula for mu(r)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[j2e_type]
|
||||
type: character*(32)
|
||||
doc: type of the 2e-Jastrow: [ None | Mu | Mu_Nu | Mur | Boys | Boys_Handy | Qmckl ]
|
||||
doc: type of the 2e-Jastrow: [ None | Mu | Mugauss | Mu_Nu | Mur | Murgauss | Bump | Boys | Boys_Handy | Qmckl ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: Mu
|
||||
|
||||
|
@ -232,6 +232,14 @@
|
||||
|
||||
! ---
|
||||
|
||||
do i_nucl = 1, nucl_num
|
||||
do p = 1, jBH_size
|
||||
if(jBH_m(p,i_nucl) .eq. jBH_n(p,i_nucl)) then
|
||||
jBH_c(p,i_nucl) = 0.5d0 * jBH_c(p,i_nucl)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ' parameters for Boys-Handy Jastrow'
|
||||
print *, ' nb of terms per nucleus = ', jBH_size
|
||||
|
||||
|
@ -4,3 +4,4 @@ jastrow
|
||||
ao_tc_eff_map
|
||||
bi_ortho_mos
|
||||
trexio
|
||||
mu_of_r
|
||||
|
28
plugins/local/non_h_ints_mu/deb_deriv_mu.irp.f
Normal file
28
plugins/local/non_h_ints_mu/deb_deriv_mu.irp.f
Normal file
@ -0,0 +1,28 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
double precision :: x,mu_min,dmu,mu_max, mu, mu_p, mu_m
|
||||
double precision :: j_simple,j_p, j_m,numeric_d_mu,d_dx_mu
|
||||
double precision :: accu
|
||||
integer :: npt,i
|
||||
npt = 1000
|
||||
mu_min = 0.3d0
|
||||
mu_max = 10.d0
|
||||
dmu = (mu_max - mu_min)/dble(npt)
|
||||
x = 0.7d0
|
||||
mu = mu_min
|
||||
do i = 1, npt
|
||||
call get_deriv_mu_j12(x,mu,d_dx_mu)
|
||||
mu_p = mu + dmu
|
||||
mu_m = mu - dmu
|
||||
j_p = j_simple(x,mu_p)
|
||||
j_m = j_simple(x,mu_m)
|
||||
numeric_d_mu = 0.5d0 * (j_p - j_m)/dmu
|
||||
print*,mu
|
||||
print*,numeric_d_mu,d_dx_mu,dabs(d_dx_mu-numeric_d_mu)
|
||||
accu += dabs(d_dx_mu-numeric_d_mu)
|
||||
mu += dmu
|
||||
enddo
|
||||
accu *= dmu
|
||||
print*,'accu = ',accu
|
||||
end
|
||||
|
98
plugins/local/non_h_ints_mu/deb_j_bump.irp.f
Normal file
98
plugins/local/non_h_ints_mu/deb_j_bump.irp.f
Normal file
@ -0,0 +1,98 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast_mu_r1(3),j_bump
|
||||
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
! call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast_mu_r1)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
jast_p = j_bump(r1bis,r2,a_boys)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
jast_m = j_bump(r1bis,r2,a_boys)
|
||||
|
||||
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast_mu_r1
|
||||
print*,num_grad_jast_mu_r1
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
|
||||
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
|
||||
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
|
||||
|
||||
dr = 0.0001d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
|
||||
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
|
||||
! print*,jast_mu_r1_p,jast_mu_r1_m
|
||||
enddo
|
||||
print*,'/////'
|
||||
print*,mu_der_r1
|
||||
print*,num_grad_mu_r1
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
62
plugins/local/non_h_ints_mu/deb_j_gauss.irp.f
Normal file
62
plugins/local/non_h_ints_mu/deb_j_gauss.irp.f
Normal file
@ -0,0 +1,62 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,j12_mu
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad1_j12_mu(r1, r2, grad_jast)
|
||||
grad_jast = - grad_jast
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
jast_p = j12_mu(r1bis, r2)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
jast_m = j12_mu(r1bis, r2)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
97
plugins/local/non_h_ints_mu/deb_j_mu_of_r.irp.f
Normal file
97
plugins/local/non_h_ints_mu/deb_j_mu_of_r.irp.f
Normal file
@ -0,0 +1,97 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
! call routine_test_mu_of_r
|
||||
call routine_test_mu_of_r_tot
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r_tot
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast_mu_r1(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
|
||||
|
||||
dr = 0.000001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call get_j_sum_mu_of_r(r1bis,r2,jast_p)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call get_j_sum_mu_of_r(r1bis,r2,jast_m)
|
||||
|
||||
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.10.d0*dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm,dabs(error/norm)
|
||||
print*,grad_jast_mu_r1
|
||||
print*,num_grad_jast_mu_r1
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_test_mu_of_r
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
|
||||
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
|
||||
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
|
||||
|
||||
dr = 0.0001d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
|
||||
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
|
||||
! print*,jast_mu_r1_p,jast_mu_r1_m
|
||||
enddo
|
||||
print*,'/////'
|
||||
print*,mu_der_r1
|
||||
print*,num_grad_mu_r1
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
131
plugins/local/non_h_ints_mu/deb_j_psi.irp.f
Normal file
131
plugins/local/non_h_ints_mu/deb_j_psi.irp.f
Normal file
@ -0,0 +1,131 @@
|
||||
program test_j_mu_of_r
|
||||
implicit none
|
||||
call routine_deb_j_psi
|
||||
! call routine_deb_denom
|
||||
end
|
||||
|
||||
subroutine routine_deb_j_psi
|
||||
implicit none
|
||||
integer :: ipoint,k
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
accu_grad = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call get_grad_r1_jastrow_psi(r1,r2,grad_jast,jast)
|
||||
! grad_jast = - grad_jast
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_p)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_m)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine routine_deb_denom
|
||||
implicit none
|
||||
integer :: ipoint,k,i,j
|
||||
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
|
||||
double precision :: accu_grad(3)
|
||||
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
|
||||
double precision :: jast_p,jast_m,num_grad_jast(3)
|
||||
|
||||
dr = 0.00001d0
|
||||
r2 = 0.d0
|
||||
r2(1) = 0.5d0
|
||||
r2(2) = -0.1d0
|
||||
r2(3) = 1.0d0
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
|
||||
do i = 1, 1
|
||||
do j = 1, 1
|
||||
accu_grad = 0.d0
|
||||
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r1(1:3) = final_grid_points(1:3,ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast, grad_jast)
|
||||
double precision :: norm,error
|
||||
norm = 0.D0
|
||||
do k = 1, 3
|
||||
r1bis= r1
|
||||
r1bis(k) += dr
|
||||
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_p, grad_jast_bis)
|
||||
|
||||
r1bis= r1
|
||||
r1bis(k) -= dr
|
||||
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
|
||||
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_m, grad_jast_bis)
|
||||
|
||||
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
|
||||
norm += num_grad_jast(k)*num_grad_jast(k)
|
||||
enddo
|
||||
error = 0.d0
|
||||
do k = 1, 3
|
||||
error += dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
error *= 0.33333333d0
|
||||
norm = dsqrt(norm)
|
||||
if(norm.gt.1.d-05)then
|
||||
if(dabs(error/norm).gt.dr)then
|
||||
print*,'/////'
|
||||
print*,error,norm
|
||||
print*,grad_jast
|
||||
print*,num_grad_jast
|
||||
endif
|
||||
endif
|
||||
do k = 1,3
|
||||
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'i,j = ',i,j
|
||||
print*,'accu_grad = '
|
||||
print*, accu_grad
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
90
plugins/local/non_h_ints_mu/j_bump.irp.f
Normal file
90
plugins/local/non_h_ints_mu/j_bump.irp.f
Normal file
@ -0,0 +1,90 @@
|
||||
double precision function wigner_radius(rho)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: rho
|
||||
wigner_radius = 4.d0 * pi * rho * 0.333333333333d0
|
||||
wigner_radius = wigner_radius**(-0.3333333d0)
|
||||
end
|
||||
|
||||
double precision function j_bump(r1,r2,a)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r1(3),r2(3),a
|
||||
double precision :: inv_a,factor,x_scaled,scalar
|
||||
double precision :: r12
|
||||
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
inv_a = 1.d0/a
|
||||
x_scaled = r12*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
j_bump = 0.5d0 * (r12-a) * dexp(-x_scaled)
|
||||
end
|
||||
|
||||
subroutine get_grad_j_bump(x,a,grad)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gradient of the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! d/dx j(x,a) = 1/(2 pi a^2) * exp[-(x/(a*sqrt(pi)))^2] * (pi a^2 + 2 a x - 2x^2)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,a
|
||||
double precision, intent(out) :: grad
|
||||
double precision :: inv_a,factor,x_scaled,scalar
|
||||
inv_a = 1.d0/a
|
||||
factor = 0.5d0*inv_pi*inv_a*inv_a
|
||||
x_scaled = x*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
grad = factor * dexp(-x_scaled) * (pi*a*a + 2.d0 * a*x - 2.d0*x*x)
|
||||
end
|
||||
|
||||
subroutine get_d_da_j_bump(x,a,d_da)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Derivative with respect by to the parameter "a" of the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! d/da j(x,a) = - 1/(pi*a^3) * exp[-(x/(a*sqrt(pi)))^2] * (-2 x^3 + 2 a x^2 + pi a^x3)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,a
|
||||
double precision, intent(out) :: d_da
|
||||
double precision :: factor, inv_a,x_scaled,scalar
|
||||
inv_a = 1.d0/a
|
||||
factor = inv_a*inv_a*inv_a*inv_pi
|
||||
x_scaled = x*inv_a*inv_sq_pi
|
||||
x_scaled*= x_scaled
|
||||
d_da = factor * dexp(-x_scaled) * (-2.d0 * x*x*x + 2.d0*x*x*a+pi*a*a*a)
|
||||
end
|
||||
|
||||
subroutine get_grad_j_bump_mu_of_r(r1,r2,grad_j_bump)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dx1 j(x,a(r1,r2)) where j(x,a) is the Jastrow with a bump
|
||||
!
|
||||
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
|
||||
!
|
||||
! a(r1,r2) = [rho(r1) a(r1) + rho(r2) a(r2)]/[rho(r1) + rho(r2)]
|
||||
!
|
||||
! d/dx1 j(x,a) = d/dx1 j(x,a(r1,r2))
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: grad_j_bump(3)
|
||||
double precision :: r12,r12_vec(3),grad_scal,inv_r12
|
||||
r12_vec = r1 - r2
|
||||
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
call get_grad_j_bump(r12,a_boys,grad_scal)
|
||||
if(r12.lt.1.d-10)then
|
||||
grad_j_bump = 0.d0
|
||||
else
|
||||
grad_j_bump = grad_scal * r12_vec/r12
|
||||
endif
|
||||
end
|
@ -31,7 +31,7 @@
|
||||
grad1_u12_squared_num = 0.d0
|
||||
|
||||
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. &
|
||||
(j2e_type .eq. "Mur") ) then
|
||||
(j2e_type .eq. "Mur").or.(j2e_type .eq. "Mugauss") .or. (j2e_type .eq. "Murgauss")) then
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
|
306
plugins/local/non_h_ints_mu/jast_deriv_mu_of_r.irp.f
Normal file
306
plugins/local/non_h_ints_mu/jast_deriv_mu_of_r.irp.f
Normal file
@ -0,0 +1,306 @@
|
||||
subroutine get_j_sum_mu_of_r(r1,r2,jast)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast
|
||||
double precision :: mu_r1, dm_r1, grad_mu_r1(3), grad_dm_r1(3), j_mu_r1
|
||||
double precision :: mu_r2, dm_r2, grad_mu_r2(3), grad_dm_r2(3), j_mu_r2
|
||||
double precision :: j12_mu_input,mu_tot,r12,j_simple
|
||||
jast = 0.d0
|
||||
if(murho_type==0)then
|
||||
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_mu_r1 = j12_mu_input(r1, r2, mu_r1)
|
||||
j_mu_r2 = j12_mu_input(r1, r2, mu_r2)
|
||||
if(dm_r1 + dm_r2.lt.1.d-7)return
|
||||
jast = (dm_r1 * j_mu_r1 + dm_r2 * j_mu_r2) / (dm_r1 + dm_r2)
|
||||
else if(murho_type==1)then
|
||||
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
|
||||
jast = j12_mu_input(r1, r2, mu_tot)
|
||||
else if(murho_type==2)then
|
||||
! MU(r1,r2) = (rho(1) * mu(r1)+ rho(2) * mu(r2))/(rho(1)+rho(2))
|
||||
! J(r1,r2) = j(MU(r1,r2),r12)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
double precision :: mu_tmp, dm_tot, dm_tot_inv
|
||||
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
|
||||
if(dm_tot.lt.1.d-12)then
|
||||
dm_tot_inv = 1.d+12
|
||||
else
|
||||
dm_tot_inv = 1.d0/dm_tot
|
||||
endif
|
||||
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
|
||||
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
|
||||
r12 = (r1(1) - r2(1)) * (r1(1) - r2(1))
|
||||
r12 += (r1(2) - r2(2)) * (r1(2) - r2(2))
|
||||
r12 += (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
r12 = dsqrt(r12)
|
||||
jast = j_simple(r12,mu_tot)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast, grad_jast(3)
|
||||
jast = 0.d0
|
||||
grad_jast = 0.d0
|
||||
double precision :: num, denom, grad_num(3), grad_denom(3)
|
||||
double precision :: j_r1, grad_j_r1(3),j_r2, grad_j_r2(3)
|
||||
double precision :: dm_r1, grad_dm_r1(3), grad_jmu_r2(3)
|
||||
double precision :: dm_r2, grad_dm_r2(3),mu_r2, grad_mu_r2(3),mu_r1
|
||||
double precision :: j12_mu_input,r12,grad_mu_r1(3),grad_jmu_r1(3)
|
||||
double precision :: mu_tot,dx,dy,dz,r12_vec(3),d_dmu_j,d_dr12_j
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12.gt.1.d-10)then
|
||||
r12_vec(1) = dx
|
||||
r12_vec(2) = dy
|
||||
r12_vec(3) = dz
|
||||
r12_vec *= 1.d0/r12
|
||||
! r12_vec = grad_r1 (r12)
|
||||
else
|
||||
r12 = 1.d-10
|
||||
r12_vec = 0.d0
|
||||
endif
|
||||
|
||||
if(murho_type==0)then
|
||||
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
|
||||
!
|
||||
! = num(r1,r2) / denom(r1,r2)
|
||||
!
|
||||
! d/dx1 J(r1,r2) = [denom(r1,r2) X d/dx1 num(r1,r2) - num(r1,r2) X d/dx1 denom(r1,r2) ] / denom(r1,r2)^2
|
||||
!
|
||||
! d/dx1 num(r1,r2) = j(mu(r1),r12)*d/dx1 rho(r1) + rho(r1) * d/dx1 j(mu(r1),r12)
|
||||
! + rho(r2) d/dx1 j(mu(r2),r12)
|
||||
! d/dx1 denom(r1,r2) = d/dx1 rho(r1)
|
||||
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
|
||||
num = dm_r1 * j_r1 + dm_r2 * j_r2
|
||||
denom = dm_r1 + dm_r2
|
||||
if(denom.lt.1.d-7)return
|
||||
jast = num / denom
|
||||
|
||||
grad_denom = grad_dm_r1
|
||||
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
|
||||
grad_num = j_r1 * grad_dm_r1 + dm_r1 * grad_j_r1 + dm_r2 * grad_jmu_r2
|
||||
grad_jast = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type==1)then
|
||||
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
|
||||
!
|
||||
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
|
||||
! + d/dMU [j(MU,r12)]
|
||||
! x d/d(mu(r1)) MU(r1,r2)
|
||||
! x d/dx1 mu(r1)
|
||||
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
|
||||
! + e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
|
||||
! x 0.5
|
||||
! x d/dx1 mu(r1)
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
|
||||
call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
|
||||
grad_jast = grad_jmu_r1
|
||||
grad_jast+= dexp(-r12*mu_tot*r12*mu_tot) * inv_sq_pi_2 /(mu_tot* mu_tot) * 0.5d0 * grad_mu_r1
|
||||
else if(murho_type==2)then
|
||||
! MU(r1,r2) = beta * (rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2))/(rho(1)**alpha+rho(2)**alpha)
|
||||
! J(r1,r2) = j(MU(r1,r2),r12)
|
||||
!
|
||||
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
|
||||
! + d/dMU [j(MU,r12)]
|
||||
! x d/d(mu(r1)) MU(r1,r2)
|
||||
! x d/dx1 mu(r1)
|
||||
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
|
||||
! + 0.5 e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
|
||||
! x d/dx1 MU(r1,r2)
|
||||
! with d/dx1 MU(r1,r2) = beta * {[mu(1) d/dx1 [rho(1)**alpha] + rho(1)**alpha * d/dx1 mu(1)](rho(1)**alpha+rho(2)**alpha)
|
||||
! - MU(1,2) d/dx1 [rho(1)]**alpha}/(rho(1)**alpha+rho(2)**alpha)^2
|
||||
! d/dx1 [rho(1)]**alpha = alpha [rho(1)]**(alpha-1) d/dx1 rho(1)
|
||||
!
|
||||
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
double precision :: dm_tot,dm_tot_inv,grad_mu_tot(3),mu_tmp,grad_dm_r1_alpha(3),d_dx_j
|
||||
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
|
||||
grad_dm_r1_alpha = a_boys * dm_r1**(a_boys-1) * grad_dm_r1
|
||||
if(dm_tot.lt.1.d-12)then
|
||||
dm_tot_inv = 1.d+12
|
||||
else
|
||||
dm_tot_inv = 1.d0/dm_tot
|
||||
endif
|
||||
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
|
||||
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
|
||||
grad_mu_tot = ( mu_r1 * grad_dm_r1_alpha + dm_r1**a_boys * grad_mu_r1 ) * dm_tot &
|
||||
- mu_tmp * grad_dm_r1_alpha
|
||||
grad_mu_tot *= dm_tot_inv * dm_tot_inv * nu_erf
|
||||
call get_deriv_r12_j12(r12,mu_tot,d_dr12_j) ! d/dr12 j(MU(r1,r2,r12)
|
||||
! d/dx1 j(MU(r1,r2),r12) | MU(r1,r2) = cst
|
||||
! d/dr12 j(MU(r1,r2,r12) x d/dx1 r12
|
||||
grad_jmu_r1 = d_dr12_j * r12_vec
|
||||
! call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
|
||||
grad_jast = grad_jmu_r1
|
||||
! d/dMU j(MU(r1,r2),r12)
|
||||
call get_deriv_mu_j12(r12,mu_tot,d_dmu_j)
|
||||
grad_jast+= d_dmu_j * grad_mu_tot
|
||||
else if(murho_type==-1)then
|
||||
! J(r1,r2) = 0.5 * [j(mu(r1),r12) + j(mu(r2),r12)]
|
||||
!
|
||||
! d/dx1 J(r1,r2) = 0.5 * (d/dx1 j(mu(r1),r12) + d/dx1 j(mu(r2),r12))
|
||||
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
|
||||
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
|
||||
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
|
||||
jast = 0.5d0 * (j_r1 + j_r2)
|
||||
grad_jast = 0.5d0 * (grad_j_r1 + grad_jmu_r2)
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j_mu_of_r_1(r1,r2,jast, grad_jast, dm_r1, grad_dm_r1)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! grad_r1 of j(mu(r1),r12)
|
||||
!
|
||||
!
|
||||
! d/dx1 j(mu(r1),r12) = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 ) d/dx1 mu(r1)
|
||||
! + d/dx1 j(mu(r1),r12)
|
||||
!
|
||||
! with
|
||||
!
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
!
|
||||
! and d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
! d/d mu j(mu,r12) = e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
|
||||
!
|
||||
! here mu(r1) is obtained by MU MEAN FIELD
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: jast, grad_jast(3),dm_r1, grad_dm_r1(3)
|
||||
double precision :: dx, dy, dz, r12, mu_der(3)
|
||||
double precision :: mu_tmp, tmp, grad(3), mu_val
|
||||
jast = 0.d0
|
||||
grad = 0.d0
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
! get mu(r1) == mu_val and its gradient d/dx1 mu(r1) == mu_der
|
||||
call grad_mu_of_r_mean_field(r1,mu_val, dm_r1, mu_der, grad_dm_r1)
|
||||
mu_tmp = mu_val * r12
|
||||
! evalulation of the jastrow j(mu(r1),r12)
|
||||
jast = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_val
|
||||
|
||||
! tmp = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 )
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
! grad =
|
||||
grad(1) = tmp * mu_der(1)
|
||||
grad(2) = tmp * mu_der(2)
|
||||
grad(3) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) return
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = grad(1) + tmp * dx
|
||||
grad(2) = grad(2) + tmp * dy
|
||||
grad(3) = grad(3) + tmp * dz
|
||||
|
||||
grad_jast = grad
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu_input(r1, r2, mu)
|
||||
|
||||
BEGIN_DOC
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision :: mu_tmp, r12
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
mu_tmp = mu * r12
|
||||
|
||||
j12_mu_input = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu
|
||||
|
||||
end
|
||||
|
||||
subroutine grad_j12_mu_input(r1, r2, mu, grad_jmu,r12)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
|
||||
!
|
||||
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision, intent(out):: grad_jmu(3),r12
|
||||
double precision :: mu_tmp, dx, dy, dz, grad(3), tmp
|
||||
grad_jmu = 0.d0
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
mu_tmp = mu * r12
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
|
||||
grad_jmu = grad
|
||||
end
|
||||
|
||||
subroutine j12_and_grad_j12_mu_input(r1, r2, mu, jmu, grad_jmu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! jmu = j(mu,r12)
|
||||
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
|
||||
!
|
||||
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3), r2(3), mu
|
||||
double precision, intent(out):: grad_jmu(3), jmu
|
||||
double precision :: mu_tmp, r12, dx, dy, dz, grad(3), tmp
|
||||
double precision :: erfc_mur12,inv_mu
|
||||
inv_mu = 1.d0/mu
|
||||
|
||||
grad_jmu = 0.d0 ! initialization when r12 --> 0
|
||||
jmu = - inv_sq_pi_2 * inv_mu ! initialization when r12 --> 0
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
erfc_mur12 = (1.d0 - derf(mu_tmp))
|
||||
mu_tmp = mu * r12
|
||||
tmp = 0.5d0 * erfc_mur12 / r12 ! d/dx1 j(mu(r1),r12)
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
|
||||
grad_jmu = grad
|
||||
|
||||
jmu= 0.5d0 * r12 * erfc_mur12 - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) * inv_mu
|
||||
|
||||
|
||||
end
|
@ -1,8 +1,73 @@
|
||||
subroutine get_deriv_r12_j12(x,mu,d_dx_j)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! d/dr12 j(mu,r12)
|
||||
END_DOC
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision, intent(out) :: d_dx_j
|
||||
|
||||
d_dx_j = 0.d0
|
||||
if(x .lt. 1d-10) return
|
||||
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
|
||||
d_dx_j = 0.5d0 * (1.d0 - derf(mu * x))
|
||||
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
|
||||
double precision :: x_tmp
|
||||
x_tmp = mu * x
|
||||
! gradient of j(mu,x)
|
||||
d_dx_j = 0.5d0 * (1.d0 - derf(x_tmp))
|
||||
|
||||
! gradient of gaussian additional term
|
||||
x_tmp *= alpha_mu_gauss
|
||||
x_tmp *= x_tmp
|
||||
d_dx_j += -0.5d0 * mu * c_mu_gauss * x * dexp(-x_tmp)
|
||||
else
|
||||
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine get_deriv_mu_j12(x,mu,d_d_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dmu j(mu,r12)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision, intent(out) :: d_d_mu
|
||||
double precision :: x_tmp,inv_mu_2,inv_alpha_2
|
||||
|
||||
d_d_mu = 0.d0
|
||||
if(x .lt. 1d-10) return
|
||||
x_tmp = x*mu
|
||||
if(mu.lt.1.d-10) return
|
||||
inv_mu_2 = mu*mu
|
||||
inv_mu_2 = 1.d0/inv_mu_2
|
||||
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
|
||||
! e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
|
||||
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
|
||||
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
|
||||
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
|
||||
inv_alpha_2 = 1.d0/alpha_mu_gauss
|
||||
inv_alpha_2 *= inv_alpha_2
|
||||
x_tmp *= alpha_mu_gauss
|
||||
x_tmp *= x_tmp
|
||||
d_d_mu += -0.25d0 * c_mu_gauss*inv_alpha_2*dexp(-x_tmp) * (1.d0 + 2.d0 * x_tmp) * inv_mu_2
|
||||
else
|
||||
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu(r1, r2)
|
||||
|
||||
BEGIN_DOC
|
||||
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
@ -18,6 +83,18 @@ double precision function j12_mu(r1, r2)
|
||||
|
||||
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
|
||||
|
||||
else if(j2e_type .eq. "Mugauss") then
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
double precision :: r12_tmp
|
||||
r12_tmp = mu_erf * r12
|
||||
|
||||
j12_mu = 0.5d0 * r12 * (1.d0 - derf(r12_tmp)) - inv_sq_pi_2 * dexp(-r12_tmp*r12_tmp) / mu_erf
|
||||
r12_tmp *= alpha_mu_gauss
|
||||
j12_mu += 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu_erf) * dexp(-r12_tmp*r12_tmp)
|
||||
|
||||
else
|
||||
|
||||
print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type
|
||||
@ -57,7 +134,7 @@ subroutine grad1_j12_mu(r1, r2, grad)
|
||||
|
||||
grad = 0.d0
|
||||
|
||||
if(j2e_type .eq. "Mu") then
|
||||
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mugauss") then
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
@ -66,31 +143,42 @@ subroutine grad1_j12_mu(r1, r2, grad)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
call get_deriv_r12_j12(r12,mu_erf,tmp)
|
||||
! tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
grad *= 1.d0/r12
|
||||
|
||||
elseif(j2e_type .eq. "Mur") then
|
||||
elseif(j2e_type .eq. "Mur" .or. j2e_type .eq. "Murgauss") then
|
||||
double precision :: jast
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad)
|
||||
|
||||
elseif(j2e_type .eq. "Bump") then
|
||||
double precision ::grad_jast(3)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) then
|
||||
grad(1) = 0.d0
|
||||
grad(2) = 0.d0
|
||||
grad(3) = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
grad(1) = tmp * mu_der(1)
|
||||
grad(2) = tmp * mu_der(2)
|
||||
grad(3) = tmp * mu_der(3)
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
grad(1) = 0.5d0 * tmp * dx
|
||||
grad(2) = 0.5d0 * tmp * dy
|
||||
grad(3) = 0.5d0 * tmp * dz
|
||||
grad(1) += 0.5d0 * grad_jast(1)
|
||||
grad(2) += 0.5d0 * grad_jast(2)
|
||||
grad(3) += 0.5d0 * grad_jast(3)
|
||||
|
||||
if(r12 .lt. 1d-10) return
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
grad(1) = grad(1) + tmp * dx
|
||||
grad(2) = grad(2) + tmp * dy
|
||||
grad(3) = grad(3) + tmp * dz
|
||||
|
||||
else
|
||||
|
||||
@ -369,7 +457,18 @@ end
|
||||
! ---
|
||||
|
||||
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
|
||||
BEGIN_DOC
|
||||
! various flavours of mu(r1,r2)
|
||||
! depends on essentially the density and other related quantities
|
||||
!
|
||||
! change the variable "murho_type" to change type
|
||||
!
|
||||
! murho_type == -1 :: mu(r1,r2) = (rho(r1) mu_mf(r1) + rho(r2) mu_mf(r2))/[rho(r1)+rho(r2)]
|
||||
!
|
||||
! == 0 :: mu(r1,r2) = (sqrt(rho(r1)) mu_mf(r1) + sqrt(rho(r2)) mu_mf(r2))/[sqrt(rho(r1))+sqrt(rho(r2))]
|
||||
!
|
||||
! == -2 :: mu(r1,r2) = 0.5(mu_mf(r1) + mu_mf(r2))
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: mu_val, mu_der(3)
|
||||
@ -379,11 +478,50 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
|
||||
double precision :: f_rho1, f_rho2, d_drho_f_rho1
|
||||
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
|
||||
double precision :: mu_mf_r1, dm_r1, grad_mu_mf_r1(3), grad_dm_r1(3)
|
||||
double precision :: mu_mf_r2, dm_r2, grad_mu_mf_r2(3), grad_dm_r2(3)
|
||||
|
||||
double precision :: num, denom, grad_denom(3), grad_num(3)
|
||||
double precision :: dsqrt_dm_r1
|
||||
|
||||
PROVIDE murho_type
|
||||
PROVIDE mu_r_ct mu_erf
|
||||
|
||||
if(murho_type .eq. 1) then
|
||||
if(murho_type .eq. 0) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
dsqrt_dm_r1 = dsqrt(dm_r1)
|
||||
denom = (dsqrt_dm_r1 + dsqrt(dm_r2) )
|
||||
if(denom.lt.1.d-7)then
|
||||
mu_val = 1.d+10
|
||||
mu_der = 0.d0
|
||||
return
|
||||
endif
|
||||
num = (dsqrt(dm_r1) * mu_mf_r1 + dsqrt(dm_r2) * mu_mf_r2)
|
||||
mu_val = num / denom
|
||||
grad_denom = grad_dm_r1/dsqrt_dm_r1
|
||||
grad_num = dsqrt(dm_r1) * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
|
||||
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type .eq. -1) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
denom = (dm_r1 + dm_r2 )
|
||||
if(denom.lt.1.d-7)then
|
||||
mu_val = 1.d+10
|
||||
mu_der = 0.d0
|
||||
return
|
||||
endif
|
||||
num = (dm_r1 * mu_mf_r1 + dm_r2 * mu_mf_r2)
|
||||
mu_val = num / denom
|
||||
grad_denom = grad_dm_r1
|
||||
grad_num = dm_r1 * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
|
||||
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
|
||||
else if(murho_type .eq. -2) then
|
||||
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
|
||||
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
|
||||
mu_val = 0.5d0 * (mu_mf_r1 + mu_mf_r2)
|
||||
mu_der = 0.5d0 * grad_mu_mf_r1
|
||||
else if(murho_type .eq. 1) then
|
||||
|
||||
!
|
||||
! r = 0.5 (r1 + r2)
|
||||
|
@ -33,8 +33,12 @@ subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Jpsi") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Bump") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
@ -206,7 +210,43 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
gradz(jpoint) = tmp * dz
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Mur") then
|
||||
else if(j2e_type .eq. "Mugauss") then
|
||||
|
||||
! d/dx1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12 - mu*c*r12*exp(-(mu*alpha*r12)^2] * (x1 - x2)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
double precision :: r12_tmp
|
||||
r12_tmp = mu_erf * r12
|
||||
! gradient of j(mu,r12)
|
||||
tmp = 0.5d0 * (1.d0 - derf(r12_tmp)) / r12
|
||||
! gradient of gaussian additional term
|
||||
r12_tmp *= alpha_mu_gauss
|
||||
r12_tmp *= r12_tmp
|
||||
tmp += -0.5d0 * mu_erf * c_mu_gauss * r12 * dexp(-r12_tmp)/r12
|
||||
|
||||
gradx(jpoint) = tmp * dx
|
||||
grady(jpoint) = tmp * dy
|
||||
gradz(jpoint) = tmp * dz
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Mur".or.j2e_type .eq. "Murgauss") then
|
||||
|
||||
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||
@ -216,31 +256,46 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
double precision :: jast, grad_jast(3)
|
||||
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
|
||||
gradx(jpoint) = grad_jast(1)
|
||||
grady(jpoint) = grad_jast(2)
|
||||
gradz(jpoint) = grad_jast(3)
|
||||
enddo
|
||||
elseif(j2e_type .eq. "Bump") then
|
||||
|
||||
! d/dx1 jbump(r1,r2)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
gradx(jpoint) = tmp * mu_der(1)
|
||||
grady(jpoint) = tmp * mu_der(2)
|
||||
gradz(jpoint) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
gradx(jpoint) = gradx(jpoint) + tmp * dx
|
||||
grady(jpoint) = grady(jpoint) + tmp * dy
|
||||
gradz(jpoint) = gradz(jpoint) + tmp * dz
|
||||
gradx(jpoint) = 0.5d0 * tmp * dx
|
||||
grady(jpoint) = 0.5d0 * tmp * dy
|
||||
gradz(jpoint) = 0.5d0 * tmp * dz
|
||||
gradx(jpoint) += 0.5d0 * grad_jast(1)
|
||||
grady(jpoint) += 0.5d0 * grad_jast(2)
|
||||
gradz(jpoint) += 0.5d0 * grad_jast(3)
|
||||
! gradx(jpoint) = grad_jast(1)
|
||||
! grady(jpoint) = grad_jast(2)
|
||||
! gradz(jpoint) = grad_jast(3)
|
||||
enddo
|
||||
|
||||
elseif(j2e_type .eq. "Boys") then
|
||||
@ -335,9 +390,6 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
npA = jBH_n(p,i_nucl)
|
||||
opA = jBH_o(p,i_nucl)
|
||||
tmp = jBH_c(p,i_nucl)
|
||||
if(mpA .eq. npA) then
|
||||
tmp = tmp * 0.5d0
|
||||
endif
|
||||
|
||||
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
|
||||
tmp1 = tmp1 * g12_power(opA) * tmp
|
||||
@ -366,6 +418,17 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
enddo ! i_nucl
|
||||
enddo ! jpoint
|
||||
|
||||
elseif(j2e_type .eq. "Jpsi") then
|
||||
double precision :: grad_j_psi_r1(3),jast_psi
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
call get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast_psi)
|
||||
gradx(jpoint) = grad_j_psi_r1(1)
|
||||
grady(jpoint) = grad_j_psi_r1(2)
|
||||
gradz(jpoint) = grad_j_psi_r1(3)
|
||||
enddo
|
||||
else
|
||||
|
||||
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
|
||||
@ -669,8 +732,12 @@ subroutine get_grad1_u12_2e_r1_seq(ipoint, n_grid2, resx, resy, resz)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Jpsi") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Bump") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
@ -787,8 +854,11 @@ subroutine get_u12_2e_r1_seq(ipoint, n_grid2, res)
|
||||
r1(2) = final_grid_points(2,ipoint)
|
||||
r1(3) = final_grid_points(3,ipoint)
|
||||
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
if( (j2e_type .eq. "Mu") .or. &
|
||||
(j2e_type .eq. "Mur") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Murgauss") .or. &
|
||||
(j2e_type .eq. "Mugauss") .or. &
|
||||
(j2e_type .eq. "Boys") ) then
|
||||
|
||||
if(env_type .eq. "None") then
|
||||
|
124
plugins/local/non_h_ints_mu/jastrow_psi.irp.f
Normal file
124
plugins/local/non_h_ints_mu/jastrow_psi.irp.f
Normal file
@ -0,0 +1,124 @@
|
||||
BEGIN_PROVIDER [ double precision, c_ij_ab_jastrow, (mo_num, mo_num, elec_alpha_num, elec_beta_num)]
|
||||
implicit none
|
||||
integer :: iunit, getUnitAndOpen
|
||||
c_ij_ab_jastrow = 0.d0
|
||||
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'c_ij_ab', 'R')
|
||||
read(iunit) c_ij_ab_jastrow
|
||||
close(iunit)
|
||||
print*,'c_ij_ab_jastrow = '
|
||||
integer :: i,j,a,b
|
||||
do i = 1, elec_beta_num ! r2
|
||||
do j = 1, elec_alpha_num ! r1
|
||||
do a = elec_beta_num+1, mo_num ! r2
|
||||
do b = elec_alpha_num+1, mo_num ! r1
|
||||
! print*,b,a,j,i
|
||||
print*,c_ij_ab_jastrow(b,a,j,i),b,a,j,i
|
||||
if(dabs(c_ij_ab_jastrow(b,a,j,i)).lt.1.d-12)then
|
||||
c_ij_ab_jastrow(b,a,j,i) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
double precision function jastrow_psi(r1,r2)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
integer :: i,j,a,b
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
call give_all_mos_at_r(r1,mos_array_r1)
|
||||
call give_all_mos_at_r(r2,mos_array_r2)
|
||||
double precision :: eps,coef, numerator,denominator
|
||||
double precision :: phi_i_phi_j
|
||||
eps = a_boys
|
||||
jastrow_psi= 0.d0
|
||||
do i = 1, elec_beta_num ! r1
|
||||
do j = 1, elec_alpha_num ! r2
|
||||
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j) + eps
|
||||
denominator = 1.d0/phi_i_phi_j
|
||||
do a = elec_beta_num+1, mo_num ! r1
|
||||
do b = elec_alpha_num+1, mo_num ! r2
|
||||
coef = c_ij_ab_jastrow(b,a,j,i)
|
||||
numerator = mos_array_r2(b) * mos_array_r1(a)
|
||||
jastrow_psi += coef * numerator*denominator
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast)
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out):: grad_j_psi_r1(3),jast
|
||||
integer :: i,j,a,b
|
||||
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
|
||||
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
|
||||
double precision :: num_j, denom_j, num_j_grad(3), denom_j_grad(3),delta,coef
|
||||
double precision :: inv_denom_j
|
||||
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
|
||||
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
|
||||
delta = a_boys
|
||||
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
|
||||
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
|
||||
grad_j_psi_r1 = 0.d0
|
||||
jast = 0.d0
|
||||
do i = 1, elec_beta_num ! r1
|
||||
do j = 1, elec_alpha_num ! r2
|
||||
call denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom_j, denom_j_grad)
|
||||
inv_denom_j = 1.d0/denom_j
|
||||
do a = elec_beta_num+1, mo_num ! r1
|
||||
do b = elec_alpha_num+1, mo_num ! r2
|
||||
call numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num_j, num_j_grad)
|
||||
coef = c_ij_ab_jastrow(b,a,j,i)
|
||||
jast += coef * num_j * inv_denom_j
|
||||
grad_j_psi_r1 += coef * (num_j_grad * denom_j - num_j * denom_j_grad) * inv_denom_j * inv_denom_j
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
if(jast.lt.-1.d0.or.dabs(jast).gt.1.d0)then
|
||||
print*,'pb ! '
|
||||
print*,jast
|
||||
print*,dsqrt(r1(1)**2+r1(2)**2+r1(3)**2),dsqrt(r2(1)**2+r2(2)**2+r2(3)**2)
|
||||
print*,r1
|
||||
! print*,mos_array_r1(1:2)
|
||||
print*,r2
|
||||
! print*,mos_array_r2(1:2)
|
||||
stop
|
||||
endif
|
||||
if(log_jpsi)then
|
||||
grad_j_psi_r1 = grad_j_psi_r1/(1.d0 + jast)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom, grad_denom)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j
|
||||
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num),delta
|
||||
double precision, intent(out) :: denom, grad_denom(3)
|
||||
double precision :: coef,phi_i_phi_j,inv_phi_i_phi_j,inv_phi_i_phi_j_2
|
||||
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j)
|
||||
if(phi_i_phi_j /= 0.d0)then
|
||||
inv_phi_i_phi_j = 1.d0/phi_i_phi_j
|
||||
inv_phi_i_phi_j_2 = 1.d0/(phi_i_phi_j * phi_i_phi_j)
|
||||
else
|
||||
inv_phi_i_phi_j = huge(1.0)
|
||||
inv_phi_i_phi_j_2 = huge(1.d0)
|
||||
endif
|
||||
denom = phi_i_phi_j + delta * inv_phi_i_phi_j
|
||||
grad_denom(:) = (1.d0 - delta*inv_phi_i_phi_j_2) * mos_array_r2(j) * mos_grad_array_r1(:,i)
|
||||
end
|
||||
|
||||
subroutine numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num, grad_num)
|
||||
implicit none
|
||||
integer, intent(in) :: a,b
|
||||
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num)
|
||||
double precision, intent(out) :: num, grad_num(3)
|
||||
num = mos_array_r1(a) * mos_array_r2(b)
|
||||
grad_num(:) = mos_array_r2(b) * mos_grad_array_r1(:,a)
|
||||
end
|
43
plugins/local/non_h_ints_mu/mu_of_r.irp.f
Normal file
43
plugins/local/non_h_ints_mu/mu_of_r.irp.f
Normal file
@ -0,0 +1,43 @@
|
||||
|
||||
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the value and gradients of the mu(r) mean field, together with the HF density and its gradients.
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
|
||||
double precision, intent(out):: mu_mf, dm
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: dist
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
|
||||
dm = dm_a + dm_b
|
||||
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
|
||||
|
||||
if(dabs(two_bod_dens).lt.1.d-10)then
|
||||
mu_mf = 1.d+10
|
||||
grad_mu_mf = 0.d0
|
||||
else
|
||||
if(mu_of_r_tc=="Erfmu")then
|
||||
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
|
||||
grad_mu_mf(1:3) = 0.3333333333d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else if(mu_of_r_tc=="Standard")then
|
||||
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
|
||||
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else if(mu_of_r_tc=="Erfmugauss")then
|
||||
mu_mf = (f_mf_ab/two_bod_dens + 0.25d0)/c_mu_gauss_tot
|
||||
grad_mu_mf(1:3) = 1.d0/c_mu_gauss_tot* (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
else
|
||||
print*,'Wrong value for mu_of_r_tc !'
|
||||
stop
|
||||
endif
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -57,6 +57,9 @@ end
|
||||
|
||||
subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gradient of mu(r) mean field, together with the gradient of the one- and two-body HF density.
|
||||
END_DOC
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: f_mf_ab, two_bod_dens
|
||||
double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3)
|
||||
@ -146,26 +149,18 @@ subroutine mu_of_r_mean_field(r,mu_mf, dm)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
subroutine mu_of_r_mean_field_tc(r,mu_mf, dm)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
|
||||
double precision, intent(out):: mu_mf, dm
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
|
||||
call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
|
||||
dm = dm_a + dm_b
|
||||
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
|
||||
|
||||
if(dabs(two_bod_dens).lt.1.d-10)then
|
||||
mu_mf = 1.d+10
|
||||
grad_mu_mf = 0.d0
|
||||
else
|
||||
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
|
||||
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
|
||||
/(two_bod_dens*two_bod_dens)
|
||||
endif
|
||||
|
||||
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
|
||||
endif
|
||||
end
|
||||
|
59
plugins/local/non_h_ints_mu/plot_j_gauss.irp.f
Normal file
59
plugins/local/non_h_ints_mu/plot_j_gauss.irp.f
Normal file
@ -0,0 +1,59 @@
|
||||
program plot_j_gauss
|
||||
implicit none
|
||||
double precision :: xmin, xmax, x, dx
|
||||
double precision :: mu_min, mu_max, mu, d_mu
|
||||
double precision :: pot_j_gauss,j_mu_simple,j_gauss_simple,pot_j_mu
|
||||
double precision, allocatable :: mu_tab(:),j_mu(:),j_mu_gauss(:)
|
||||
double precision, allocatable :: w_mu(:), w_mu_gauss(:)
|
||||
|
||||
character*(128) :: output
|
||||
integer :: getUnitAndOpen
|
||||
integer :: i_unit_output_wee_gauss,i_unit_output_wee_mu
|
||||
integer :: i_unit_output_j_gauss,i_unit_output_j_mu
|
||||
output=trim(ezfio_filename)//'.w_ee_mu_gauss'
|
||||
i_unit_output_wee_gauss = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.w_ee_mu'
|
||||
i_unit_output_wee_mu = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.j_mu_gauss'
|
||||
i_unit_output_j_gauss = getUnitAndOpen(output,'w')
|
||||
output=trim(ezfio_filename)//'.j_mu'
|
||||
i_unit_output_j_mu = getUnitAndOpen(output,'w')
|
||||
|
||||
integer :: npt, i, j, n_mu
|
||||
n_mu = 3
|
||||
allocate(mu_tab(n_mu),j_mu(n_mu),j_mu_gauss(n_mu),w_mu(n_mu), w_mu_gauss(n_mu))
|
||||
mu_min = 0.5d0
|
||||
mu_max = 2.d0
|
||||
d_mu = (mu_max - mu_min)/dble(n_mu)
|
||||
mu = mu_min
|
||||
do i = 1, n_mu
|
||||
mu_tab(i) = mu
|
||||
print*,'mu = ',mu
|
||||
mu += d_mu
|
||||
enddo
|
||||
mu_tab(1) = 0.9d0
|
||||
mu_tab(2) = 0.95d0
|
||||
mu_tab(3) = 1.d0
|
||||
|
||||
xmin = 0.01d0
|
||||
xmax = 10.d0
|
||||
npt = 1000
|
||||
dx = (xmax - xmin)/dble(npt)
|
||||
x = xmin
|
||||
do i = 1, npt
|
||||
do j = 1, n_mu
|
||||
mu = mu_tab(j)
|
||||
w_mu_gauss(j) = pot_j_gauss(x,mu)
|
||||
w_mu(j) = pot_j_mu(x,mu)
|
||||
j_mu(j) = j_mu_simple(x,mu)
|
||||
j_mu_gauss(j) = j_gauss_simple(x,mu) + j_mu(j)
|
||||
enddo
|
||||
write(i_unit_output_wee_gauss,'(100(F16.10,X))')x,w_mu_gauss(:)
|
||||
write(i_unit_output_wee_mu,'(100(F16.10,X))')x,w_mu(:)
|
||||
write(i_unit_output_j_gauss,'(100(F16.10,X))')x,j_mu_gauss(:)
|
||||
write(i_unit_output_j_mu,'(100(F16.10,X))')x,j_mu(:)
|
||||
x += dx
|
||||
enddo
|
||||
|
||||
|
||||
end
|
19
plugins/local/non_h_ints_mu/plot_mo.irp.f
Normal file
19
plugins/local/non_h_ints_mu/plot_mo.irp.f
Normal file
@ -0,0 +1,19 @@
|
||||
program plot_mo
|
||||
implicit none
|
||||
integer :: i,npt
|
||||
double precision :: xmin,xmax,dx,r(3)
|
||||
double precision,allocatable :: mos_array(:)
|
||||
allocate(mos_array(mo_num))
|
||||
npt = 10000
|
||||
xmin =0.d0
|
||||
xmax =10.d0
|
||||
dx=(xmax-xmin)/dble(npt)
|
||||
r=0.d0
|
||||
r(1) = xmin
|
||||
do i = 1, npt
|
||||
call give_all_mos_at_r(r,mos_array)
|
||||
write(33,'(100(F16.10,X))')r(1),mos_array(1),mos_array(2),mos_array(3)
|
||||
r(1) += dx
|
||||
enddo
|
||||
|
||||
end
|
@ -16,15 +16,16 @@ subroutine routine_print
|
||||
integer :: ipoint,nx,i
|
||||
double precision :: xmax,xmin,r(3),dx,sigma
|
||||
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3)
|
||||
xmax = 5.D0
|
||||
xmin = -5.D0
|
||||
xmax = 3.9D0
|
||||
xmin = -3.9D0
|
||||
nx = 10000
|
||||
dx = (xmax - xmin)/dble(nx)
|
||||
r = 0.d0
|
||||
r(1) = xmin
|
||||
do ipoint = 1, nx
|
||||
call mu_r_val_and_grad(r, r, mu_val, mu_der)
|
||||
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
|
||||
! call mu_r_val_and_grad(r, r, mu_val, mu_der)
|
||||
call grad_mu_of_r_mean_field(r,mu_val, dm_a, mu_der, grad_dm_a)
|
||||
! call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
|
||||
sigma = 0.d0
|
||||
do i = 1,3
|
||||
sigma += grad_dm_a(i)**2
|
||||
@ -32,7 +33,8 @@ subroutine routine_print
|
||||
sigma=dsqrt(sigma)
|
||||
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
|
||||
grad = dsqrt(grad)
|
||||
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad,sigma/dm_a
|
||||
print*,r(1),mu_val
|
||||
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a,grad,sigma/dm_a
|
||||
r(1) += dx
|
||||
enddo
|
||||
end
|
||||
|
146
plugins/local/non_h_ints_mu/pot_j_gauss.irp.f
Normal file
146
plugins/local/non_h_ints_mu/pot_j_gauss.irp.f
Normal file
@ -0,0 +1,146 @@
|
||||
double precision function j_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
double precision :: j_mu_simple,j_gauss_simple
|
||||
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mur") then
|
||||
j_simple = j_mu_simple(x,mu)
|
||||
else if(j2e_type .eq. "Mugauss".or.j2e_type .eq. "Murgauss") then
|
||||
j_simple = j_gauss_simple(x,mu) + j_mu_simple(x,mu)
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
double precision function j_mu_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in):: x,mu
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! j_mu(mu,x) = 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
END_DOC
|
||||
j_mu_simple = 0.5d0 * x * (1.D0 - derf(mu*x)) - 0.5d0 * inv_sq_pi/mu * dexp(-x*mu*x*mu)
|
||||
|
||||
end
|
||||
|
||||
double precision function j_gauss_simple(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in):: x,mu
|
||||
include 'constants.include.F'
|
||||
BEGIN_DOC
|
||||
! j_mu(mu,x) = c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
j_gauss_simple = 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu) * dexp(-x_tmp*x_tmp)
|
||||
|
||||
end
|
||||
|
||||
double precision function j_mu_deriv(x,mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d/dx j_mu(mu,x) = d/dx 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
! = 0.5*(1 - erf(mu x))
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
j_mu_deriv = 0.5d0 * (1.d0 - derf(mu*x))
|
||||
end
|
||||
|
||||
double precision function j_mu_deriv_2(x,mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! d^2/dx^2 j_mu(mu,x) = d^2/dx^2 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
||||
! = -mu/sqrt(pi) * exp(-(mu x)^2)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
j_mu_deriv_2 = - mu * inv_sq_pi * dexp(-x*mu*x*mu)
|
||||
end
|
||||
|
||||
double precision function j_gauss_deriv(x,mu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
! = -0.5 * mu * c * x * exp(-(alpha * mu * x)^2)
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
j_gauss_deriv = -0.5d0 * mu * c_mu_gauss * x * exp(-x_tmp*x_tmp)
|
||||
end
|
||||
|
||||
double precision function j_gauss_deriv_2(x,mu)
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
||||
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
||||
! = 0.5 * mu * c * exp(-(alpha * mu * x)^2) * (2 (alpha*mu*x)^2 - 1)
|
||||
END_DOC
|
||||
double precision :: x_tmp
|
||||
x_tmp = alpha_mu_gauss * mu * x
|
||||
x_tmp = x_tmp * x_tmp
|
||||
j_gauss_deriv_2 = 0.5d0 * mu * c_mu_gauss * exp(-x_tmp) * (2.d0*x_tmp - 1.d0)
|
||||
end
|
||||
|
||||
double precision function j_erf_gauss_deriv(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d/dx (j_gauss(mu,x)+j_mu(mu,x))
|
||||
END_DOC
|
||||
double precision :: j_gauss_deriv,j_mu_deriv
|
||||
j_erf_gauss_deriv = j_gauss_deriv(x,mu)+j_mu_deriv(x,mu)
|
||||
end
|
||||
|
||||
double precision function j_erf_gauss_deriv_2(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! d^2/dx^2 (j_gauss(mu,x)+j_mu(mu,x))
|
||||
END_DOC
|
||||
double precision :: j_gauss_deriv_2,j_mu_deriv_2
|
||||
j_erf_gauss_deriv_2 = j_gauss_deriv_2(x,mu)+j_mu_deriv_2(x,mu)
|
||||
end
|
||||
|
||||
|
||||
double precision function pot_j_gauss(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! effective scalar potential associated with the erf_gauss correlation factor
|
||||
!
|
||||
! 1/x( 1 - 2 * d/dx j_erf_gauss(x,mu)) - d^2/dx^2 j_erf_gauss(x,mu)) - d/dx d/dx (j_erf_gauss(x,mu))^2
|
||||
END_DOC
|
||||
double precision :: j_erf_gauss_deriv_2,j_erf_gauss_deriv
|
||||
double precision :: deriv_1, deriv_2
|
||||
pot_j_gauss = 0.d0
|
||||
if(x.ne.0.d0)then
|
||||
deriv_1 = j_erf_gauss_deriv(x,mu)
|
||||
deriv_2 = j_erf_gauss_deriv_2(x,mu)
|
||||
pot_j_gauss = 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
double precision function pot_j_mu(x,mu)
|
||||
implicit none
|
||||
double precision, intent(in) :: x,mu
|
||||
BEGIN_DOC
|
||||
! effective scalar potential associated with the correlation factor
|
||||
!
|
||||
! 1/x( 1 - 2 * d/dx j_erf(x,mu)) - d^2/dx^2 j_erf(x,mu)) - d/dx d/dx (j_erf(x,mu))^2
|
||||
END_DOC
|
||||
double precision :: j_mu_deriv_2,j_mu_deriv
|
||||
double precision :: deriv_1, deriv_2
|
||||
pot_j_mu = 0.d0
|
||||
if(x.ne.0.d0)then
|
||||
deriv_1 = j_mu_deriv(x,mu)
|
||||
deriv_2 = j_mu_deriv_2(x,mu)
|
||||
pot_j_mu= 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
||||
endif
|
||||
|
||||
end
|
15
plugins/local/non_h_ints_mu/print_jastrow_psi.irp.f
Normal file
15
plugins/local/non_h_ints_mu/print_jastrow_psi.irp.f
Normal file
@ -0,0 +1,15 @@
|
||||
program print_j_psi
|
||||
implicit none
|
||||
integer :: i,j,a,b
|
||||
do i = 1, elec_beta_num ! r2
|
||||
do j = 1, elec_alpha_num ! r1
|
||||
do a = elec_beta_num+1, mo_num ! r2
|
||||
do b = elec_alpha_num+1, mo_num ! r1
|
||||
print*,b,a,j,i
|
||||
print*,c_ij_ab_jastrow(b,a,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
@ -127,8 +127,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
|
||||
! TODO combine 1shot & int2_grad1_u12_ao_num
|
||||
PROVIDE int2_grad1_u12_ao_num
|
||||
int2_grad1_u12_ao = int2_grad1_u12_ao_num
|
||||
!PROVIDE int2_grad1_u12_ao_num_1shot
|
||||
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
|
||||
! PROVIDE int2_grad1_u12_ao_num_1shot
|
||||
! int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
|
||||
endif
|
||||
|
||||
elseif(tc_integ_type .eq. "semi-analytic") then
|
||||
@ -204,7 +204,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
|
||||
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) int2_grad1_u12_ao
|
||||
close(11)
|
||||
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
||||
|
157
plugins/local/non_h_ints_mu/test_mu_of_r_tc.irp.f
Normal file
157
plugins/local/non_h_ints_mu/test_mu_of_r_tc.irp.f
Normal file
@ -0,0 +1,157 @@
|
||||
program test_mu_of_r_tc
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO
|
||||
END_DOC
|
||||
! You specify that you want to avoid any contribution from
|
||||
! orbitals coming from core
|
||||
call test_grad_f_mean_field
|
||||
call test_grad_mu_mf
|
||||
call plot_mu_of_r_mf
|
||||
end
|
||||
|
||||
|
||||
subroutine test_grad_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3)
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
|
||||
double precision :: grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
|
||||
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
|
||||
double precision :: f_mf_ab_p,f_mf_ab_m
|
||||
double precision :: two_bod_dens_p, two_bod_dens_m
|
||||
double precision :: dm_a_p, dm_a_m
|
||||
double precision :: dm_b_p, dm_b_m
|
||||
double precision :: rbis(3), dr
|
||||
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
|
||||
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
|
||||
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
|
||||
dr = 0.00001d0
|
||||
accu_f_mf_ab = 0.d0
|
||||
accu_two_bod_dens = 0.d0
|
||||
accu_dm_a = 0.d0
|
||||
accu_dm_b = 0.d0
|
||||
|
||||
accu_grad_f_mf_ab = 0.d0
|
||||
accu_grad_two_bod_dens = 0.d0
|
||||
accu_grad_dm_a = 0.d0
|
||||
accu_grad_dm_b = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
|
||||
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
|
||||
accu_dm_a += weight*dabs(dm_a - dm_a_p)
|
||||
accu_dm_b += weight*dabs(dm_b - dm_b_p)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
|
||||
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
|
||||
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
|
||||
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
|
||||
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
|
||||
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
|
||||
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
|
||||
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_f_mf_ab = ',accu_f_mf_ab
|
||||
print*,'accu_two_bod_dens = ',accu_two_bod_dens
|
||||
print*,'accu_dm_a = ',accu_dm_a
|
||||
print*,'accu_dm_b = ',accu_dm_b
|
||||
print*,'accu_grad_f_mf_ab = '
|
||||
print*,accu_grad_f_mf_ab
|
||||
print*,'accu_grad_two_bod_dens = '
|
||||
print*,accu_grad_two_bod_dens
|
||||
print*,'accu_dm_a = '
|
||||
print*,accu_grad_dm_a
|
||||
print*,'accu_dm_b = '
|
||||
print*,accu_grad_dm_b
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_mu_mf
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3),rbis(3)
|
||||
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
|
||||
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
|
||||
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
|
||||
dr = 0.00001d0
|
||||
accu_grad_mu_mf = 0.d0
|
||||
accu_mu = 0.d0
|
||||
accu_grad_dm = 0.d0
|
||||
accu_dm = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
|
||||
accu_mu += weight*dabs(mu_mf_p - mu_mf)
|
||||
accu_dm += weight*dabs(dm_p - dm)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
|
||||
|
||||
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
|
||||
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
|
||||
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_mu = ',accu_mu
|
||||
print*,'accu_dm = ',accu_dm
|
||||
print*,'accu_grad_dm = '
|
||||
print*, accu_grad_dm
|
||||
print*,'accu_grad_mu_mf = '
|
||||
print*, accu_grad_mu_mf
|
||||
|
||||
end
|
||||
|
||||
subroutine plot_mu_of_r_mf
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer :: ipoint,npoint
|
||||
double precision :: dx,r(3),xmax,xmin
|
||||
double precision :: accu_mu,accu_nelec,mu_mf, dm,mu_mf_tc
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.mu_mf'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
xmax = 5.D0
|
||||
xmin = 0.d0
|
||||
npoint = 10000
|
||||
dx = (xmax - xmin)/dble(npoint)
|
||||
r = 0.d0
|
||||
r(1) = xmin
|
||||
accu_mu = 0.d0
|
||||
accu_nelec = 0.d0
|
||||
do ipoint = 1, npoint
|
||||
call mu_of_r_mean_field(r,mu_mf, dm)
|
||||
call mu_of_r_mean_field_tc(r,mu_mf_tc, dm)
|
||||
write(i_unit_output,'(100(F16.10,X))')r(1),mu_mf,mu_mf_tc,dm
|
||||
accu_mu += mu_mf * dm * r(1)**2*dx*4.D0*pi
|
||||
accu_nelec += dm * r(1)**2*dx*4.D0*pi
|
||||
r(1) += dx
|
||||
enddo
|
||||
print*,'nelec = ',accu_nelec
|
||||
print*,'mu average = ',accu_mu/accu_nelec
|
||||
end
|
@ -118,7 +118,7 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
|
||||
!$OMP END PARALLEL
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
|
||||
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 0.d0, ao_two_e_tc_tot, ao_num*ao_num)
|
||||
, 0.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
|
||||
deallocate(c_mat)
|
||||
endif
|
||||
|
||||
|
@ -129,9 +129,9 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
|
||||
|
||||
endif
|
||||
|
||||
if(degree==0) then
|
||||
htot += nuclear_repulsion
|
||||
endif
|
||||
! if(degree==0) then
|
||||
! htot += nuclear_repulsion
|
||||
! endif
|
||||
|
||||
end
|
||||
|
||||
|
@ -8,9 +8,13 @@ subroutine write_tc_energy()
|
||||
double precision :: E_1e, E_2e, E_3e
|
||||
double precision, allocatable :: E_TC_tmp(:), E_1e_tmp(:), E_2e_tmp(:), E_3e_tmp(:)
|
||||
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
|
||||
|
||||
! GS
|
||||
! ---
|
||||
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
|
||||
|
||||
allocate(E_TC_tmp(N_det), E_1e_tmp(N_det), E_2e_tmp(N_det), E_3e_tmp(N_det))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
|
36
plugins/local/tc_int/EZFIO.cfg
Normal file
36
plugins/local/tc_int/EZFIO.cfg
Normal file
@ -0,0 +1,36 @@
|
||||
[nxBlocks]
|
||||
type: integer
|
||||
doc: nb of x blocks in the Grid
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 10
|
||||
|
||||
[nyBlocks]
|
||||
type: integer
|
||||
doc: nb of y blocks in the Grid
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
||||
[nzBlocks]
|
||||
type: integer
|
||||
doc: nb of z blocks in the Grid
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
||||
[blockxSize]
|
||||
type: integer
|
||||
doc: size of x blocks
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 32
|
||||
|
||||
[blockySize]
|
||||
type: integer
|
||||
doc: size of y blocks
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
||||
[blockzSize]
|
||||
type: integer
|
||||
doc: size of z blocks
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
1
plugins/local/tc_int/LIB
Normal file
1
plugins/local/tc_int/LIB
Normal file
@ -0,0 +1 @@
|
||||
-lcutcint
|
@ -4,3 +4,4 @@ jastrow
|
||||
qmckl
|
||||
becke_numerical_grid
|
||||
dft_utils_in_r
|
||||
bi_ortho_mos
|
||||
|
233
plugins/local/tc_int/compute_int_2e_ao_cpu.irp.f
Normal file
233
plugins/local/tc_int/compute_int_2e_ao_cpu.irp.f
Normal file
@ -0,0 +1,233 @@
|
||||
|
||||
! ---
|
||||
|
||||
program compute_int_2e_ao_cpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: m
|
||||
integer :: i, j, k, l
|
||||
integer :: ipoint, jpoint
|
||||
|
||||
double precision :: weight1, ao_i_r, ao_k_r
|
||||
|
||||
double precision :: time0, time1
|
||||
double precision :: wall_time0, wall_time1
|
||||
double precision :: wall_ttime0, wall_ttime1
|
||||
double precision :: tt1, tt2
|
||||
|
||||
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
|
||||
double precision, allocatable :: grad1_u12(:,:,:), int_fct_long_range(:,:,:), c_mat(:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: int_2e_ao(:,:,:,:)
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start compute_int_2e_ao_cpu'
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
allocate(rn(3,nucl_num))
|
||||
allocate(aos_data1(n_points_final_grid,ao_num,4))
|
||||
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
|
||||
|
||||
do k = 1, nucl_num
|
||||
rn(1,k) = nucl_coord(k,1)
|
||||
rn(2,k) = nucl_coord(k,2)
|
||||
rn(3,k) = nucl_coord(k,3)
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
|
||||
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
|
||||
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
|
||||
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
|
||||
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
|
||||
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
|
||||
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
allocate(int_fct_long_range(n_points_extra_final_grid,ao_num,ao_num))
|
||||
allocate(grad1_u12(n_points_extra_final_grid,n_points_final_grid,4))
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
|
||||
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call wall_time(wall_time0)
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (j, i, jpoint) &
|
||||
!$OMP SHARED (int_fct_long_range, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
int_fct_long_range(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for int_long_range (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, grad1_u12)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, grad1_u12(1,ipoint,1) &
|
||||
, grad1_u12(1,ipoint,2) &
|
||||
, grad1_u12(1,ipoint,3) &
|
||||
, grad1_u12(1,ipoint,4) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for tc_int_bh (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
do m = 1, 4
|
||||
call dgemm("T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
|
||||
, int_fct_long_range(1,1,1), n_points_extra_final_grid, grad1_u12(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num)
|
||||
enddo
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of integ over r2 (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
|
||||
, int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 0.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
tt1 = 0.d0
|
||||
tt2 = 0.d0
|
||||
do m = 1, 3
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
|
||||
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
ao_i_r = aos_in_r_array_transp(ipoint,i)
|
||||
ao_k_r = aos_in_r_array_transp(ipoint,k)
|
||||
|
||||
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
tt1 += wall_ttime1 - wall_ttime0
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
|
||||
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 1.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
tt2 += wall_ttime1 - wall_ttime0
|
||||
enddo
|
||||
write(*,"(A,2X,F15.7)") ' wall time of non-Hermitian part (sec) = ', tt1
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of non Hermitian part (sec) = ', tt2
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call sum_A_At(int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time of A + A.T (sec) = ', wall_ttime1 - wall_ttime0
|
||||
|
||||
|
||||
call wall_time(wall_time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time on cpu (sec) = ', (wall_time1 - wall_time0)
|
||||
|
||||
|
||||
deallocate(int_fct_long_range, grad1_u12, c_mat)
|
||||
deallocate(int_2e_ao, int2_grad1_u12_ao)
|
||||
deallocate(rn, aos_data1, aos_data2)
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for compute_int_2e_ao_cpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
end
|
117
plugins/local/tc_int/compute_int_2e_ao_gpu.irp.f
Normal file
117
plugins/local/tc_int/compute_int_2e_ao_gpu.irp.f
Normal file
@ -0,0 +1,117 @@
|
||||
|
||||
! ---
|
||||
|
||||
program compute_int_2e_ao_gpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l
|
||||
integer :: ipoint
|
||||
|
||||
double precision :: time0, time1
|
||||
|
||||
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_ao_gpu(:,:,:,:)
|
||||
double precision, allocatable :: int_2e_ao_gpu(:,:,:,:)
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start compute_int_2e_ao_gpu'
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
allocate(rn(3,nucl_num))
|
||||
allocate(aos_data1(n_points_final_grid,ao_num,4))
|
||||
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
|
||||
|
||||
do k = 1, nucl_num
|
||||
rn(1,k) = nucl_coord(k,1)
|
||||
rn(2,k) = nucl_coord(k,2)
|
||||
rn(3,k) = nucl_coord(k,3)
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
|
||||
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
|
||||
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
|
||||
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
|
||||
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
|
||||
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
|
||||
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
integer :: nB
|
||||
integer :: sB
|
||||
|
||||
PROVIDE nxBlocks nyBlocks nzBlocks
|
||||
PROVIDE blockxSize blockySize blockzSize
|
||||
|
||||
sB = 32
|
||||
nB = (n_points_final_grid + sB - 1) / sB
|
||||
|
||||
call ezfio_set_tc_int_blockxSize(sB)
|
||||
call ezfio_set_tc_int_nxBlocks(nB)
|
||||
|
||||
allocate(int2_grad1_u12_ao_gpu(ao_num,ao_num,n_points_final_grid,3))
|
||||
allocate(int_2e_ao_gpu(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
|
||||
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
|
||||
final_grid_points, final_weight_at_r_vector, &
|
||||
final_grid_points_extra, final_weight_at_r_vector_extra, &
|
||||
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
|
||||
int2_grad1_u12_ao_gpu, int_2e_ao_gpu)
|
||||
|
||||
deallocate(int_2e_ao_gpu, int2_grad1_u12_ao_gpu)
|
||||
deallocate(rn, aos_data1, aos_data2)
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for compute_int_2e_ao_gpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
end
|
143
plugins/local/tc_int/compute_no_cpu.irp.f
Normal file
143
plugins/local/tc_int/compute_no_cpu.irp.f
Normal file
@ -0,0 +1,143 @@
|
||||
|
||||
! ---
|
||||
|
||||
program compute_no_cpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l, ipoint
|
||||
double precision :: time0, time1
|
||||
double precision :: tt0, tt1
|
||||
double precision :: acc_thr, err_tot, nrm_tot, err_loc
|
||||
double precision :: noL_0e
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: tmp(:,:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
|
||||
double precision, allocatable :: noL_1e (:,:)
|
||||
double precision, allocatable :: noL_2e (:,:,:,:)
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start compute_no_cpu'
|
||||
|
||||
|
||||
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
|
||||
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
call wall_time(tt0)
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
|
||||
read(11) int2_grad1_u12_ao
|
||||
close(11)
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
|
||||
|
||||
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
|
||||
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
call wall_time(tt0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(int2_grad1_u12_ao)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
|
||||
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
|
||||
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
|
||||
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
allocate(noL_2e(mo_num,mo_num,mo_num,mo_num))
|
||||
allocate(noL_1e(mo_num,mo_num))
|
||||
|
||||
call provide_no_2e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e(1,1,1,1))
|
||||
|
||||
call provide_no_1e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_1e(1,1))
|
||||
|
||||
call provide_no_0e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_0e)
|
||||
|
||||
deallocate(int2_grad1_u12_bimo_t)
|
||||
deallocate(noL_2e)
|
||||
deallocate(noL_1e)
|
||||
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for compute_no_cpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
132
plugins/local/tc_int/compute_no_gpu.irp.f
Normal file
132
plugins/local/tc_int/compute_no_gpu.irp.f
Normal file
@ -0,0 +1,132 @@
|
||||
|
||||
! ---
|
||||
|
||||
program compute_no_gpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l, ipoint
|
||||
double precision :: time0, time1
|
||||
double precision :: tt0, tt1
|
||||
double precision :: acc_thr, err_tot, nrm_tot, err_loc
|
||||
double precision :: noL_0e_gpu(1)
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: tmp(:,:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
|
||||
double precision, allocatable :: noL_1e_gpu(:,:)
|
||||
double precision, allocatable :: noL_2e_gpu(:,:,:,:)
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start compute_no_gpu'
|
||||
|
||||
|
||||
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
|
||||
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
call wall_time(tt0)
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
|
||||
read(11) int2_grad1_u12_ao
|
||||
close(11)
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
|
||||
|
||||
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
|
||||
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
call wall_time(tt0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(int2_grad1_u12_ao)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
|
||||
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
|
||||
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
|
||||
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
allocate(noL_2e_gpu(mo_num,mo_num,mo_num,mo_num))
|
||||
allocate(noL_1e_gpu(mo_num,mo_num))
|
||||
|
||||
call cutc_no(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e_gpu(1,1,1,1), noL_1e_gpu(1,1), noL_0e_gpu(1))
|
||||
|
||||
deallocate(int2_grad1_u12_bimo_t)
|
||||
deallocate(noL_2e_gpu)
|
||||
deallocate(noL_1e_gpu)
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for compute_no_gpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
! ---
|
||||
|
||||
subroutine provide_int2_grad1_u12_ao()
|
||||
use gpu
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int2_grad1_u12_ao(i,j,ipoint,1) = \int dr2 [\grad1 u(r1,r2)]_x1 \chi_i(r2) \chi_j(r2)
|
||||
@ -35,8 +35,8 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
double precision :: weight1, ao_k_r, ao_i_r
|
||||
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
|
||||
double precision :: time0, time1, time2, tc1, tc2, tc
|
||||
type(gpu_double4) :: int2_grad1_u12_ao
|
||||
type(gpu_double3) :: tmp_grad1_u12, tmp_grad1_u12p, tmp
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: tmp_grad1_u12(:,:,:), tmp(:,:,:)
|
||||
double precision, allocatable :: c_mat(:,:,:), tc_int_2e_ao(:,:,:,:)
|
||||
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
@ -52,7 +52,6 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
|
||||
call total_memory(mem)
|
||||
mem = max(1.d0, qp_max_mem - mem)
|
||||
mem = 6
|
||||
n_double = mem * 1.d8
|
||||
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
|
||||
n_rest = int(mod(n_points_final_grid, n_blocks))
|
||||
@ -66,9 +65,9 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
! ---
|
||||
! ---
|
||||
|
||||
call gpu_allocate(int2_grad1_u12_ao, ao_num,ao_num,n_points_final_grid,4)
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
|
||||
|
||||
call gpu_allocate(tmp,n_points_extra_final_grid,ao_num,ao_num)
|
||||
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (j, i, jpoint) &
|
||||
@ -77,23 +76,17 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
tmp%f(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
|
||||
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call gpu_allocate(tmp_grad1_u12,n_points_extra_final_grid,n_blocks,4)
|
||||
call gpu_allocate(tmp_grad1_u12p,n_points_extra_final_grid,n_blocks,4)
|
||||
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_blocks,4))
|
||||
|
||||
tc = 0.d0
|
||||
|
||||
type(gpu_stream) :: stream(4)
|
||||
do i=1,4
|
||||
call gpu_stream_create(stream(i))
|
||||
enddo
|
||||
|
||||
do i_pass = 1, n_pass
|
||||
ii = (i_pass-1)*n_blocks + 1
|
||||
|
||||
@ -102,25 +95,22 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i_blocks, ipoint) &
|
||||
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
|
||||
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, tmp_grad1_u12)
|
||||
!$OMP DO
|
||||
do i_blocks = 1, n_blocks
|
||||
ipoint = ii - 1 + i_blocks ! r1
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_blocks,1), tmp_grad1_u12%f(1,i_blocks,2), &
|
||||
tmp_grad1_u12%f(1,i_blocks,3), tmp_grad1_u12%f(1,i_blocks,4))
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1), tmp_grad1_u12(1,i_blocks,2), &
|
||||
tmp_grad1_u12(1,i_blocks,3), tmp_grad1_u12(1,i_blocks,4))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tc2)
|
||||
tc = tc + tc2 - tc1
|
||||
|
||||
call gpu_synchronize()
|
||||
call gpu_copy(tmp_grad1_u12,tmp_grad1_u12p)
|
||||
do m = 1, 4
|
||||
call gpu_set_stream(blas_handle, stream(m))
|
||||
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12p%f(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
|
||||
call dgemm("T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -132,12 +122,12 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i_rest, ipoint) &
|
||||
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
|
||||
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, tmp_grad1_u12)
|
||||
!$OMP DO
|
||||
do i_rest = 1, n_rest
|
||||
ipoint = ii - 1 + i_rest ! r1
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_rest,1), tmp_grad1_u12%f(1,i_rest,2), &
|
||||
tmp_grad1_u12%f(1,i_rest,3), tmp_grad1_u12%f(1,i_rest,4))
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1), tmp_grad1_u12(1,i_rest,2), &
|
||||
tmp_grad1_u12(1,i_rest,3), tmp_grad1_u12(1,i_rest,4))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
@ -145,42 +135,33 @@ subroutine provide_int2_grad1_u12_ao()
|
||||
tc = tc + tc2 - tc1
|
||||
|
||||
do m = 1, 4
|
||||
call gpu_set_stream(blas_handle, stream(m))
|
||||
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12%f(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
|
||||
call dgemm("T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
|
||||
enddo
|
||||
|
||||
endif
|
||||
call gpu_synchronize()
|
||||
call gpu_deallocate(tmp_grad1_u12)
|
||||
call gpu_deallocate(tmp_grad1_u12p)
|
||||
deallocate(tmp_grad1_u12)
|
||||
|
||||
do i=1,4
|
||||
call gpu_stream_destroy(stream(i))
|
||||
enddo
|
||||
|
||||
|
||||
call gpu_deallocate(tmp)
|
||||
deallocate(tmp)
|
||||
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' wall time for int2_grad1_u12_ao (min) = ', (time1-time0) / 60.d0
|
||||
print*, ' wall time Jastrow derivatives (min) = ', tc / 60.d0
|
||||
|
||||
call print_memory_usage()
|
||||
|
||||
!TODO
|
||||
stop
|
||||
! ---
|
||||
! ---
|
||||
! ---
|
||||
|
||||
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
allocate(tc_int_2e_ao(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint) &
|
||||
@ -196,19 +177,18 @@ stop
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
|
||||
, int2_grad1_u12_ao%f(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 0.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
deallocate(c_mat)
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time of Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
do m = 1, 3
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
@ -220,7 +200,7 @@ stop
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
ao_i_r = aos_in_r_array_transp(ipoint,i)
|
||||
ao_k_r = aos_in_r_array_transp(ipoint,k)
|
||||
|
||||
@ -231,14 +211,16 @@ stop
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
|
||||
, int2_grad1_u12_ao%f(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
|
||||
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 1.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
enddo
|
||||
deallocate(c_mat)
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time of non-Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
|
||||
deallocate(c_mat)
|
||||
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
@ -249,13 +231,18 @@ stop
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' lower- and upper-triangle of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
double precision :: tmp_omp
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
PROVIDE ao_integrals_map
|
||||
tmp_omp = get_ao_two_e_integral(1, 1, 1, 1, ao_integrals_map)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(ao_num, tc_int_2e_ao, ao_integrals_map) &
|
||||
!$OMP PRIVATE(i, j, k, l)
|
||||
@ -281,9 +268,10 @@ stop
|
||||
|
||||
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) int2_grad1_u12_ao%f(:,:,:,1:3)
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) int2_grad1_u12_ao(:,:,:,1:3)
|
||||
close(11)
|
||||
deallocate(int2_grad1_u12_ao)
|
||||
|
||||
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
|
||||
@ -295,7 +283,6 @@ stop
|
||||
|
||||
! ----
|
||||
|
||||
call gpu_deallocate(int2_grad1_u12_ao)
|
||||
deallocate(tc_int_2e_ao)
|
||||
|
||||
call wall_time(time2)
|
||||
|
315
plugins/local/tc_int/compute_tc_int_gpu.irp.f
Normal file
315
plugins/local/tc_int/compute_tc_int_gpu.irp.f
Normal file
@ -0,0 +1,315 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine provide_int2_grad1_u12_ao_gpu()
|
||||
|
||||
use gpu
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int2_grad1_u12_ao(i,j,ipoint,1) = \int dr2 [\grad1 u(r1,r2)]_x1 \chi_i(r2) \chi_j(r2)
|
||||
! int2_grad1_u12_ao(i,j,ipoint,2) = \int dr2 [\grad1 u(r1,r2)]_y1 \chi_i(r2) \chi_j(r2)
|
||||
! int2_grad1_u12_ao(i,j,ipoint,3) = \int dr2 [\grad1 u(r1,r2)]_z1 \chi_i(r2) \chi_j(r2)
|
||||
! int2_grad1_u12_ao(i,j,ipoint,4) = \int dr2 [-(1/2) [\grad1 u(r1,r2)]^2] \chi_i(r2) \chi_j(r2)
|
||||
!
|
||||
!
|
||||
! tc_int_2e_ao(k,i,l,j) = (ki|V^TC(r_12)|lj)
|
||||
! = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
|
||||
! = tc_grad_and_lapl_ao(k,i,l,j) + tc_grad_square_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
|
||||
! where:
|
||||
!
|
||||
! tc_grad_and_lapl_ao(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) . \grad_1 | ij >
|
||||
! = -1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 (-1) \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||
!
|
||||
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
|
||||
!
|
||||
! ao_two_e_coul(k,i,l,j) = < l k | 1/r12 | j i > = ( k i | 1/r12 | l j )
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l, m, ipoint, jpoint
|
||||
integer :: n_blocks, n_rest, n_pass
|
||||
integer :: i_blocks, i_rest, i_pass, ii
|
||||
double precision :: mem, n_double
|
||||
double precision :: weight1, ao_k_r, ao_i_r
|
||||
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
|
||||
double precision :: time0, time1, time2, tc1, tc2, tc
|
||||
type(gpu_double4) :: int2_grad1_u12_ao
|
||||
type(gpu_double3) :: tmp_grad1_u12, tmp_grad1_u12p, tmp
|
||||
double precision, allocatable :: c_mat(:,:,:), tc_int_2e_ao(:,:,:,:)
|
||||
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
|
||||
|
||||
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
|
||||
PROVIDE final_weight_at_r_vector aos_grad_in_r_array_transp_bis final_weight_at_r_vector aos_in_r_array_transp
|
||||
|
||||
|
||||
|
||||
print*, ' start provide_int2_grad1_u12_ao ...'
|
||||
call wall_time(time0)
|
||||
|
||||
call total_memory(mem)
|
||||
mem = max(1.d0, qp_max_mem - mem)
|
||||
mem = 6
|
||||
n_double = mem * 1.d8
|
||||
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
|
||||
n_rest = int(mod(n_points_final_grid, n_blocks))
|
||||
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
|
||||
|
||||
call write_int(6, n_pass, 'Number of passes')
|
||||
call write_int(6, n_blocks, 'Size of the blocks')
|
||||
call write_int(6, n_rest, 'Size of the last block')
|
||||
|
||||
! ---
|
||||
! ---
|
||||
! ---
|
||||
|
||||
call gpu_allocate(int2_grad1_u12_ao, ao_num,ao_num,n_points_final_grid,4)
|
||||
|
||||
call gpu_allocate(tmp,n_points_extra_final_grid,ao_num,ao_num)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (j, i, jpoint) &
|
||||
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
tmp%f(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call gpu_allocate(tmp_grad1_u12,n_points_extra_final_grid,n_blocks,4)
|
||||
call gpu_allocate(tmp_grad1_u12p,n_points_extra_final_grid,n_blocks,4)
|
||||
|
||||
tc = 0.d0
|
||||
|
||||
type(gpu_stream) :: stream(4)
|
||||
do i=1,4
|
||||
call gpu_stream_create(stream(i))
|
||||
enddo
|
||||
|
||||
do i_pass = 1, n_pass
|
||||
ii = (i_pass-1)*n_blocks + 1
|
||||
|
||||
call wall_time(tc1)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i_blocks, ipoint) &
|
||||
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
|
||||
!$OMP DO
|
||||
do i_blocks = 1, n_blocks
|
||||
ipoint = ii - 1 + i_blocks ! r1
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_blocks,1), tmp_grad1_u12%f(1,i_blocks,2), &
|
||||
tmp_grad1_u12%f(1,i_blocks,3), tmp_grad1_u12%f(1,i_blocks,4))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tc2)
|
||||
tc = tc + tc2 - tc1
|
||||
|
||||
call gpu_synchronize()
|
||||
call gpu_copy(tmp_grad1_u12,tmp_grad1_u12p)
|
||||
do m = 1, 4
|
||||
call gpu_set_stream(blas_handle, stream(m))
|
||||
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12p%f(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if(n_rest .gt. 0) then
|
||||
|
||||
ii = n_pass*n_blocks + 1
|
||||
|
||||
call wall_time(tc1)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i_rest, ipoint) &
|
||||
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
|
||||
!$OMP DO
|
||||
do i_rest = 1, n_rest
|
||||
ipoint = ii - 1 + i_rest ! r1
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_rest,1), tmp_grad1_u12%f(1,i_rest,2), &
|
||||
tmp_grad1_u12%f(1,i_rest,3), tmp_grad1_u12%f(1,i_rest,4))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tc2)
|
||||
tc = tc + tc2 - tc1
|
||||
|
||||
do m = 1, 4
|
||||
call gpu_set_stream(blas_handle, stream(m))
|
||||
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
|
||||
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12%f(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
|
||||
enddo
|
||||
|
||||
endif
|
||||
call gpu_synchronize()
|
||||
call gpu_deallocate(tmp_grad1_u12)
|
||||
call gpu_deallocate(tmp_grad1_u12p)
|
||||
|
||||
do i=1,4
|
||||
call gpu_stream_destroy(stream(i))
|
||||
enddo
|
||||
|
||||
|
||||
call gpu_deallocate(tmp)
|
||||
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' wall time for int2_grad1_u12_ao (min) = ', (time1-time0) / 60.d0
|
||||
print*, ' wall time Jastrow derivatives (min) = ', tc / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
!TODO
|
||||
stop
|
||||
! ---
|
||||
! ---
|
||||
! ---
|
||||
|
||||
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
allocate(tc_int_2e_ao(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
|
||||
, int2_grad1_u12_ao%f(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 0.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time of Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
do m = 1, 3
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
|
||||
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
|
||||
ao_i_r = aos_in_r_array_transp(ipoint,i)
|
||||
ao_k_r = aos_in_r_array_transp(ipoint,k)
|
||||
|
||||
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
|
||||
, int2_grad1_u12_ao%f(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 1.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
enddo
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time of non-Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
deallocate(c_mat)
|
||||
|
||||
! ---
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
call sum_A_At(tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' lower- and upper-triangle of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
call wall_time(time1)
|
||||
|
||||
PROVIDE ao_integrals_map
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(ao_num, tc_int_2e_ao, ao_integrals_map) &
|
||||
!$OMP PRIVATE(i, j, k, l)
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
! < 1:i, 2:j | 1:k, 2:l >
|
||||
tc_int_2e_ao(k,i,l,j) = tc_int_2e_ao(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time of Coulomb part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) int2_grad1_u12_ao%f(:,:,:,1:3)
|
||||
close(11)
|
||||
|
||||
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
do i = 1, ao_num
|
||||
write(11) tc_int_2e_ao(:,:,:,i)
|
||||
enddo
|
||||
close(11)
|
||||
|
||||
! ----
|
||||
|
||||
call gpu_deallocate(int2_grad1_u12_ao)
|
||||
deallocate(tc_int_2e_ao)
|
||||
|
||||
call wall_time(time2)
|
||||
print*, ' wall time for tc_int_2e_ao (min) = ', (time2-time1) / 60.d0
|
||||
call print_memory_usage()
|
||||
|
||||
! ---
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' wall time for TC-integrals (min) = ', (time1-time0) / 60.d0
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
70
plugins/local/tc_int/cutc_module.F90
Normal file
70
plugins/local/tc_int/cutc_module.F90
Normal file
@ -0,0 +1,70 @@
|
||||
|
||||
module cutc_module
|
||||
|
||||
use, intrinsic :: iso_c_binding
|
||||
|
||||
implicit none
|
||||
|
||||
interface
|
||||
|
||||
! ---
|
||||
|
||||
subroutine cutc_int(nxBlocks, nyBlocks, nzBlocks, &
|
||||
blockxSize, blockySize, blockzSize, &
|
||||
n_grid1, n_grid2, n_ao, n_nuc, size_bh, &
|
||||
r1, wr1, r2, wr2, rn, &
|
||||
aos_data1, aos_data2, &
|
||||
c_bh, m_bh, n_bh, o_bh, &
|
||||
int2_grad1_u12_ao, int_2e_ao) bind(C, name = "cutc_int")
|
||||
|
||||
import c_int, c_double, c_ptr
|
||||
integer(c_int), intent(in), value :: nxBlocks, blockxSize
|
||||
integer(c_int), intent(in), value :: nyBlocks, blockySize
|
||||
integer(c_int), intent(in), value :: nzBlocks, blockzSize
|
||||
integer(c_int), intent(in), value :: n_grid1, n_grid2
|
||||
integer(c_int), intent(in), value :: n_ao
|
||||
integer(c_int), intent(in), value :: n_nuc
|
||||
integer(c_int), intent(in), value :: size_bh
|
||||
real(c_double), intent(in) :: r1(3,n_grid1), wr1(n_grid1)
|
||||
real(c_double), intent(in) :: r2(3,n_grid2), wr2(n_grid2)
|
||||
real(c_double), intent(in) :: rn(3,n_nuc)
|
||||
real(c_double), intent(in) :: aos_data1(n_grid1,n_ao,4)
|
||||
real(c_double), intent(in) :: aos_data2(n_grid2,n_ao,4)
|
||||
real(c_double), intent(in) :: c_bh(size_bh,n_nuc)
|
||||
integer(c_int), intent(in) :: m_bh(size_bh,n_nuc)
|
||||
integer(c_int), intent(in) :: n_bh(size_bh,n_nuc)
|
||||
integer(c_int), intent(in) :: o_bh(size_bh,n_nuc)
|
||||
real(c_double), intent(out) :: int2_grad1_u12_ao(n_ao,n_ao,n_grid1,3)
|
||||
real(c_double), intent(out) :: int_2e_ao(n_ao,n_ao,n_ao,n_ao)
|
||||
|
||||
end subroutine cutc_int
|
||||
|
||||
! ---
|
||||
|
||||
subroutine cutc_no(n_grid1, n_mo, ne_a, ne_b, &
|
||||
wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, &
|
||||
no_2e, no_1e, no_0e) bind(C, name = "cutc_no")
|
||||
|
||||
import c_int, c_double, c_ptr
|
||||
|
||||
integer(c_int), intent(in), value :: n_grid1
|
||||
integer(c_int), intent(in), value :: n_mo
|
||||
integer(c_int), intent(in), value :: ne_a
|
||||
integer(c_int), intent(in), value :: ne_b
|
||||
real(c_double), intent(in) :: wr1(n_grid1)
|
||||
real(c_double), intent(in) :: mos_l_in_r(n_grid1,n_mo)
|
||||
real(c_double), intent(in) :: mos_r_in_r(n_grid1,n_mo)
|
||||
real(c_double), intent(in) :: int2_grad1_u12(n_grid1,3,n_mo,n_mo)
|
||||
real(c_double), intent(out) :: no_2e(n_mo,n_mo,n_mo,n_mo)
|
||||
real(c_double), intent(out) :: no_1e(n_mo,n_mo)
|
||||
real(c_double), intent(out) :: no_0e(1)
|
||||
|
||||
end subroutine cutc_no
|
||||
|
||||
! ---
|
||||
|
||||
end interface
|
||||
|
||||
end module cutc_module
|
||||
|
||||
|
311
plugins/local/tc_int/deb_int_2e_ao_gpu.irp.f
Normal file
311
plugins/local/tc_int/deb_int_2e_ao_gpu.irp.f
Normal file
@ -0,0 +1,311 @@
|
||||
|
||||
! ---
|
||||
|
||||
program deb_int_2e_ao_gpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: m
|
||||
integer :: i, j, k, l
|
||||
integer :: ipoint, jpoint
|
||||
|
||||
double precision :: weight1, ao_i_r, ao_k_r
|
||||
|
||||
double precision :: acc_thr, err_tot, nrm_tot, err_loc
|
||||
|
||||
double precision :: time0, time1
|
||||
double precision :: wall_time0, wall_time1
|
||||
double precision :: wall_ttime0, wall_ttime1
|
||||
double precision :: tt1, tt2
|
||||
|
||||
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
|
||||
double precision, allocatable :: grad1_u12(:,:,:), int_fct_long_range(:,:,:), c_mat(:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_ao_gpu(:,:,:,:)
|
||||
double precision, allocatable :: int_2e_ao(:,:,:,:)
|
||||
double precision, allocatable :: int_2e_ao_gpu(:,:,:,:)
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start deb_int_2e_ao_gpu'
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
allocate(rn(3,nucl_num))
|
||||
allocate(aos_data1(n_points_final_grid,ao_num,4))
|
||||
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
|
||||
|
||||
do k = 1, nucl_num
|
||||
rn(1,k) = nucl_coord(k,1)
|
||||
rn(2,k) = nucl_coord(k,2)
|
||||
rn(3,k) = nucl_coord(k,3)
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
|
||||
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
|
||||
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
|
||||
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
|
||||
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
|
||||
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
|
||||
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
integer :: nB
|
||||
integer :: sB
|
||||
|
||||
PROVIDE nxBlocks nyBlocks nzBlocks
|
||||
PROVIDE blockxSize blockySize blockzSize
|
||||
|
||||
sB = 32
|
||||
nB = (n_points_final_grid + sB - 1) / sB
|
||||
|
||||
call ezfio_set_tc_int_blockxSize(sB)
|
||||
call ezfio_set_tc_int_nxBlocks(nB)
|
||||
|
||||
allocate(int2_grad1_u12_ao_gpu(ao_num,ao_num,n_points_final_grid,3))
|
||||
allocate(int_2e_ao_gpu(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
|
||||
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
|
||||
final_grid_points, final_weight_at_r_vector, &
|
||||
final_grid_points_extra, final_weight_at_r_vector_extra, &
|
||||
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
|
||||
int2_grad1_u12_ao_gpu, int_2e_ao_gpu)
|
||||
|
||||
! ---
|
||||
|
||||
allocate(int_fct_long_range(n_points_extra_final_grid,ao_num,ao_num))
|
||||
allocate(grad1_u12(n_points_extra_final_grid,n_points_final_grid,4))
|
||||
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
|
||||
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
call wall_time(wall_time0)
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (j, i, jpoint) &
|
||||
!$OMP SHARED (int_fct_long_range, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
int_fct_long_range(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for int_long_range (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, grad1_u12)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, grad1_u12(1,ipoint,1) &
|
||||
, grad1_u12(1,ipoint,2) &
|
||||
, grad1_u12(1,ipoint,3) &
|
||||
, grad1_u12(1,ipoint,4) )
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for tc_int_bh (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
do m = 1, 4
|
||||
call dgemm("T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
|
||||
, int_fct_long_range(1,1,1), n_points_extra_final_grid, grad1_u12(1,1,m), n_points_extra_final_grid &
|
||||
, 0.d0, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num)
|
||||
enddo
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of integ over r2 (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
|
||||
, int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 0.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
|
||||
|
||||
|
||||
tt1 = 0.d0
|
||||
tt2 = 0.d0
|
||||
do m = 1, 3
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
|
||||
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
|
||||
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
ao_i_r = aos_in_r_array_transp(ipoint,i)
|
||||
ao_k_r = aos_in_r_array_transp(ipoint,k)
|
||||
|
||||
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(wall_ttime1)
|
||||
tt1 += wall_ttime1 - wall_ttime0
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
|
||||
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
|
||||
, 1.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
tt2 += wall_ttime1 - wall_ttime0
|
||||
enddo
|
||||
write(*,"(A,2X,F15.7)") ' wall time of non-Hermitian part (sec) = ', tt1
|
||||
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of non Hermitian part (sec) = ', tt2
|
||||
|
||||
|
||||
call wall_time(wall_ttime0)
|
||||
call sum_A_At(int_2e_ao(1,1,1,1), ao_num*ao_num)
|
||||
call wall_time(wall_ttime1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time of A + A.T (sec) = ', wall_ttime1 - wall_ttime0
|
||||
|
||||
|
||||
call wall_time(wall_time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time on cpu (sec) = ', (wall_time1 - wall_time0)
|
||||
|
||||
! ---
|
||||
|
||||
acc_thr = 1d-12
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
err_loc = dabs(int2_grad1_u12_ao(i,j,ipoint,m) - int2_grad1_u12_ao_gpu(i,j,ipoint,m))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", i, j, ipoint, m
|
||||
print*, " CPU res", int2_grad1_u12_ao (i,j,ipoint,m)
|
||||
print*, " GPU res", int2_grad1_u12_ao_gpu(i,j,ipoint,m)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(int2_grad1_u12_ao(i,j,ipoint,m))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on int2_grad1_u12_ao (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
err_loc = dabs(int_2e_ao(l,k,j,i) - int_2e_ao_gpu(l,k,j,i))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", l, k, j, i
|
||||
print*, " CPU res", int_2e_ao (l,k,j,i)
|
||||
print*, " GPU res", int_2e_ao_gpu(l,k,j,i)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(int_2e_ao(l,k,j,i))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on int_2e_ao (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
! ---
|
||||
|
||||
deallocate(int_fct_long_range, grad1_u12, c_mat)
|
||||
deallocate(int_2e_ao, int2_grad1_u12_ao)
|
||||
deallocate(int_2e_ao_gpu, int2_grad1_u12_ao_gpu)
|
||||
deallocate(rn, aos_data1, aos_data2)
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for deb_int_2e_ao_gpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
end
|
218
plugins/local/tc_int/deb_no_gpu.irp.f
Normal file
218
plugins/local/tc_int/deb_no_gpu.irp.f
Normal file
@ -0,0 +1,218 @@
|
||||
|
||||
! ---
|
||||
|
||||
program deb_no_gpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, k, l, ipoint
|
||||
double precision :: time0, time1
|
||||
double precision :: tt0, tt1
|
||||
double precision :: acc_thr, err_tot, nrm_tot, err_loc
|
||||
double precision :: noL_0e
|
||||
double precision :: noL_0e_gpu(1)
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: tmp(:,:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
|
||||
double precision, allocatable :: noL_1e (:,:)
|
||||
double precision, allocatable :: noL_1e_gpu(:,:)
|
||||
double precision, allocatable :: noL_2e (:,:,:,:)
|
||||
double precision, allocatable :: noL_2e_gpu(:,:,:,:)
|
||||
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
|
||||
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start deb_no_gpu'
|
||||
|
||||
|
||||
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
|
||||
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
call wall_time(tt0)
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
|
||||
read(11) int2_grad1_u12_ao
|
||||
close(11)
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
|
||||
|
||||
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
|
||||
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
call wall_time(tt0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint) &
|
||||
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
|
||||
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(int2_grad1_u12_ao)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
|
||||
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
|
||||
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
|
||||
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call wall_time(tt1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
! ---
|
||||
|
||||
allocate(noL_2e_gpu(mo_num,mo_num,mo_num,mo_num))
|
||||
allocate(noL_1e_gpu(mo_num,mo_num))
|
||||
|
||||
call cutc_no(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e_gpu(1,1,1,1), noL_1e_gpu(1,1), noL_0e_gpu(1))
|
||||
|
||||
! ---
|
||||
|
||||
allocate(noL_2e(mo_num,mo_num,mo_num,mo_num))
|
||||
allocate(noL_1e(mo_num,mo_num))
|
||||
|
||||
call provide_no_2e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e(1,1,1,1))
|
||||
|
||||
call provide_no_1e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_1e(1,1))
|
||||
|
||||
call provide_no_0e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
|
||||
final_weight_at_r_vector(1), &
|
||||
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
|
||||
int2_grad1_u12_bimo_t(1,1,1,1), noL_0e)
|
||||
|
||||
! ---
|
||||
|
||||
deallocate(int2_grad1_u12_bimo_t)
|
||||
|
||||
acc_thr = 1d-12
|
||||
|
||||
! ---
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
err_loc = dabs(noL_2e(l,k,j,i) - noL_2e_gpu(l,k,j,i))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", l, k, j, i
|
||||
print*, " CPU res", noL_2e (l,k,j,i)
|
||||
print*, " GPU res", noL_2e_gpu(l,k,j,i)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(noL_2e(l,k,j,i))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on noL_2e (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
deallocate(noL_2e)
|
||||
deallocate(noL_2e_gpu)
|
||||
|
||||
! ---
|
||||
|
||||
err_tot = 0.d0
|
||||
nrm_tot = 0.d0
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
err_loc = dabs(noL_1e(l,k) - noL_1e_gpu(l,k))
|
||||
if(err_loc > acc_thr) then
|
||||
print*, " error on", l, k
|
||||
print*, " CPU res", noL_1e (l,k)
|
||||
print*, " GPU res", noL_1e_gpu(l,k)
|
||||
stop
|
||||
endif
|
||||
err_tot = err_tot + err_loc
|
||||
nrm_tot = nrm_tot + dabs(noL_1e(l,k))
|
||||
enddo
|
||||
enddo
|
||||
print *, ' absolute accuracy on noL_1e (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
deallocate(noL_1e)
|
||||
deallocate(noL_1e_gpu)
|
||||
|
||||
! ---
|
||||
|
||||
print *, 'noL_0e CPU = ', noL_0e
|
||||
print *, 'noL_0e GPU = ', noL_0e_gpu(1)
|
||||
|
||||
err_tot = dabs(noL_0e - noL_0e_gpu(1))
|
||||
nrm_tot = dabs(noL_0e)
|
||||
print *, ' absolute accuracy on noL_0e (%) =', 100.d0 * err_tot / nrm_tot
|
||||
|
||||
|
||||
call wall_time(time1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for deb_no_gpu (sec) = ', (time1 - time0)
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
18
plugins/local/tc_int/install
Executable file
18
plugins/local/tc_int/install
Executable file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Check if the QP_ROOT environment variable is set.
|
||||
if [[ -z ${QP_ROOT} ]]
|
||||
then
|
||||
print "The QP_ROOT environment variable is not set."
|
||||
print "Please reload the quantum_package.rc file."
|
||||
exit -1
|
||||
fi
|
||||
|
||||
git clone https://github.com/AbdAmmar/CuTC
|
||||
cd CuTC
|
||||
source config/env.rc
|
||||
make
|
||||
cd ..
|
||||
|
||||
ln -s ${PWD}/CuTC/build/libcutcint.so ${QP_ROOT}/lib
|
||||
|
@ -58,7 +58,7 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
integer :: jpoint, i_nucl, p, mpA, npA, opA
|
||||
double precision :: r2(3)
|
||||
double precision :: dx, dy, dz, r12, tmp
|
||||
double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3)
|
||||
double precision :: rn(3), f1A, grad1_f1A(3), f2A, g12, grad1_g12(3)
|
||||
double precision :: tmp1, tmp2, dist
|
||||
integer :: powmax1, powmax, powmax2
|
||||
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
|
||||
@ -91,35 +91,29 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
|
||||
call jBH_elem_fct_grad_alpha1(r1, r2, g12, grad1_g12)
|
||||
|
||||
! dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
! + (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
! + (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
!
|
||||
! if(dist .ge. 1d-15) then
|
||||
! dist = dsqrt( dist )
|
||||
!
|
||||
! tmp1 = 1.d0 / (1.d0 + dist)
|
||||
!
|
||||
! g12 = dist * tmp1
|
||||
! tmp2 = tmp1 * tmp1 / dist
|
||||
! grad1_g12(1) = tmp2 * (r1(1) - r2(1))
|
||||
! grad1_g12(2) = tmp2 * (r1(2) - r2(2))
|
||||
! grad1_g12(3) = tmp2 * (r1(3) - r2(3))
|
||||
!
|
||||
! else
|
||||
!
|
||||
! grad1_g12(1) = 0.d0
|
||||
! grad1_g12(2) = 0.d0
|
||||
! grad1_g12(3) = 0.d0
|
||||
! g12 = 0.d0
|
||||
!
|
||||
! endif
|
||||
!
|
||||
do p = 1, powmax2
|
||||
g12_power(p) = g12_power(p-1) * g12
|
||||
enddo
|
||||
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
if(dist .ge. 1d-15) then
|
||||
dist = dsqrt(dist)
|
||||
tmp1 = 1.d0 / (1.d0 + dist)
|
||||
g12 = dist * tmp1
|
||||
tmp2 = tmp1 * tmp1 / dist
|
||||
grad1_g12(1) = tmp2 * (r1(1) - r2(1))
|
||||
grad1_g12(2) = tmp2 * (r1(2) - r2(2))
|
||||
grad1_g12(3) = tmp2 * (r1(3) - r2(3))
|
||||
do p = 1, powmax2
|
||||
g12_power(p) = g12_power(p-1) * g12
|
||||
enddo
|
||||
else
|
||||
grad1_g12(1) = 0.d0
|
||||
grad1_g12(2) = 0.d0
|
||||
grad1_g12(3) = 0.d0
|
||||
g12 = 0.d0
|
||||
do p = 1, powmax2
|
||||
g12_power(p) = 0.d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
do i_nucl = 1, nucl_num
|
||||
|
||||
@ -127,71 +121,54 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
rn(2) = nucl_coord(i_nucl,2)
|
||||
rn(3) = nucl_coord(i_nucl,3)
|
||||
|
||||
call jBH_elem_fct_grad_alpha1(r1, rn, f1A, grad1_f1A)
|
||||
! dist = (r1(1) - rn(1)) * (r1(1) - rn(1)) &
|
||||
! + (r1(2) - rn(2)) * (r1(2) - rn(2)) &
|
||||
! + (r1(3) - rn(3)) * (r1(3) - rn(3))
|
||||
! if (dist > 1.d-15) then
|
||||
! dist = dsqrt( dist )
|
||||
!
|
||||
! tmp1 = 1.d0 / (1.d0 + dist)
|
||||
!
|
||||
! f1A = dist * tmp1
|
||||
! tmp2 = tmp1 * tmp1 / dist
|
||||
! grad1_f1A(1) = tmp2 * (r1(1) - rn(1))
|
||||
! grad1_f1A(2) = tmp2 * (r1(2) - rn(2))
|
||||
! grad1_f1A(3) = tmp2 * (r1(3) - rn(3))
|
||||
!
|
||||
! else
|
||||
!
|
||||
! grad1_f1A(1) = 0.d0
|
||||
! grad1_f1A(2) = 0.d0
|
||||
! grad1_f1A(3) = 0.d0
|
||||
! f1A = 0.d0
|
||||
!
|
||||
! endif
|
||||
dist = (r1(1) - rn(1)) * (r1(1) - rn(1)) &
|
||||
+ (r1(2) - rn(2)) * (r1(2) - rn(2)) &
|
||||
+ (r1(3) - rn(3)) * (r1(3) - rn(3))
|
||||
if (dist > 1.d-15) then
|
||||
dist = dsqrt(dist)
|
||||
tmp1 = 1.d0 / (1.d0 + dist)
|
||||
f1A = dist * tmp1
|
||||
tmp2 = tmp1 * tmp1 / dist
|
||||
grad1_f1A(1) = tmp2 * (r1(1) - rn(1))
|
||||
grad1_f1A(2) = tmp2 * (r1(2) - rn(2))
|
||||
grad1_f1A(3) = tmp2 * (r1(3) - rn(3))
|
||||
do p = 1, powmax1
|
||||
f1A_power(p) = f1A_power(p-1) * f1A
|
||||
enddo
|
||||
else
|
||||
grad1_f1A(1) = 0.d0
|
||||
grad1_f1A(2) = 0.d0
|
||||
grad1_f1A(3) = 0.d0
|
||||
f1A = 0.d0
|
||||
do p = 1, powmax1
|
||||
f1A_power(p) = 0.d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
call jBH_elem_fct_grad_alpha1(r2, rn, f2A, grad2_f2A)
|
||||
! dist = (r2(1) - rn(1)) * (r2(1) - rn(1)) &
|
||||
! + (r2(2) - rn(2)) * (r2(2) - rn(2)) &
|
||||
! + (r2(3) - rn(3)) * (r2(3) - rn(3))
|
||||
!
|
||||
! if (dist > 1.d-15) then
|
||||
! dist = dsqrt( dist )
|
||||
!
|
||||
! tmp1 = 1.d0 / (1.d0 + dist)
|
||||
!
|
||||
! f2A = dist * tmp1
|
||||
! tmp2 = tmp1 * tmp1 / dist
|
||||
! grad2_f2A(1) = tmp2 * (r2(1) - rn(1))
|
||||
! grad2_f2A(2) = tmp2 * (r2(2) - rn(2))
|
||||
! grad2_f2A(3) = tmp2 * (r2(3) - rn(3))
|
||||
!
|
||||
! else
|
||||
!
|
||||
! grad2_f2A(1) = 0.d0
|
||||
! grad2_f2A(2) = 0.d0
|
||||
! grad2_f2A(3) = 0.d0
|
||||
! f2A = 0.d0
|
||||
!
|
||||
! endif
|
||||
|
||||
! Compute powers of f1A and f2A
|
||||
do p = 1, powmax1
|
||||
f1A_power(p) = f1A_power(p-1) * f1A
|
||||
f2A_power(p) = f2A_power(p-1) * f2A
|
||||
enddo
|
||||
dist = (r2(1) - rn(1)) * (r2(1) - rn(1)) &
|
||||
+ (r2(2) - rn(2)) * (r2(2) - rn(2)) &
|
||||
+ (r2(3) - rn(3)) * (r2(3) - rn(3))
|
||||
if (dist > 1.d-15) then
|
||||
dist = dsqrt(dist)
|
||||
f2A = dist / (1.d0 + dist)
|
||||
do p = 1, powmax1
|
||||
f2A_power(p) = f2A_power(p-1) * f2A
|
||||
enddo
|
||||
else
|
||||
f2A = 0.d0
|
||||
do p = 1, powmax1
|
||||
f2A_power(p) = 0.d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
do p = 1, jBH_size
|
||||
|
||||
tmp = jBH_c(p,i_nucl)
|
||||
if (dabs(tmp) <= 1.d-10) cycle
|
||||
|
||||
mpA = jBH_m(p,i_nucl)
|
||||
npA = jBH_n(p,i_nucl)
|
||||
opA = jBH_o(p,i_nucl)
|
||||
tmp = jBH_c(p,i_nucl)
|
||||
! if (dabs(tmp) <= 1.d-10) cycle
|
||||
!
|
||||
if(mpA .eq. npA) then
|
||||
tmp = tmp * 0.5d0
|
||||
endif
|
||||
|
||||
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
|
||||
tmp1 = tmp1 * g12_power(opA) * tmp
|
||||
@ -207,39 +184,5 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
return
|
||||
end
|
||||
|
||||
subroutine jBH_elem_fct_grad_alpha1(r1, r2, fct, grad1_fct)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: fct, grad1_fct(3)
|
||||
double precision :: dist, tmp1, tmp2
|
||||
|
||||
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
|
||||
|
||||
if(dist .ge. 1d-15) then
|
||||
dist = dsqrt( dist )
|
||||
|
||||
tmp1 = 1.d0 / (1.d0 + dist)
|
||||
|
||||
fct = dist * tmp1
|
||||
tmp2 = tmp1 * tmp1 / dist
|
||||
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
|
||||
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
|
||||
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
|
||||
|
||||
else
|
||||
|
||||
grad1_fct(1) = 0.d0
|
||||
grad1_fct(2) = 0.d0
|
||||
grad1_fct(3) = 0.d0
|
||||
fct = 0.d0
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -1,43 +0,0 @@
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, grad1_fct)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: alpha, r1(3), r2(3)
|
||||
double precision, intent(out) :: fct, grad1_fct(3)
|
||||
double precision :: dist, tmp1, tmp2, dist_inv
|
||||
|
||||
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
|
||||
|
||||
|
||||
if(dist .ge. 1d-15) then
|
||||
dist_inv = 1.d0/dsqrt( dist )
|
||||
dist = dist_inv * dist
|
||||
|
||||
tmp1 = 1.d0 / (1.d0 + alpha * dist)
|
||||
|
||||
fct = alpha * dist * tmp1
|
||||
tmp2 = alpha * tmp1 * tmp1 * dist_inv
|
||||
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
|
||||
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
|
||||
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
|
||||
|
||||
else
|
||||
|
||||
grad1_fct(1) = 0.d0
|
||||
grad1_fct(2) = 0.d0
|
||||
grad1_fct(3) = 0.d0
|
||||
fct = 0.d0
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
407
plugins/local/tc_int/no_0e.irp.f
Normal file
407
plugins/local/tc_int/no_0e.irp.f
Normal file
@ -0,0 +1,407 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine provide_no_0e(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, noL_0e)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_grid, n_mo
|
||||
integer, intent(in) :: ne_a, ne_b
|
||||
double precision, intent(in) :: wr1(n_grid)
|
||||
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
|
||||
double precision, intent(out) :: noL_0e
|
||||
|
||||
integer :: i, j, k, ipoint
|
||||
double precision :: t0, t1
|
||||
double precision, allocatable :: tmp(:)
|
||||
double precision, allocatable :: tmpL(:,:), tmpR(:,:)
|
||||
double precision, allocatable :: tmpM(:,:), tmpS(:), tmpO(:), tmpJ(:,:)
|
||||
double precision, allocatable :: tmpM_priv(:,:), tmpS_priv(:), tmpO_priv(:), tmpJ_priv(:,:)
|
||||
|
||||
|
||||
call wall_time(t0)
|
||||
|
||||
|
||||
if(ne_a .eq. ne_b) then
|
||||
|
||||
allocate(tmp(ne_b))
|
||||
allocate(tmpL(n_grid,3), tmpR(n_grid,3))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
|
||||
!$OMP SHARED(ne_b, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, wr1, &
|
||||
!$OMP int2_grad1_u12, tmp)
|
||||
|
||||
!$OMP DO
|
||||
do j = 1, ne_b
|
||||
|
||||
tmpL = 0.d0
|
||||
tmpR = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
|
||||
|
||||
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
tmp(j) = 0.d0
|
||||
do ipoint = 1, n_grid
|
||||
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
|
||||
enddo
|
||||
enddo ! j
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
noL_0e = -2.d0 * sum(tmp)
|
||||
|
||||
deallocate(tmp)
|
||||
deallocate(tmpL, tmpR)
|
||||
|
||||
! ---
|
||||
|
||||
allocate(tmpO(n_grid), tmpJ(n_grid,3))
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, ipoint, tmpO_priv, tmpJ_priv) &
|
||||
!$OMP SHARED(ne_b, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmpO, tmpJ)
|
||||
|
||||
allocate(tmpO_priv(n_grid), tmpJ_priv(n_grid,3))
|
||||
tmpO_priv = 0.d0
|
||||
tmpJ_priv = 0.d0
|
||||
|
||||
!$OMP DO
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO_priv(ipoint) = tmpO_priv(ipoint) + mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP CRITICAL
|
||||
tmpO = tmpO + tmpO_priv
|
||||
tmpJ = tmpJ + tmpJ_priv
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(tmpO_priv, tmpJ_priv)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
allocate(tmpM(n_grid,3), tmpS(n_grid))
|
||||
tmpM = 0.d0
|
||||
tmpS = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, j, ipoint, tmpM_priv, tmpS_priv) &
|
||||
!$OMP SHARED(ne_b, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmpM, tmpS)
|
||||
|
||||
allocate(tmpM_priv(n_grid,3), tmpS_priv(n_grid))
|
||||
tmpM_priv = 0.d0
|
||||
tmpS_priv = 0.d0
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, ne_b
|
||||
do j = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
|
||||
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
|
||||
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
|
||||
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP CRITICAL
|
||||
tmpM = tmpM + tmpM_priv
|
||||
tmpS = tmpS + tmpS_priv
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(tmpM_priv, tmpS_priv)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
allocate(tmp(n_grid))
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpS(ipoint) = 2.d0 * (tmpJ(ipoint,1)*tmpJ(ipoint,1) + tmpJ(ipoint,2)*tmpJ(ipoint,2) + tmpJ(ipoint,3)*tmpJ(ipoint,3)) - tmpS(ipoint)
|
||||
|
||||
tmp(ipoint) = wr1(ipoint) * ( tmpO(ipoint) * tmpS(ipoint) - 2.d0 * ( tmpJ(ipoint,1) * tmpM(ipoint,1) &
|
||||
+ tmpJ(ipoint,2) * tmpM(ipoint,2) &
|
||||
+ tmpJ(ipoint,3) * tmpM(ipoint,3) ) )
|
||||
enddo
|
||||
|
||||
noL_0e = noL_0e - 2.d0 * (sum(tmp))
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
else
|
||||
|
||||
allocate(tmp(ne_a))
|
||||
allocate(tmpL(n_grid,3), tmpR(n_grid,3))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
|
||||
!$OMP SHARED(ne_b, ne_a, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmp, wr1)
|
||||
|
||||
!$OMP DO
|
||||
do j = 1, ne_b
|
||||
|
||||
tmpL = 0.d0
|
||||
tmpR = 0.d0
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpL(ipoint,1) = tmpL(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,2) = tmpL(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,3) = tmpL(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
|
||||
|
||||
tmpR(ipoint,1) = tmpR(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,2) = tmpR(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,3) = tmpR(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
tmp(j) = 0.d0
|
||||
do ipoint = 1, n_grid
|
||||
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
|
||||
enddo
|
||||
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
|
||||
|
||||
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
|
||||
enddo
|
||||
enddo ! j
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! ---
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
|
||||
!$OMP SHARED(ne_b, ne_a, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmp, wr1)
|
||||
|
||||
!$OMP DO
|
||||
do j = ne_b+1, ne_a
|
||||
|
||||
tmpL = 0.d0
|
||||
tmpR = 0.d0
|
||||
do i = 1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
|
||||
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
|
||||
|
||||
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
|
||||
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
tmp(j) = 0.d0
|
||||
do ipoint = 1, n_grid
|
||||
tmp(j) = tmp(j) + 0.5d0 * wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
|
||||
enddo
|
||||
enddo ! j
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
noL_0e = -2.d0 * sum(tmp)
|
||||
|
||||
deallocate(tmp)
|
||||
deallocate(tmpL, tmpR)
|
||||
|
||||
! ---
|
||||
|
||||
allocate(tmpO(n_grid), tmpJ(n_grid,3))
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, ipoint, tmpO_priv, tmpJ_priv) &
|
||||
!$OMP SHARED(ne_b, ne_a, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmpO, tmpJ)
|
||||
|
||||
allocate(tmpO_priv(n_grid), tmpJ_priv(n_grid,3))
|
||||
tmpO_priv = 0.d0
|
||||
tmpJ_priv = 0.d0
|
||||
|
||||
!$OMP DO
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO_priv(ipoint) = tmpO_priv(ipoint) + mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpO_priv(ipoint) = tmpO_priv(ipoint) + 0.5d0 * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP CRITICAL
|
||||
tmpO = tmpO + tmpO_priv
|
||||
tmpJ = tmpJ + tmpJ_priv
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(tmpO_priv, tmpJ_priv)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! ---
|
||||
|
||||
allocate(tmpM(n_grid,3), tmpS(n_grid))
|
||||
tmpM = 0.d0
|
||||
tmpS = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, j, ipoint, tmpM_priv, tmpS_priv) &
|
||||
!$OMP SHARED(ne_b, ne_a, n_grid, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, tmpM, tmpS)
|
||||
|
||||
allocate(tmpM_priv(n_grid,3), tmpS_priv(n_grid))
|
||||
tmpM_priv = 0.d0
|
||||
tmpS_priv = 0.d0
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, ne_b
|
||||
do j = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
|
||||
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
|
||||
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
|
||||
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = ne_b+1, ne_a
|
||||
do j = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
|
||||
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
|
||||
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
|
||||
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
|
||||
|
||||
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
|
||||
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
|
||||
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = ne_b+1, ne_a
|
||||
do j = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
|
||||
|
||||
tmpS_priv(ipoint) = tmpS_priv(ipoint) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP CRITICAL
|
||||
tmpM = tmpM + tmpM_priv
|
||||
tmpS = tmpS + tmpS_priv
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(tmpM_priv, tmpS_priv)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
allocate(tmp(n_grid))
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpS(ipoint) = 2.d0 * (tmpJ(ipoint,1)*tmpJ(ipoint,1) + tmpJ(ipoint,2)*tmpJ(ipoint,2) + tmpJ(ipoint,3)*tmpJ(ipoint,3)) - tmpS(ipoint)
|
||||
|
||||
tmp(ipoint) = wr1(ipoint) * ( tmpO(ipoint) * tmpS(ipoint) - 2.d0 * ( tmpJ(ipoint,1) * tmpM(ipoint,1) &
|
||||
+ tmpJ(ipoint,2) * tmpM(ipoint,2) &
|
||||
+ tmpJ(ipoint,3) * tmpM(ipoint,3) ) )
|
||||
enddo
|
||||
|
||||
noL_0e = noL_0e - 2.d0 * (sum(tmp))
|
||||
|
||||
deallocate(tmp)
|
||||
|
||||
endif
|
||||
|
||||
|
||||
call wall_time(t1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for noL_0e (sec) = ', (t1 - t0)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
1179
plugins/local/tc_int/no_1e.irp.f
Normal file
1179
plugins/local/tc_int/no_1e.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
605
plugins/local/tc_int/no_2e.irp.f
Normal file
605
plugins/local/tc_int/no_2e.irp.f
Normal file
@ -0,0 +1,605 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine provide_no_2e(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, noL_2e)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_grid, n_mo
|
||||
integer, intent(in) :: ne_a, ne_b
|
||||
double precision, intent(in) :: wr1(n_grid)
|
||||
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
|
||||
double precision, intent(out) :: noL_2e(n_mo,n_mo,n_mo,n_mo)
|
||||
|
||||
integer :: p, q, s, t, i, ipoint
|
||||
double precision :: t0, t1
|
||||
double precision, allocatable :: tmpO(:), tmpJ(:,:)
|
||||
double precision, allocatable :: tmpA(:,:,:), tmpB(:,:,:)
|
||||
double precision, allocatable :: tmpC(:,:,:,:), tmpD(:,:,:,:)
|
||||
double precision, allocatable :: tmpE(:,:,:,:)
|
||||
|
||||
|
||||
call wall_time(t0)
|
||||
|
||||
if(ne_a .eq. ne_b) then
|
||||
|
||||
allocate(tmpO(n_grid), tmpJ(n_grid,3))
|
||||
allocate(tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo))
|
||||
allocate(tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo))
|
||||
allocate(tmpE(n_mo,n_mo,n_mo,n_mo))
|
||||
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB)
|
||||
|
||||
!$OMP DO
|
||||
do p = 1, n_mo
|
||||
|
||||
tmpA(:,:,p) = 0.d0
|
||||
tmpB(:,:,p) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, s, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do s = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
|
||||
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
|
||||
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
|
||||
|
||||
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
|
||||
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
|
||||
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
|
||||
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
|
||||
|
||||
enddo ! ipoint
|
||||
|
||||
tmpC(:,4,p,s) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
|
||||
enddo ! p
|
||||
enddo ! s
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(tmpO, tmpJ, tmpA, tmpB)
|
||||
|
||||
|
||||
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
|
||||
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
|
||||
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
|
||||
|
||||
deallocate(tmpC, tmpD)
|
||||
|
||||
call sum_a_at(tmpE, n_mo*n_mo)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(t, s, q, p) &
|
||||
!$OMP SHARED(n_mo, tmpE, noL_2e)
|
||||
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do t = 1, n_mo
|
||||
do s = 1, n_mo
|
||||
do q = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(tmpE)
|
||||
|
||||
else
|
||||
|
||||
allocate(tmpO(n_grid), tmpJ(n_grid,3))
|
||||
allocate(tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo))
|
||||
allocate(tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo))
|
||||
allocate(tmpE(n_mo,n_mo,n_mo,n_mo))
|
||||
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB)
|
||||
|
||||
!$OMP DO
|
||||
do p = 1, n_mo
|
||||
|
||||
tmpA(:,:,p) = 0.d0
|
||||
tmpB(:,:,p) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, s, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do s = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
|
||||
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
|
||||
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
|
||||
|
||||
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
|
||||
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
|
||||
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
|
||||
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
|
||||
|
||||
enddo ! ipoint
|
||||
|
||||
tmpC(:,4,p,s) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += 0.5d0 * int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
|
||||
enddo ! p
|
||||
enddo ! s
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(tmpO, tmpJ, tmpA, tmpB)
|
||||
|
||||
|
||||
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
|
||||
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
|
||||
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
|
||||
|
||||
deallocate(tmpC, tmpD)
|
||||
|
||||
call sum_a_at(tmpE, n_mo*n_mo)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(t, s, q, p) &
|
||||
!$OMP SHARED(n_mo, tmpE, noL_2e)
|
||||
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do t = 1, n_mo
|
||||
do s = 1, n_mo
|
||||
do q = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(tmpE)
|
||||
|
||||
endif
|
||||
|
||||
call wall_time(t1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for noL_2e (sec) = ', (t1 - t0)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine provide_no_2e_tmp(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, &
|
||||
tmpO, tmpJ, tmpA, tmpB, tmpC, tmpD, tmpE, noL_2e)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_grid, n_mo
|
||||
integer, intent(in) :: ne_a, ne_b
|
||||
double precision, intent(in) :: wr1(n_grid)
|
||||
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
|
||||
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
|
||||
double precision, intent(out) :: tmpO(n_grid), tmpJ(n_grid,3)
|
||||
double precision, intent(out) :: tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo)
|
||||
double precision, intent(out) :: tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo)
|
||||
double precision, intent(out) :: tmpE(n_mo,n_mo,n_mo,n_mo)
|
||||
double precision, intent(out) :: noL_2e(n_mo,n_mo,n_mo,n_mo)
|
||||
|
||||
integer :: p, q, s, t, i, ipoint
|
||||
double precision :: t0, t1
|
||||
|
||||
|
||||
call wall_time(t0)
|
||||
|
||||
if(ne_a .eq. ne_b) then
|
||||
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB)
|
||||
|
||||
!$OMP DO
|
||||
do p = 1, n_mo
|
||||
|
||||
tmpA(:,:,p) = 0.d0
|
||||
tmpB(:,:,p) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, s, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do s = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
|
||||
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
|
||||
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
|
||||
|
||||
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
|
||||
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
|
||||
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
|
||||
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
|
||||
|
||||
enddo ! ipoint
|
||||
|
||||
tmpC(:,4,p,s) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
|
||||
enddo ! p
|
||||
enddo ! s
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
|
||||
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
|
||||
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
|
||||
|
||||
call sum_a_at(tmpE, n_mo*n_mo)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(t, s, q, p) &
|
||||
!$OMP SHARED(n_mo, tmpE, noL_2e)
|
||||
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do t = 1, n_mo
|
||||
do s = 1, n_mo
|
||||
do q = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
else
|
||||
|
||||
tmpO = 0.d0
|
||||
tmpJ = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpO(ipoint) = tmpO(ipoint) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
|
||||
tmpJ(ipoint,1) = tmpJ(ipoint,1) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
|
||||
tmpJ(ipoint,2) = tmpJ(ipoint,2) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
|
||||
tmpJ(ipoint,3) = tmpJ(ipoint,3) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB)
|
||||
|
||||
!$OMP DO
|
||||
do p = 1, n_mo
|
||||
|
||||
tmpA(:,:,p) = 0.d0
|
||||
tmpB(:,:,p) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
|
||||
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
|
||||
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
|
||||
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
|
||||
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
|
||||
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(p, s, i, ipoint) &
|
||||
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
|
||||
!$OMP wr1, &
|
||||
!$OMP mos_l_in_r, mos_r_in_r, &
|
||||
!$OMP int2_grad1_u12, &
|
||||
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
|
||||
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do s = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
|
||||
do ipoint = 1, n_grid
|
||||
|
||||
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
|
||||
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
|
||||
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
|
||||
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
|
||||
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
|
||||
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
|
||||
|
||||
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
|
||||
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
|
||||
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
|
||||
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
|
||||
|
||||
enddo ! ipoint
|
||||
|
||||
tmpC(:,4,p,s) = 0.d0
|
||||
do i = 1, ne_b
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
do i = ne_b+1, ne_a
|
||||
do ipoint = 1, n_grid
|
||||
tmpC(ipoint,4,p,s) += 0.5d0 * int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
|
||||
+ 0.5d0 * int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
|
||||
enddo ! ipoint
|
||||
enddo ! i
|
||||
|
||||
enddo ! p
|
||||
enddo ! s
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
|
||||
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
|
||||
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
|
||||
|
||||
call sum_a_at(tmpE, n_mo*n_mo)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(t, s, q, p) &
|
||||
!$OMP SHARED(n_mo, tmpE, noL_2e)
|
||||
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do t = 1, n_mo
|
||||
do s = 1, n_mo
|
||||
do q = 1, n_mo
|
||||
do p = 1, n_mo
|
||||
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
endif
|
||||
|
||||
call wall_time(t1)
|
||||
write(*,"(A,2X,F15.7)") ' wall time for noL_2e & tmp tensors (sec) = ', (t1 - t0)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
13
plugins/local/tc_int/uninstall
Executable file
13
plugins/local/tc_int/uninstall
Executable file
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Check if the QP_ROOT environment variable is set.
|
||||
if [[ -z ${QP_ROOT} ]]
|
||||
then
|
||||
print "The QP_ROOT environment variable is not set."
|
||||
print "Please reload the quantum_package.rc file."
|
||||
exit -1
|
||||
fi
|
||||
|
||||
rm -rf ${PWD}/CuTC
|
||||
rm -f ${QP_ROOT}/lib/libcutcint.so
|
||||
|
194
plugins/local/tc_int/write_tc_int_cuda.irp.f
Normal file
194
plugins/local/tc_int/write_tc_int_cuda.irp.f
Normal file
@ -0,0 +1,194 @@
|
||||
! ---
|
||||
|
||||
program write_tc_int_cuda
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
|
||||
PROVIDE io_tc_integ
|
||||
|
||||
print*, 'io_tc_integ = ', io_tc_integ
|
||||
|
||||
if(io_tc_integ .ne. "Write") then
|
||||
print*, 'io_tc_integ != Write'
|
||||
print*, io_tc_integ
|
||||
stop
|
||||
endif
|
||||
|
||||
call do_work_on_gpu()
|
||||
|
||||
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine do_work_on_gpu()
|
||||
|
||||
use cutc_module
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: k, ipoint
|
||||
|
||||
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
|
||||
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
|
||||
double precision, allocatable :: int_2e_ao(:,:,:,:)
|
||||
|
||||
double precision :: time0, time1
|
||||
double precision :: cuda_time0, cuda_time1
|
||||
|
||||
call wall_time(time0)
|
||||
print*, ' start calculation of TC-integrals'
|
||||
|
||||
allocate(rn(3,nucl_num))
|
||||
allocate(aos_data1(n_points_final_grid,ao_num,4))
|
||||
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
|
||||
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
|
||||
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
|
||||
|
||||
|
||||
do k = 1, nucl_num
|
||||
rn(1,k) = nucl_coord(k,1)
|
||||
rn(2,k) = nucl_coord(k,2)
|
||||
rn(3,k) = nucl_coord(k,3)
|
||||
enddo
|
||||
|
||||
do k = 1, ao_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
|
||||
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
|
||||
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
|
||||
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
|
||||
enddo
|
||||
|
||||
do ipoint = 1, n_points_extra_final_grid
|
||||
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
|
||||
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
|
||||
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
|
||||
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
integer :: nB
|
||||
integer :: sB
|
||||
|
||||
PROVIDE nxBlocks nyBlocks nzBlocks
|
||||
PROVIDE blockxSize blockySize blockzSize
|
||||
|
||||
sB = 32
|
||||
nB = (n_points_final_grid + sB - 1) / sB
|
||||
|
||||
call ezfio_set_tc_int_blockxSize(sB)
|
||||
call ezfio_set_tc_int_nxBlocks(nB)
|
||||
|
||||
|
||||
|
||||
call wall_time(cuda_time0)
|
||||
print*, ' start CUDA kernel'
|
||||
|
||||
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
|
||||
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
|
||||
final_grid_points, final_weight_at_r_vector, &
|
||||
final_grid_points_extra, final_weight_at_r_vector_extra, &
|
||||
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
|
||||
int2_grad1_u12_ao, int_2e_ao)
|
||||
|
||||
call wall_time(cuda_time1)
|
||||
print*, ' wall time for CUDA kernel (min) = ', (cuda_time1-cuda_time0) / 60.d0
|
||||
|
||||
deallocate(aos_data1, aos_data2)
|
||||
|
||||
! ---
|
||||
|
||||
integer :: i, j, l
|
||||
double precision :: t1, t2
|
||||
double precision :: tmp
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
|
||||
call wall_time(t1)
|
||||
|
||||
PROVIDE ao_integrals_map
|
||||
tmp = get_ao_two_e_integral(1, 1, 1, 1, ao_integrals_map)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(ao_num, int_2e_ao, ao_integrals_map) &
|
||||
!$OMP PRIVATE(i, j, k, l)
|
||||
!$OMP DO COLLAPSE(3)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
! < 1:i, 2:j | 1:k, 2:l >
|
||||
int_2e_ao(k,i,l,j) = int_2e_ao(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(t2)
|
||||
print*, ' wall time of Coulomb part of tc_int_2e_ao (min) ', (t2 - t1) / 60.d0
|
||||
|
||||
! ---
|
||||
|
||||
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) int2_grad1_u12_ao
|
||||
close(11)
|
||||
deallocate(int2_grad1_u12_ao)
|
||||
|
||||
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
do k = 1, ao_num
|
||||
write(11) int_2e_ao(:,:,:,k)
|
||||
enddo
|
||||
close(11)
|
||||
deallocate(int_2e_ao)
|
||||
|
||||
! ----
|
||||
|
||||
|
||||
call wall_time(time1)
|
||||
print*, ' wall time for TC-integrals (min) = ', (time1-time0) / 60.d0
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
56
plugins/local/tc_int/write_tc_int_gpu.irp.f
Normal file
56
plugins/local/tc_int/write_tc_int_gpu.irp.f
Normal file
@ -0,0 +1,56 @@
|
||||
! ---
|
||||
|
||||
program write_tc_int_gpu
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' j2e_type = ', j2e_type
|
||||
print *, ' j1e_type = ', j1e_type
|
||||
print *, ' env_type = ', env_type
|
||||
|
||||
my_grid_becke = .True.
|
||||
PROVIDE tc_grid1_a tc_grid1_r
|
||||
my_n_pt_r_grid = tc_grid1_r
|
||||
my_n_pt_a_grid = tc_grid1_a
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
|
||||
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
|
||||
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
|
||||
|
||||
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
|
||||
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
|
||||
PROVIDE io_tc_integ
|
||||
|
||||
print*, 'io_tc_integ = ', io_tc_integ
|
||||
|
||||
if(io_tc_integ .ne. "Write") then
|
||||
print*, 'io_tc_integ != Write'
|
||||
print*, io_tc_integ
|
||||
stop
|
||||
endif
|
||||
|
||||
call provide_int2_grad1_u12_ao_gpu()
|
||||
|
||||
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
@ -230,7 +230,7 @@ default: 70
|
||||
type: character*(32)
|
||||
doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ]
|
||||
interface: ezfio,ocaml,provider
|
||||
default: semi-analytic
|
||||
default: numeric
|
||||
|
||||
[minimize_lr_angles]
|
||||
type: logical
|
||||
|
@ -28,7 +28,7 @@
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if((three_body_h_tc .eq. .False.) .and. (.not. noL_standard)) then
|
||||
if((three_body_h_tc .eqv. .False.) .and. (.not. noL_standard)) then
|
||||
TC_HF_three_e_energy = 0.d0
|
||||
else
|
||||
TC_HF_three_e_energy = noL_0e
|
||||
|
@ -261,13 +261,10 @@ def write_ezfio(trexio_filename, filename):
|
||||
except:
|
||||
cartesian = True
|
||||
|
||||
if not cartesian:
|
||||
raise TypeError('Only cartesian TREXIO files can be converted')
|
||||
|
||||
ao_num = trexio.read_ao_num(trexio_file)
|
||||
ezfio.set_ao_basis_ao_num(ao_num)
|
||||
|
||||
if shell_num > 0:
|
||||
if cartesian and shell_num > 0:
|
||||
ao_shell = trexio.read_ao_shell(trexio_file)
|
||||
at = [ nucl_index[i]+1 for i in ao_shell ]
|
||||
ezfio.set_ao_basis_ao_nucl(at)
|
||||
@ -330,7 +327,7 @@ def write_ezfio(trexio_filename, filename):
|
||||
print("OK")
|
||||
|
||||
else:
|
||||
print("None")
|
||||
print("None: integrals should be also imported using qp run import_trexio_integrals")
|
||||
|
||||
|
||||
# _
|
||||
|
@ -73,7 +73,7 @@ END_PROVIDER
|
||||
integer, external :: getUnitAndOpen
|
||||
integer :: iunit, ierr
|
||||
|
||||
ndim8 = ao_num*ao_num*1_8
|
||||
ndim8 = ao_num*ao_num*1_8+1
|
||||
double precision :: wall0,wall1
|
||||
|
||||
type(c_ptr) :: c_pointer(2)
|
||||
@ -143,19 +143,21 @@ END_PROVIDER
|
||||
|
||||
if (do_direct_integrals) then
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
|
||||
do i8=ndim8,1,-1
|
||||
do i8=ndim8-1,1,-1
|
||||
D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), &
|
||||
addr1(i8), addr2(i8))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
else
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
|
||||
do i8=ndim8,1,-1
|
||||
do i8=ndim8-1,1,-1
|
||||
D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), &
|
||||
addr2(i8), addr2(i8), ao_integrals_map)
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
endif
|
||||
! Just to guarentee termination
|
||||
D(ndim8) = 0.d0
|
||||
|
||||
D_sorted(:) = -D(:)
|
||||
call dsort_noidx_big(D_sorted,ndim8)
|
||||
@ -203,6 +205,7 @@ END_PROVIDER
|
||||
do while ( (Dmax > tau).and.(np > 0) )
|
||||
! a.
|
||||
i = i+1
|
||||
|
||||
|
||||
|
||||
block_size = max(N,24)
|
||||
@ -314,9 +317,10 @@ END_PROVIDER
|
||||
! g.
|
||||
|
||||
iblock = 0
|
||||
|
||||
do j=1,nq
|
||||
|
||||
if ( (Qmax <= Dmin).or.(N+j*1_8 > ndim8) ) exit
|
||||
if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit
|
||||
|
||||
! i.
|
||||
rank = N+j
|
||||
|
@ -33,7 +33,7 @@ subroutine generate_cas_space
|
||||
print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')'
|
||||
print *, ''
|
||||
|
||||
n_det_alpha_unique = binom_int(n_act_orb, n_alpha_act)
|
||||
n_det_alpha_unique = int(binom_int(n_act_orb, n_alpha_act),4)
|
||||
TOUCH n_det_alpha_unique
|
||||
|
||||
n = n_alpha_act
|
||||
@ -56,7 +56,7 @@ subroutine generate_cas_space
|
||||
u = ior(t1,t2)
|
||||
enddo
|
||||
|
||||
n_det_beta_unique = binom_int(n_act_orb, n_beta_act)
|
||||
n_det_beta_unique = int(binom_int(n_act_orb, n_beta_act),4)
|
||||
TOUCH n_det_beta_unique
|
||||
|
||||
n = n_beta_act
|
||||
|
@ -52,35 +52,39 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
|
||||
|
||||
BEGIN_DOC
|
||||
! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
BEGIN_DOC
|
||||
!
|
||||
! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point
|
||||
!
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,aos_array,aos_grad_array,j,m) &
|
||||
!$OMP SHARED(aos_grad_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
|
||||
do m = 1, 3
|
||||
do j = 1, ao_num
|
||||
aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j)
|
||||
enddo
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
|
||||
!$OMP SHARED(aos_grad_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
|
||||
do m = 1, 3
|
||||
do j = 1, ao_num
|
||||
aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
! ---
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (3,ao_num,n_points_final_grid)]
|
||||
@ -205,18 +209,53 @@ BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_gri
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_in_r_array_extra_transp, (n_points_extra_final_grid,ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_extra_transp(i,j) = value of the jth ao on the ith grid point
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
do i = 1, n_points_extra_final_grid
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_extra_transp(i,j) = aos_in_r_array_extra(j,i)
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_in_r_array_extra_transp, (n_points_extra_final_grid,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_extra_transp(i,j) = value of the jth ao on the ith grid point
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
|
||||
do i = 1, n_points_extra_final_grid
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_extra_transp(i,j) = aos_in_r_array_extra(j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_extra, (ao_num,n_points_extra_final_grid,3)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
|
||||
!$OMP SHARED(aos_grad_in_r_array_extra,n_points_extra_final_grid,ao_num,final_grid_points_extra)
|
||||
do i = 1, n_points_extra_final_grid
|
||||
r(1) = final_grid_points_extra(1,i)
|
||||
r(2) = final_grid_points_extra(2,i)
|
||||
r(3) = final_grid_points_extra(3,i)
|
||||
call give_all_aos_and_grad_at_r(r, aos_array, aos_grad_array)
|
||||
do m = 1, 3
|
||||
do j = 1, ao_num
|
||||
aos_grad_in_r_array_extra(j,i,m) = aos_grad_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -143,7 +143,7 @@ module gpu
|
||||
b, ldb, c, ldc) bind(C, name='gpu_dgeam')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
|
||||
real(c_double), intent(in) :: alpha, beta
|
||||
type(c_ptr), value :: a, b, c
|
||||
@ -153,7 +153,7 @@ module gpu
|
||||
b, ldb, c, ldc) bind(C, name='gpu_sgeam')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
|
||||
real(c_float), intent(in) :: alpha, beta
|
||||
real(c_float) :: a, b, c
|
||||
@ -194,7 +194,7 @@ module gpu
|
||||
b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm')
|
||||
import
|
||||
type(c_ptr), value, intent(in) :: handle
|
||||
character(c_char), intent(in), value :: transa, transb
|
||||
character(c_char), intent(in) :: transa, transb
|
||||
integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc
|
||||
real(c_float), intent(in) :: alpha, beta
|
||||
real(c_float) :: a, b, c
|
||||
|
@ -100,7 +100,7 @@ subroutine print_transition_dipole_moment
|
||||
dip_str = d_x**2 + d_y**2 + d_z**2
|
||||
d = multi_s_dipole_moment(istate,jstate)
|
||||
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -117,7 +117,7 @@ subroutine print_transition_dipole_moment
|
||||
dip_str = d_x**2 + d_y**2 + d_z**2
|
||||
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
|
||||
d = multi_s_dipole_moment(istate,jstate) * au_to_D
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
|
||||
enddo
|
||||
enddo
|
||||
print*,'=============================================='
|
||||
@ -181,10 +181,9 @@ subroutine print_oscillator_strength
|
||||
! Mixed gauge
|
||||
f_m = 2d0/3d0 * d * v
|
||||
|
||||
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (istate-1), ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
|
||||
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
|
||||
' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate)
|
||||
!write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -12,15 +12,12 @@ program projected_operators
|
||||
mu_of_r_potential = "cas_full"
|
||||
touch mu_of_r_potential
|
||||
print*,'Using Valence Only functions'
|
||||
! call test_f_HF_valence_ab
|
||||
! call routine_full_mos
|
||||
! call test_f_ii_valence_ab
|
||||
! call test_f_ia_valence_ab
|
||||
! call test_f_ii_ia_aa_valence_ab
|
||||
! call test
|
||||
! call test_f_mean_field
|
||||
! call test_grad_f_mean_field
|
||||
call test_grad_mu_mf
|
||||
call test_f_HF_valence_ab
|
||||
call routine_full_mos
|
||||
call test_f_ii_valence_ab
|
||||
call test_f_ia_valence_ab
|
||||
call test_f_ii_ia_aa_valence_ab
|
||||
call test
|
||||
end
|
||||
|
||||
|
||||
@ -39,138 +36,3 @@ subroutine test
|
||||
|
||||
end
|
||||
|
||||
subroutine test_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point
|
||||
double precision :: weight,r(3)
|
||||
double precision :: ref_f, new_f, accu_f
|
||||
double precision :: ref_two_dens, new_two_dens, accu_two_dens, dm_a, dm_b
|
||||
accu_f = 0.d0
|
||||
accu_two_dens = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_f_mf_ab(r,new_f,new_two_dens, dm_a, dm_b)
|
||||
call f_HF_valence_ab(r,r,ref_f,ref_two_dens)
|
||||
accu_f += weight * dabs(new_f- ref_f)
|
||||
accu_two_dens += weight * dabs(new_two_dens - ref_two_dens)
|
||||
enddo
|
||||
print*,'accu_f = ',accu_f
|
||||
print*,'accu_two_dens = ',accu_two_dens
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_f_mean_field
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3)
|
||||
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
|
||||
double precision :: grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
|
||||
|
||||
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
|
||||
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
|
||||
double precision :: f_mf_ab_p,f_mf_ab_m
|
||||
double precision :: two_bod_dens_p, two_bod_dens_m
|
||||
double precision :: dm_a_p, dm_a_m
|
||||
double precision :: dm_b_p, dm_b_m
|
||||
double precision :: rbis(3), dr
|
||||
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
|
||||
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
|
||||
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
|
||||
dr = 0.00001d0
|
||||
accu_f_mf_ab = 0.d0
|
||||
accu_two_bod_dens = 0.d0
|
||||
accu_dm_a = 0.d0
|
||||
accu_dm_b = 0.d0
|
||||
|
||||
accu_grad_f_mf_ab = 0.d0
|
||||
accu_grad_two_bod_dens = 0.d0
|
||||
accu_grad_dm_a = 0.d0
|
||||
accu_grad_dm_b = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
|
||||
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
|
||||
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
|
||||
accu_dm_a += weight*dabs(dm_a - dm_a_p)
|
||||
accu_dm_b += weight*dabs(dm_b - dm_b_p)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
|
||||
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
|
||||
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
|
||||
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
|
||||
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
|
||||
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
|
||||
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
|
||||
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_f_mf_ab = ',accu_f_mf_ab
|
||||
print*,'accu_two_bod_dens = ',accu_two_bod_dens
|
||||
print*,'accu_dm_a = ',accu_dm_a
|
||||
print*,'accu_dm_b = ',accu_dm_b
|
||||
print*,'accu_grad_f_mf_ab = '
|
||||
print*,accu_grad_f_mf_ab
|
||||
print*,'accu_grad_two_bod_dens = '
|
||||
print*,accu_grad_two_bod_dens
|
||||
print*,'accu_dm_a = '
|
||||
print*,accu_grad_dm_a
|
||||
print*,'accu_dm_b = '
|
||||
print*,accu_grad_dm_b
|
||||
|
||||
end
|
||||
|
||||
subroutine test_grad_mu_mf
|
||||
implicit none
|
||||
integer :: i_point,k
|
||||
double precision :: weight,r(3),rbis(3)
|
||||
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
|
||||
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
|
||||
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
|
||||
dr = 0.00001d0
|
||||
accu_grad_mu_mf = 0.d0
|
||||
accu_mu = 0.d0
|
||||
accu_grad_dm = 0.d0
|
||||
accu_dm = 0.d0
|
||||
do i_point = 1, n_points_final_grid
|
||||
r(1:3) = final_grid_points(1:3,i_point)
|
||||
weight = final_weight_at_r_vector(i_point)
|
||||
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
|
||||
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
|
||||
accu_mu += weight*dabs(mu_mf_p - mu_mf)
|
||||
accu_dm += weight*dabs(dm_p - dm)
|
||||
do k = 1, 3
|
||||
rbis = r
|
||||
rbis(k) += dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
|
||||
rbis = r
|
||||
rbis(k) -= dr
|
||||
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
|
||||
|
||||
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
|
||||
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
|
||||
enddo
|
||||
do k = 1, 3
|
||||
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
|
||||
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu_mu = ',accu_mu
|
||||
print*,'accu_dm = ',accu_dm
|
||||
print*,'accu_grad_dm = '
|
||||
print*, accu_grad_dm
|
||||
print*,'accu_grad_mu_mf = '
|
||||
print*, accu_grad_mu_mf
|
||||
|
||||
end
|
||||
|
@ -45,6 +45,12 @@ type: double precision
|
||||
doc: Calculated HF energy
|
||||
interface: ezfio
|
||||
|
||||
[do_mom]
|
||||
type: logical
|
||||
doc: If true, this will run a MOM calculation. The overlap will be computed at each step with respect to the initial MOs. After an initial Hartree-Fock calculation, the guess can be created by swapping molecular orbitals through the qp run swap_mos command.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[frozen_orb_scf]
|
||||
type: logical
|
||||
doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class
|
||||
|
96
src/scf_utils/reorder_mo_max_overlap.irp.f
Normal file
96
src/scf_utils/reorder_mo_max_overlap.irp.f
Normal file
@ -0,0 +1,96 @@
|
||||
subroutine reorder_mo_max_overlap
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routines that compute the projection of each MO of the current `mo_coef` on the space spanned by the occupied orbitals of `mo_coef_begin_iteration`
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
double precision, allocatable :: overlap(:,:)
|
||||
double precision, allocatable :: proj(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: mo_coef_tmp(:,:)
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
allocate(overlap(mo_num,mo_num),proj(mo_num),iorder(mo_num),mo_coef_tmp(ao_num,mo_num),tmp(mo_num,ao_num))
|
||||
|
||||
overlap(:,:) = 0d0
|
||||
mo_coef_tmp(:,:) = 0d0
|
||||
proj(:) = 0d0
|
||||
iorder(:) = 0d0
|
||||
tmp(:,:) = 0d0
|
||||
|
||||
! These matrix products compute the overlap bewteen the initial and the current MOs
|
||||
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
|
||||
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
|
||||
ao_overlap, size(ao_overlap,1), 0.d0, &
|
||||
tmp, size(tmp,1))
|
||||
|
||||
call dgemm('N','N', mo_num, mo_num, ao_num, 1.d0, &
|
||||
tmp, size(tmp,1), &
|
||||
mo_coef, size(mo_coef, 1), 0.d0, &
|
||||
overlap, size(overlap,1) )
|
||||
|
||||
|
||||
! for each orbital compute the best overlap
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i ! initialize the iorder list as we need it to sort later
|
||||
do j = 1, elec_alpha_num
|
||||
proj(i) += overlap(j,i)*overlap(j,i) ! compute the projection of current orbital i on the occupied space of the initial orbitals
|
||||
enddo
|
||||
proj(i) = dsqrt(proj(i))
|
||||
enddo
|
||||
! sort the list of projection to find the mos with the largest overlap
|
||||
call dsort(proj(:),iorder(:),mo_num)
|
||||
! reorder orbitals according to projection
|
||||
do i=1,mo_num
|
||||
mo_coef_tmp(:,i) = mo_coef(:,iorder(mo_num+1-i))
|
||||
enddo
|
||||
|
||||
! update the orbitals
|
||||
mo_coef(:,:) = mo_coef_tmp(:,:)
|
||||
|
||||
! if the determinant is open-shell we need to make sure that the singly occupied orbital correspond to the initial ones
|
||||
if (elec_alpha_num > elec_beta_num) then
|
||||
double precision, allocatable :: overlap_alpha(:,:)
|
||||
double precision, allocatable :: proj_alpha(:)
|
||||
integer, allocatable :: iorder_alpha(:)
|
||||
allocate(overlap_alpha(mo_num,elec_alpha_num),proj_alpha(elec_alpha_num),iorder_alpha(elec_alpha_num))
|
||||
overlap_alpha(:,:) = 0d0
|
||||
mo_coef_tmp(:,:) = 0d0
|
||||
proj_alpha(:) = 0d0
|
||||
iorder_alpha(:) = 0d0
|
||||
tmp(:,:) = 0d0
|
||||
! These matrix products compute the overlap bewteen the initial and the current MOs
|
||||
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
|
||||
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
|
||||
ao_overlap, size(ao_overlap,1), 0.d0, &
|
||||
tmp, size(tmp,1))
|
||||
|
||||
call dgemm('N','N', mo_num, elec_alpha_num, ao_num, 1.d0, &
|
||||
tmp, size(tmp,1), &
|
||||
mo_coef, size(mo_coef, 1), 0.d0, &
|
||||
overlap_alpha, size(overlap_alpha,1) )
|
||||
|
||||
do i = 1, elec_alpha_num
|
||||
iorder_alpha(i) = i ! initialize the iorder list as we need it to sort later
|
||||
do j = 1, elec_beta_num
|
||||
proj_alpha(i) += overlap_alpha(j,i)*overlap_alpha(j,i) ! compute the projection of current orbital i on the beta occupied space of the initial orbitals
|
||||
enddo
|
||||
proj_alpha(i) = dsqrt(proj_alpha(i))
|
||||
enddo
|
||||
|
||||
! sort the list of projection to find the mos with the largest overlap
|
||||
call dsort(proj_alpha(:),iorder_alpha(:),elec_alpha_num)
|
||||
! reorder orbitals according to projection
|
||||
do i=1,elec_alpha_num
|
||||
mo_coef_tmp(:,i) = mo_coef(:,iorder_alpha(elec_alpha_num+1-i))
|
||||
enddo
|
||||
do i=1,elec_alpha_num
|
||||
mo_coef(:,i) = mo_coef_tmp(:,i)
|
||||
enddo
|
||||
|
||||
deallocate(overlap_alpha, proj_alpha, iorder_alpha)
|
||||
endif
|
||||
|
||||
deallocate(overlap, proj, iorder, mo_coef_tmp, tmp)
|
||||
|
||||
end
|
||||
|
@ -51,6 +51,11 @@ END_DOC
|
||||
!
|
||||
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
|
||||
|
||||
! Initialize MO to run IMOM
|
||||
if(do_mom)then
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
|
||||
converged = .False.
|
||||
do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) )
|
||||
|
||||
@ -88,16 +93,17 @@ END_DOC
|
||||
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
|
||||
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
MO_coef = eigenvectors_Fock_matrix_MO
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
|
||||
TOUCH MO_coef
|
||||
|
||||
! Calculate error vectors
|
||||
|
||||
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
|
||||
@ -106,41 +112,46 @@ END_DOC
|
||||
|
||||
energy_SCF = SCF_energy
|
||||
Delta_Energy_SCF = energy_SCF - energy_SCF_previous
|
||||
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0) ) then
|
||||
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0).and.(.not.do_mom) ) then
|
||||
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS)
|
||||
Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
|
||||
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
|
||||
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
|
||||
endif
|
||||
|
||||
double precision :: level_shift_save
|
||||
level_shift_save = level_shift
|
||||
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
|
||||
do while (Delta_energy_SCF > 0.d0)
|
||||
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
|
||||
if (level_shift <= .1d0) then
|
||||
level_shift = 1.d0
|
||||
else
|
||||
level_shift = level_shift * 3.0d0
|
||||
endif
|
||||
TOUCH mo_coef level_shift
|
||||
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
TOUCH mo_coef
|
||||
Delta_Energy_SCF = SCF_energy - energy_SCF_previous
|
||||
energy_SCF = SCF_energy
|
||||
if (level_shift-level_shift_save > 40.d0) then
|
||||
level_shift = level_shift_save * 4.d0
|
||||
SOFT_TOUCH level_shift
|
||||
exit
|
||||
endif
|
||||
dim_DIIS=0
|
||||
enddo
|
||||
level_shift = level_shift * 0.5d0
|
||||
SOFT_TOUCH level_shift
|
||||
if (.not.do_mom) then
|
||||
double precision :: level_shift_save
|
||||
level_shift_save = level_shift
|
||||
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
|
||||
do while (Delta_energy_SCF > 0.d0)
|
||||
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
|
||||
if (level_shift <= .1d0) then
|
||||
level_shift = 1.d0
|
||||
else
|
||||
level_shift = level_shift * 3.0d0
|
||||
endif
|
||||
TOUCH mo_coef level_shift
|
||||
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
if(frozen_orb_scf)then
|
||||
call reorder_core_orb
|
||||
call initialize_mo_coef_begin_iteration
|
||||
endif
|
||||
TOUCH mo_coef
|
||||
Delta_Energy_SCF = SCF_energy - energy_SCF_previous
|
||||
energy_SCF = SCF_energy
|
||||
if (level_shift-level_shift_save > 40.d0) then
|
||||
level_shift = level_shift_save * 4.d0
|
||||
SOFT_TOUCH level_shift
|
||||
exit
|
||||
endif
|
||||
dim_DIIS=0
|
||||
enddo
|
||||
level_shift = level_shift * 0.5d0
|
||||
SOFT_TOUCH level_shift
|
||||
endif
|
||||
energy_SCF_previous = energy_SCF
|
||||
|
||||
converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. &
|
||||
@ -205,7 +216,7 @@ END_DOC
|
||||
|
||||
if(.not.frozen_orb_scf)then
|
||||
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
||||
size(Fock_matrix_mo,2),mo_label,1,.true.)
|
||||
size(Fock_matrix_mo,2),mo_label,1,.true.)
|
||||
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
|
||||
call orthonormalize_mos
|
||||
endif
|
||||
@ -228,6 +239,9 @@ END_DOC
|
||||
i = j+1
|
||||
enddo
|
||||
|
||||
if(do_mom)then
|
||||
call reorder_mo_max_overlap
|
||||
endif
|
||||
|
||||
call save_mos
|
||||
|
||||
|
@ -9,6 +9,9 @@ double precision, parameter :: pi_5_2 = 34.9868366552d0
|
||||
double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0)
|
||||
double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0)
|
||||
double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: c_mu_gauss = 27.d0/(8.d0*dsqrt(dacos(-1.d0)))
|
||||
double precision, parameter :: c_mu_gauss_tot = 1.5d0*27.d0/(8.d0*dsqrt(dacos(-1.d0)))+3.d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: alpha_mu_gauss = 1.5d0
|
||||
double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0))
|
||||
double precision, parameter :: thresh = 1.d-15
|
||||
double precision, parameter :: cx_lda = -0.73855876638202234d0
|
||||
|
Loading…
Reference in New Issue
Block a user