10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 20:33:20 +01:00

Merge pull request #199 from QuantumPackage/dev

Dev
This commit is contained in:
Anthony Scemama 2022-04-13 19:54:30 +02:00 committed by GitHub
commit ac0e6bc3ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
110 changed files with 3577 additions and 1142 deletions

View File

@ -2,9 +2,9 @@
Installation
============
The |qp| can be downloaded on GitHub as an `archive
<https://github.com/LCPQ/quantum_package/releases/latest>`_ or as a `git
repository <https://github.com/LCPQ/quantum_package>`_.
|qp| can be downloaded on GitHub as an `archive
<https://github.com/QuantumPackage/qp2/releases>`_ or as a `git
repository <https://github.com/QuantumPackage/qp2>`_.
.. code:: bash
@ -19,16 +19,16 @@ Before anything, go into your :file:`quantum_package` directory and run
This script will create the :file:`quantum_package.rc` bash script, which
sets all the environment variables required for the normal operation of the
*Quantum Package*. It will also initialize the git submodules that are
sets all the environment variables required for the normal operation of
|qp|. It will also initialize the git submodules that are
required, and tell you which external dependencies are missing and need to be
installed. The required dependencies are located in the
`external/qp2-dependencies` directory, such that once QP is configured the
`external/qp2-dependencies` directory, such that once |qp| is configured the
internet connection is not needed any more.
When all dependencies have been installed, (the :command:`configure` will
inform you) source the :file:`quantum_package.rc` in order to load all
environment variables and compile the |QP|.
inform you what is missing) source the :file:`quantum_package.rc` in order to
load all environment variables and compile |QP|.
Now all the requirements are met, you can compile the programs using
@ -37,6 +37,15 @@ Now all the requirements are met, you can compile the programs using
make
Installation of dependencies via a Conda environment
====================================================
.. code:: bash
conda env create -f qp2.yml
Requirements
============
@ -64,8 +73,8 @@ architecture. Modify it if needed, and run :command:`configure` with
.. code:: bash
cp ./config/gfortran.example config/gfortran.cfg
./configure -c config/gfortran.cfg
cp ./config/gfortran.example config/gfortran_avx.cfg
./configure -c config/gfortran_avx.cfg
.. note::
@ -86,45 +95,33 @@ The command is to be used as follows:
.. code:: bash
./configure --install=<package>
./configure -i <package>
The following packages are supported by the :command:`configure` installer:
* ninja
* irpf90
* zeromq
* f77zmq
* gmp
* ocaml (:math:`\approx` 5 minutes)
* ezfio
* docopt
* resultsFile
* bats
* zlib
Example:
.. code:: bash
./configure -i ezfio
./configure -i ninja
.. note::
When installing the ocaml package, you will be asked the location of where
it should be installed. A safe option is to enter the path proposed by the
|QP|:
QP>> Please install it here: /your_quantum_package_directory/bin
So just enter the proposition of the |QP| and press enter.
If the :command:`configure` executable fails to install a specific dependency
-----------------------------------------------------------------------------
If the :command:`configure` executable does not succeed to install a specific
dependency, there are some proposition of how to download and install the
minimal dependencies to compile and use the |QP|.
If the :command:`configure` executable does not succeed in installing a specific
dependency, you should try to install the dependency on your system by yourself.
Before doing anything below, try to install the packages with your package manager
(:command:`apt`, :command:`yum`, etc).
@ -153,7 +150,7 @@ If you have *pip* for Python2, you can do
.. code:: bash
python2 -m pip install --user irpf90
python3 -m pip install --user irpf90
Otherwise,
@ -209,7 +206,7 @@ ZeroMQ and its Fortran binding
.. code:: bash
cp f77_zmq_free.h ${QP_ROOT}/src/ZMQ/f77_zmq.h
cp f77_zmq_free.h ${QP_ROOT}/src/zmq/f77_zmq.h
Zlib
@ -262,53 +259,6 @@ With Debian or Ubuntu, you can use
sudo apt install libgmp-dev
libcap
------
Libcap is a library for getting and setting POSIX.1e draft 15 capabilities.
* Download the latest version of libcap here:
`<https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz>`_
and move it in the :file:`${QP_ROOT}/external` directory
* Extract the archive, go into the :file:`libcap-*/libcap` directory and run
the following command
.. code:: bash
prefix=$QP_ROOT make install
With Debian or Ubuntu, you can use
.. code:: bash
sudo apt install libcap-dev
Bubblewrap
----------
Bubblewrap is an unprivileged sandboxing tool.
* Download Bubblewrap here:
`<https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz>`_
and move it in the :file:`${QP_ROOT}/external` directory
* Extract the archive, go into the :file:`bubblewrap-*` directory and run
the following commands
.. code:: bash
./configure --prefix=$QP_ROOT && make -j 8
make install-exec-am
With Debian or Ubuntu, you can use
.. code:: bash
sudo apt install bubblewrap
OCaml
@ -327,7 +277,7 @@ OCaml
`<https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh>`_
and move it in the :file:`${QP_ROOT}/external` directory
* If you use OCaml only with the |qp|, you can install the OPAM directory
* If you use OCaml only with |qp|, you can install the OPAM directory
containing the compiler and all the installed libraries in the
:file:`${QP_ROOT}/external` directory as
@ -352,14 +302,14 @@ OCaml
.. code:: bash
opam init --comp=4.07.1
opam init --comp=4.11.1
eval `${QP_ROOT}/bin/opam env`
If the installation fails because of bwrap, you can initialize opam using:
.. code:: bash
opam init --disable-sandboxing --comp=4.07.1
opam init --disable-sandboxing --comp=4.11.1
eval `${QP_ROOT}/bin/opam env`
* Install the required external OCaml libraries
@ -369,17 +319,6 @@ OCaml
opam install ocamlbuild cryptokit zmq sexplib ppx_sexp_conv ppx_deriving getopt
EZFIO
-----
*EZFIO* is the Easy Fortran Input/Output library generator.
* Download EZFIO here : `<https://gitlab.com/scemama/EZFIO/-/archive/master/EZFIO-master.tar.gz>`_ and move
the downloaded archive in the :file:`${QP_ROOT}/external` directory
* Extract the archive, and rename it as :file:`${QP_ROOT}/external/ezfio`
Docopt
------
@ -414,3 +353,4 @@ If you have *pip* for Python3, you can do

View File

@ -30,7 +30,8 @@
- Fixed bug in DIIS
- Fixed bug in molden (Au -> Angs)
- Fixed bug with non-contiguous MOs in active space and deleter MOs
- Network-free installation
- Complete network-free installation
- Fixed bug in selection when computing full PT2
- Updated version of f77-zmq
*** User interface
@ -59,6 +60,7 @@
symmetry in matrices
- qp_export_as_tgz exports also plugin codes
- Added a basis module containing basis set information
- Added qp_run truncate_wf
*** Code

View File

@ -195,48 +195,52 @@ def write_ezfio(res, filename):
# P a r s i n g #
# ~#~#~#~#~#~#~ #
inucl = {}
for i, a in enumerate(res.geometry):
inucl[a.coord] = i
nbasis = 0
nucl_center = []
nucl_index = []
curr_center = -1
nucl_shell_num = []
ang_mom = []
nshell = 0
shell_prim_index = [1]
nshell_tot = 0
shell_index = []
shell_prim_num = []
for b in res.basis:
s = b.sym
if str.count(s, "y") + str.count(s, "x") == 0:
c = b.center
c = inucl[b.center]
nshell += 1
nshell_tot += 1
if c != curr_center:
curr_center = c
nucl_center.append(nbasis+1)
nucl_shell_num.append(nshell)
nshell = 0
nbasis += 1
nucl_index.append(c+1)
coefficient += b.coef[:len(b.prim)]
exponent += [p.expo for p in b.prim]
ang_mom.append(str.count(s, "z"))
shell_prim_index.append(len(exponent)+1)
shell_prim_num.append(len(b.prim))
nucl_shell_num.append(nshell+1)
nucl_shell_num = nucl_shell_num[1:]
shell_index += [nshell_tot+1] * len(b.prim)
# ~#~#~#~#~ #
# W r i t e #
# ~#~#~#~#~ #
ezfio.set_basis_basis("Read from ResultsFile")
ezfio.set_basis_basis_nucleus_index(nucl_center)
ezfio.set_basis_prim_num(len(coefficient))
ezfio.set_basis_shell_num(len(ang_mom))
ezfio.set_basis_basis_nucleus_index(nucl_index)
ezfio.set_basis_prim_num(len(coefficient))
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
ezfio.set_basis_prim_coef(coefficient)
ezfio.set_basis_prim_expo(exponent)
ezfio.set_basis_shell_ang_mom(ang_mom)
ezfio.set_basis_shell_prim_num(shell_prim_num)
ezfio.set_basis_shell_prim_index(shell_prim_index)
ezfio.set_basis_shell_index(shell_index)
print("OK")

View File

@ -6,6 +6,7 @@ Usage:
qp_plugins download <url> [-n <name>]
qp_plugins install <name>...
qp_plugins uninstall <name>
qp_plugins remove <name>
qp_plugins update [-r <repo>]
qp_plugins create -n <name> [-r <repo>] [<needed_modules>...]
@ -24,6 +25,8 @@ Options:
uninstall Uninstall a plugin
remove Uninstall a plugin
update Update the repository
create
@ -274,7 +277,7 @@ def main(arguments):
subprocess.check_call(["qp_create_ninja", "update"])
print("[ OK ]")
elif arguments["uninstall"]:
elif arguments["uninstall"] or arguments["remove"]:
m_instance = ModuleHandler([QP_SRC])
d_descendant = m_instance.dict_descendant

View File

@ -7,12 +7,13 @@ setting all MOs as Active, except the n/2 first ones which are set as Core.
If pseudo-potentials are used, all the MOs are set as Active.
Usage:
qp_set_frozen_core [-q|--query] [(-l|-s|--large|--small)] EZFIO_DIR
qp_set_frozen_core [-q|--query] [(-l|-s|-u|--large|--small|--unset)] EZFIO_DIR
Options:
-q --query Prints in the standard output the number of frozen MOs
-l --large Use a small core
-s --small Use a large core
-u --unset Unset frozen core
Default numbers of frozen electrons:
@ -88,7 +89,9 @@ def main(arguments):
elif charge <= 54: n_frozen += 9
elif charge <= 86: n_frozen += 18
elif charge <= 118: n_frozen += 27
elif arguments["--unset"]:
n_frozen = 0
else: # default
for charge in ezfio.nuclei_nucl_charge:
if charge <= 4: pass

View File

@ -13,7 +13,7 @@
FC : gfortran -g -ffree-line-length-none -I . -fPIC
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED
# Global options
################

View File

@ -13,7 +13,7 @@
FC : gfortran -ffree-line-length-none -I . -mavx -g -fPIC
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED
# Global options
################

View File

@ -13,7 +13,7 @@
FC : gfortran -g -ffree-line-length-none -I . -fPIC
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED
# Global options
################

View File

@ -13,7 +13,7 @@
FC : mpif90 -ffree-line-length-none -I . -g -fPIC
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI
IRPF90_FLAGS : --ninja --align=32 -DMPI -DSET_NESTED
# Global options
################

63
config/ifort_2019_avx.cfg Normal file
View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xAVX -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,64 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FCFLAGS : -mavx -axAVX -O2 -ip -ftz -g -traceback
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -march=corei7 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback -shared-intel
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback -shared-intel
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xSSE4.2 -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,64 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FCFLAGS : -msse4.2 -O2 -ip -ftz -g -traceback
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -msse4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=64 -DINTEL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xHost -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback -shared-intel
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -1,66 +0,0 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DINTEL
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -msse4.2 -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -msse4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -msse4.2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -msse4.2 -check all -debug all -fpe-all=0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -204,6 +204,9 @@ _qp_Complete()
uninstall)
COMPREPLY=( $(compgen -W "$(qp_plugins list -i)" -- $cur ) )
return 0;;
remove)
COMPREPLY=( $(compgen -W "$(qp_plugins list -i)" -- $cur ) )
return 0;;
create)
COMPREPLY=( $(compgen -W "-n " -- $cur ) )
return 0;;

View File

@ -277,6 +277,16 @@ let run ?o b au c d m p cart xyz_file =
) nuclei
in
let z_core =
List.map (fun x ->
Positive_int.to_int x.Pseudo.n_elec
|> float_of_int
) pseudo
in
let nucl_num = (List.length z_core) in
Ezfio.set_pseudo_nucl_charge_remove (Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| nucl_num |] ~data:z_core);
let molecule =
let n_elec_to_remove =
List.fold_left (fun accu x ->
@ -585,12 +595,16 @@ let run ?o b au c d m p cart xyz_file =
let shell_prim_num =
list_map List.length lc
in
let shell_prim_idx =
let shell_idx =
let rec make_list n accu = function
| 0 -> accu
| i -> make_list n (n :: accu) (i-1)
in
let rec aux count accu = function
| [] -> List.rev accu
| l::rest ->
let newcount = count+(List.length l) in
aux newcount (count::accu) rest
let new_l = make_list count accu (List.length l) in
aux (count+1) new_l rest
in
aux 1 [] lc
in
@ -602,20 +616,12 @@ let run ?o b au c d m p cart xyz_file =
~rank:1 ~dim:[| shell_num |] ~data:shell_prim_num);
Ezfio.set_basis_shell_ang_mom (Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| shell_num |] ~data:ang_mom ) ;
Ezfio.set_basis_shell_prim_index (Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| shell_num |] ~data:shell_prim_idx) ;
Ezfio.set_basis_shell_index (Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| prim_num |] ~data:shell_idx) ;
Ezfio.set_basis_basis_nucleus_index (Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| nucl_num |]
~data:(
list_map (fun (_,n) -> Nucl_number.to_int n) basis
|> List.fold_left (fun accu i ->
match accu with
| [] -> []
| (h,j) :: rest -> if j == i then ((h+1,j)::rest) else ((h+1,i)::(h+1,j)::rest)
) [(0,0)]
|> List.rev
|> List.map fst
)) ;
~rank:1 ~dim:[| shell_num |]
~data:( list_map (fun (_,n) -> Nucl_number.to_int n) basis)
) ;
Ezfio.set_basis_nucleus_shell_num(Ezfio.ezfio_array_of_list
~rank:1 ~dim:[| nucl_num |]
~data:(

27
scripts/cipsi_save.sh Normal file
View File

@ -0,0 +1,27 @@
#!/bin/bash
#
# This script runs a CIPSI calculation as a sequence of single CIPSI iterations.
# After each iteration, the EZFIO directory is saved.
#
# Usage: cipsi_save [EZFIO_FILE] [NDET]
#
# Example: cipsi_save file.ezfio 10000
EZ=$1
NDETMAX=$2
qp set_file ${EZ}
qp reset -d
qp set determinants read_wf true
declare -i NDET
NDET=1
while [[ ${NDET} -lt ${NDETMAX} ]]
do
NDET=$(($NDET + $NDET))
qp set determinants n_det_max $NDET
qp run fci > ${EZ}.out
NDET=$(qp get determinants n_det)
mv ${EZ}.out ${EZ}.${NDET}.out
cp -r ${EZ} ${EZ}.${NDET}
done

View File

@ -116,6 +116,7 @@ def get_l_module_descendant(d_child, l_module):
print("Error: ", file=sys.stderr)
print("`{0}` is not a submodule".format(module), file=sys.stderr)
print("Check the typo (spelling, case, '/', etc.) ", file=sys.stderr)
# pass
sys.exit(1)
return list(set(l))

View File

@ -0,0 +1,175 @@
program check_omp_v2
use omp_lib
implicit none
integer :: accu, accu2
integer :: s, n_setting
logical :: verbose, test_versions
logical, allocatable :: is_working(:)
verbose = .False.
test_versions = .True.
n_setting = 4
allocate(is_working(n_setting))
is_working = .False.
! set the number of threads
call omp_set_num_threads(2)
do s = 1, n_setting
accu = 0
accu2 = 0
call omp_set_max_active_levels(1)
call omp_set_nested(.False.)
if (s==1) then
!call set_multiple_levels_omp()
cycle
elseif (s==2) then
call omp_set_max_active_levels(5)
elseif (s==3) then
call omp_set_nested(.True.)
else
call omp_set_nested(.True.)
call omp_set_max_active_levels(5)
endif
! Level 1
!$OMP PARALLEL
if (verbose) then
print*,'Num threads level 1:',omp_get_num_threads()
endif
! Level 2
!$OMP PARALLEL
if (verbose) then
print*,'Num threads level 2:',omp_get_num_threads()
endif
! Level 3
!$OMP PARALLEL
if (verbose) then
print*,'Num threads level 3:',omp_get_num_threads()
endif
call check_omp_in_subroutine(accu2)
! Level 4
!$OMP PARALLEL
if (verbose) then
print*,'Num threads level 4:',omp_get_num_threads()
endif
!$OMP ATOMIC
accu = accu + 1
!$OMP END ATOMIC
!$OMP END PARALLEL
!$OMP END PARALLEL
!$OMP END PARALLEL
!$OMP END PARALLEL
if (verbose) then
print*,'Setting:',s,'accu=',accu
print*,'Setting:',s,'accu2=',accu2
endif
if (accu == 16 .and. accu2 == 16) then
is_working(s) = .True.
endif
enddo
if (verbose) then
if (is_working(2)) then
print*,'The parallelization works on 4 levels with:'
print*,'call omp_set_max_active_levels(5)'
print*,''
print*,'Please use the irpf90 flags -DSET_MAX_ACT in qp2/config/${compiler_name}.cfg'
elseif (is_working(3)) then
print*,'The parallelization works on 4 levels with:'
print*,'call omp_set_nested(.True.)'
print*,''
print*,'Please use the irpf90 flag -DSET_NESTED in qp2/config/${compiler_name}.cfg'
elseif (is_working(4)) then
print*,'The parallelization works on 4 levels with:'
print*,'call omp_set_nested(.True.)'
print*,'+'
print*,'call omp_set_max_active_levels(5)'
print*,''
print*,'Please use the irpf90 flags -DSET_NESTED -DSET_MAX_ACT in qp2/config/${compiler_name}.cfg'
else
print*,'The parallelization on multiple levels does not work with:'
print*,'call omp_set_max_active_levels(5)'
print*,'or'
print*,'call omp_set_nested(.True.)'
print*,'or'
print*,'call omp_set_nested(.True.)'
print*,'+'
print*,'call omp_set_max_active_levels(5)'
print*,''
print*,'Try an other compiler and good luck...'
endif
! if (is_working(1)) then
! print*,''
! print*,'=========================================================='
! print*,'Your actual set up works for parallelization with 4 levels'
! print*,'=========================================================='
! print*,''
! else
! print*,''
! print*,'==================================================================='
! print*,'Your actual set up does not work for parallelization with 4 levels'
! print*,'Please look at the previous messages to understand the requirements'
! print*,'==================================================================='
! print*,''
! endif
endif
! List of working flags
if (test_versions) then
print*,'Tests:',is_working(2:4)
endif
! IRPF90_FLAGS
if (is_working(2)) then
print*,'-DSET_MAX_ACT'
elseif (is_working(3)) then
print*,'-DSET_NESTED'
elseif (is_working(4)) then
print*,'-DSET_MAX_ACT -DSET_NESTED'
else
print*,'ERROR'
endif
end
subroutine check_omp_in_subroutine(accu2)
implicit none
integer, intent(inout) :: accu2
!$OMP PARALLEL
!$OMP ATOMIC
accu2 = accu2 + 1
!$OMP END ATOMIC
!$OMP END PARALLEL
end

View File

@ -0,0 +1,19 @@
#!/bin/sh
# take one argument which is the compiler used
# return the required IRPF90_FLAGS for the $1 compiler
if [ -z "$1" ]
then
echo "Give the compiler in argument"
else
$1 --version > /dev/null \
&& $1 -O0 -fopenmp check_omp.f90 \
&& ./a.out | tail -n 1
# if there is an error or if the compiler is not found
$1 --version > /dev/null || echo 'compiler not found'
fi

30
scripts/verif_omp/study_omp.sh Executable file
View File

@ -0,0 +1,30 @@
#!/bin/sh
# list of compilers
list_comp="ifort gfortran-7 gfortran-8 gfortran-9"
# file to store the results
FILE=results.dat
touch $FILE
rm $FILE
# Comments
echo "1: omp_set_max_active_levels(5)" >> $FILE
echo "2: omp_set_nested(.True.)" >> $FILE
echo "3: 1 + 2" >> $FILE
echo "" >> $FILE
echo "1 2 3" >> $FILE
# loop on the comp
for comp in $list_comp
do
$comp --version > /dev/null \
&& $comp -O0 -fopenmp check_omp.f90 \
&& echo $(./a.out | grep "Tests:" | cut -d ":" -f2- ) $(echo " : ") $($comp --version | head -n 1) >> $FILE
done
# Display
cat $FILE

View File

@ -0,0 +1,49 @@
#!/bin/bash
# Compiler
COMP=$1
# Path to file.cfg
config_PATH="../../config/"
END="*.cfg"
CONFIG="/config/"
#LIST=${config_PATH}${COMP}${END} # without ${QP_ROOT}
LIST=${QP_ROOT}${CONFIG}${COMP}${END}
if [ -z "$1" ]
then
echo "Give the compiler in argument"
else
# List of the config files for the compiler
#list_files=$(ls ../../config/$comp*.cfg) #does not give the right list
list_files=${LIST}
echo "Files that will be modified:"
echo $list_files
# Flags that must be added
FLAGS=$(./check_required_setup.sh $COMP)
# Add the flags
for file in $list_files
do
echo $file
BASE="IRPF90_FLAGS : --ninja"
ACTUAL=$(grep "$BASE" $file)
# To have only one time each flag
grep " -DSET_MAX_ACT" $file && ${ACTUAL/" -DSET_MAX"/""}
grep " -DSET_NESTED" $file && ${ACTUAL/" -DSET_NESTED"/""}
SPACE=" "
NEW=${ACTUAL}${SPACE}${FLAGS}
# Debug
#echo ${NEW}
sed "s/${ACTUAL}/${NEW}/" $file
# -i # to change the files
done
fi

View File

@ -12,21 +12,21 @@ double precision function ao_value(i,r)
integer :: power_ao(3)
double precision :: accu,dx,dy,dz,r2
num_ao = ao_nucl(i)
power_ao(1:3)= ao_power(i,1:3)
center_ao(1:3) = nucl_coord(num_ao,1:3)
dx = (r(1) - center_ao(1))
dy = (r(2) - center_ao(2))
dz = (r(3) - center_ao(3))
r2 = dx*dx + dy*dy + dz*dz
dx = dx**power_ao(1)
dy = dy**power_ao(2)
dz = dz**power_ao(3)
! power_ao(1:3)= ao_power(i,1:3)
! center_ao(1:3) = nucl_coord(num_ao,1:3)
! dx = (r(1) - center_ao(1))
! dy = (r(2) - center_ao(2))
! dz = (r(3) - center_ao(3))
! r2 = dx*dx + dy*dy + dz*dz
! dx = dx**power_ao(1)
! dy = dy**power_ao(2)
! dz = dz**power_ao(3)
accu = 0.d0
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
accu += ao_coef_normalized_ordered_transp(m,i) * dexp(-beta*r2)
enddo
! do m=1,ao_prim_num(i)
! beta = ao_expo_ordered_transp(m,i)
! accu += ao_coef_normalized_ordered_transp(m,i) * dexp(-beta*r2)
! enddo
ao_value = accu * dx * dy * dz
end

View File

@ -1,7 +1,7 @@
! Spherical to cartesian transformation matrix obtained with
! Horton (http://theochem.github.com/horton/, 2015)
! First index is the index of the carteisan AO, obtained by ao_power_index
! First index is the index of the cartesian AO, obtained by ao_power_index
! Second index is the index of the spherical AO
BEGIN_PROVIDER [ double precision, cart_to_sphe_0, (1,1) ]

View File

@ -37,16 +37,16 @@ doc: Number of primitives in a shell
size: (basis.shell_num)
interface: ezfio, provider
[shell_prim_index]
[shell_index]
type: integer
doc: Index of the first primitive of the shell
size: (basis.shell_num)
doc: Index of the shell for each primitive
size: (basis.prim_num)
interface: ezfio, provider
[basis_nucleus_index]
type: integer
doc: Index of the nucleus on which the shell is centered
size: (nuclei.nucl_num)
doc: Nucleus on which the shell is centered
size: (basis.shell_num)
interface: ezfio, provider
[prim_normalization_factor]

View File

@ -30,8 +30,10 @@ BEGIN_PROVIDER [ double precision, shell_normalization_factor , (shell_num) ]
powA(3) = 0
norm = 0.d0
do k=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
do j=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
do k=1, prim_num
if (shell_index(k) /= i) cycle
do j=1, prim_num
if (shell_index(j) /= i) cycle
call overlap_gaussian_xyz(C_A,C_A,prim_expo(j),prim_expo(k), &
powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
norm = norm+c*prim_coef(j)*prim_coef(k) * prim_normalization_factor(j) * prim_normalization_factor(k)
@ -91,7 +93,8 @@ BEGIN_PROVIDER [ double precision, prim_normalization_factor , (prim_num) ]
powA(2) = 0
powA(3) = 0
do k=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
do k=1, prim_num
if (shell_index(k) /= i) cycle
call overlap_gaussian_xyz(C_A,C_A,prim_expo(k),prim_expo(k), &
powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
prim_normalization_factor(k) = 1.d0/dsqrt(norm)

View File

@ -58,3 +58,17 @@ END_PROVIDER
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
implicit none
BEGIN_DOC
! Transposed final_grid_points
END_DOC
integer :: i,j
do j=1,3
do i=1,n_points_final_grid
final_grid_points_transp(i,j) = final_grid_points(j,i)
enddo
enddo
END_PROVIDER

View File

@ -268,6 +268,21 @@ subroutine print_spindet(string,Nint)
end
subroutine print_det_one_dimension(string,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Subroutine to print the content of a determinant using the '+-' notation
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
character*(2048) :: output(1)
call bitstring_to_str( output(1), string, Nint )
print *, trim(output(1))
end
logical function is_integer_in_string(bite,string,Nint)
use bitmasks
implicit none

View File

@ -1,9 +1,3 @@
[pert_2rdm]
type: logical
doc: If true, computes the one- and two-body rdms with perturbation theory
interface: ezfio,provider,ocaml
default: False
[save_wf_after_selection]
type: logical
doc: If true, saves the wave function after the selection, before the diagonalization
@ -40,3 +34,9 @@ doc: Maximum number of excitation for beta determinants with respect to the Hart
interface: ezfio,ocaml,provider
default: -1
[twice_hierarchy_max]
type: integer
doc: Twice the maximum hierarchy parameter (excitation degree plus half the seniority number). Using -1 selects all determinants
interface: ezfio,ocaml,provider
default: -1

View File

@ -2,5 +2,4 @@ perturbation
zmq
mpi
iterations
two_body_rdm
csf

View File

@ -70,8 +70,8 @@ subroutine run_cipsi
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'

View File

@ -1,183 +0,0 @@
use bitmasks
use omp_lib
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
use f77_zmq
implicit none
call omp_init_lock(pert_2rdm_lock)
END_PROVIDER
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
implicit none
n_orb_pert_rdm = n_act_orb
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
implicit none
list_orb_reverse_pert_rdm = list_act_reverse
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
implicit none
list_orb_pert_rdm = list_act
END_PROVIDER
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
implicit none
pert_2rdm_provider = 0.d0
END_PROVIDER
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: n_det_connection
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
integer :: sze_buff
sze_buff = 5 * mo_num ** 2
allocate(keys(4,sze_buff),values(sze_buff))
nkeys = 0
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'CFG') then
j = det_to_configuration(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
integer :: degree
call get_excitation_degree(det,HF_bitmask,degree,N_int)
if(degree == 2)cycle
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi
print*,e_pert,coef,alpha_h_psi
pt2_data % pt2(istate) += e_pert
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
enddo
do istate=1,N_states
alpha_h_psi = mat(istate, p1, p2)
e_pert = coef(istate) * alpha_h_psi
do jstate=1,N_states
pt2_data % overlap(jstate,jstate) = coef(istate) * coef(jstate)
enddo
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
end do
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
end if
end do
end do
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
end

View File

@ -117,7 +117,6 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, intent(in) :: N_in
! integer, intent(inout) :: N_in
double precision, intent(in) :: relative_error, E(N_states)
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
!
@ -132,8 +131,8 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
PROVIDE psi_det_hii selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
PROVIDE list_act list_inact list_core list_virt list_del seniority_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
if (h0_type == 'CFG') then
PROVIDE psi_configuration_hii det_to_configuration
@ -288,7 +287,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
call write_int(6,nproc_target,'Number of threads for PT2')
call write_double(6,mem,'Memory (Gb)')
call omp_set_max_active_levels(1)
call set_multiple_levels_omp(.False.)
print '(A)', '========== ======================= ===================== ===================== ==========='
@ -315,7 +314,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
call omp_set_max_active_levels(8)
call set_multiple_levels_omp(.True.)
print '(A)', '========== ======================= ===================== ===================== ==========='
@ -524,21 +523,21 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
if(c > 2) then
eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
eqt = dsqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % pt2(pt2_stoch_istate) = eqt
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
eqt = dsqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % variance(pt2_stoch_istate) = eqt
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
eqta(:) = dsqrt(eqta(:) / (dble(c) - 1.5d0))
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
time1 = time
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.1)', c, &
pt2_data % pt2(pt2_stoch_istate) +E, &
pt2_data_err % pt2(pt2_stoch_istate), &
pt2_data % variance(pt2_stoch_istate), &
@ -843,9 +842,8 @@ END_PROVIDER
do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
tooth_width = max(1.d-15,sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1))))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do

View File

@ -31,12 +31,11 @@ subroutine run_pt2_slave(thread,iproc,energy)
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
if (N_det > 100000 ) then
call run_pt2_slave_large(thread,iproc,energy)
! if (N_det > nproc*(elec_alpha_num * (mo_num-elec_alpha_num))**2) then
! call run_pt2_slave_large(thread,iproc,energy)
! else
! call run_pt2_slave_small(thread,iproc,energy)
! endif
else
call run_pt2_slave_small(thread,iproc,energy)
endif
end
subroutine run_pt2_slave_small(thread,iproc,energy)
@ -67,7 +66,6 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
double precision, external :: memory_of_double, memory_of_int
integer :: bsize ! Size of selection buffers
! logical :: sending
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
@ -85,7 +83,6 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
buffer_ready = .False.
n_tasks = 1
! sending = .False.
done = .False.
do while (.not.done)
@ -119,14 +116,13 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
do k=1,n_tasks
call pt2_alloc(pt2_data(k),N_states)
b%cur = 0
!double precision :: time2
!call wall_time(time2)
! double precision :: time2
! call wall_time(time2)
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
!call wall_time(time1)
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
! call wall_time(time1)
! print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
enddo
call wall_time(time1)
!print *, '-->', i_generator(1), time1-time0, n_tasks
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
@ -164,6 +160,11 @@ end subroutine
subroutine run_pt2_slave_large(thread,iproc,energy)
use selection_types
use f77_zmq
BEGIN_DOC
! This subroutine can miss important determinants when the PT2 is completely
! computed. It should be called only for large workloads where the PT2 is
! interrupted before the end
END_DOC
implicit none
double precision, intent(in) :: energy(N_states_diag)
@ -189,8 +190,12 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
integer :: bsize ! Size of selection buffers
logical :: sending
double precision :: time_shift
PROVIDE global_selection_buffer global_selection_buffer_lock
call random_number(time_shift)
time_shift = time_shift*15.d0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
@ -208,6 +213,9 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
sending = .False.
done = .False.
double precision :: time0, time1
call wall_time(time0)
time0 = time0+time_shift
do while (.not.done)
integer, external :: get_tasks_from_taskserver
@ -234,25 +242,28 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
call pt2_alloc(pt2_data,N_states)
b%cur = 0
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
call wall_time(time1)
! if (time1-time0 > 15.d0) then
call omp_set_lock(global_selection_buffer_lock)
global_selection_buffer%mini = b%mini
call merge_selection_buffers(b,global_selection_buffer)
b%cur=0
call omp_unset_lock(global_selection_buffer_lock)
if ( iproc == 1 ) then
call wall_time(time0)
! endif
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
if ( iproc == 1 .or. i_generator < 100 .or. done) then
call omp_set_lock(global_selection_buffer_lock)
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
global_selection_buffer%cur = 0

View File

@ -195,7 +195,10 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
integer :: l_a, nmax, idx
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
double precision, parameter :: norm_thr = 1.d-16
! Removed to avoid introducing determinants already presents in the wf
!double precision, parameter :: norm_thr = 1.d-16
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
@ -215,10 +218,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
i = psi_bilinear_matrix_rows(l_a)
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
! Removed to avoid introducing determinants already presents in the wf
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
indices(k) = idx
k=k+1
endif
!endif
endif
enddo
enddo
@ -242,10 +246,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
idx = psi_det_sorted_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
! Removed to avoid introducing determinants already presents in the wf
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
indices(k) = idx
k=k+1
endif
!endif
endif
enddo
enddo
@ -464,27 +469,21 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
if(pert_2rdm)then
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
do i=1,fullinteresting(0)
do j = 1, N_states
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
enddo
enddo
endif
! if(pert_2rdm)then
! allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
! do i=1,fullinteresting(0)
! do j = 1, N_states
! coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
! enddo
! enddo
! endif
do i=1,fullinteresting(0)
do k=1,N_int
fullminilist(k,1,i) = psi_det_sorted(k,1,fullinteresting(i))
fullminilist(k,2,i) = psi_det_sorted(k,2,fullinteresting(i))
enddo
fullminilist(:,:,i) = psi_det_sorted(:,:,fullinteresting(i))
enddo
do i=1,interesting(0)
do k=1,N_int
minilist(k,1,i) = psi_det_sorted(k,1,interesting(i))
minilist(k,2,i) = psi_det_sorted(k,2,interesting(i))
enddo
minilist(:,:,i) = psi_det_sorted(:,:,interesting(i))
enddo
do s2=s1,2
@ -531,19 +530,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then
! if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif
! else
! call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
! endif
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
deallocate(fullminilist,minilist)
if(pert_2rdm)then
deallocate(coef_fullminilist_rev)
endif
! if(pert_2rdm)then
! deallocate(coef_fullminilist_rev)
! endif
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
@ -572,6 +571,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
double precision :: s_weight(N_states,N_states)
logical, external :: is_in_wavefunction
PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs
do jstate=1,N_states
do istate=1,N_states
@ -713,6 +713,25 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if (do_cycle) cycle
endif
if (twice_hierarchy_max >= 0) then
s = 0
do k=1,N_int
s = s + popcnt(ieor(det(k,1),det(k,2)))
enddo
if ( mod(s,2)>0 ) stop 'For now, hierarchy CI is defined only for an even number of electrons'
if (excitation_ref == 1) then
call get_excitation_degree(HF_bitmask,det(1,1),degree,N_int)
else if (excitation_ref == 2) then
stop 'For now, hierarchy CI is defined only for a single reference determinant'
! do k=1,N_dominant_dets_of_cfgs
! call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
! enddo
endif
integer :: twice_hierarchy
twice_hierarchy = degree + s/2
if (twice_hierarchy > twice_hierarchy_max) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
w = 0d0
@ -834,8 +853,27 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
endif
end select
! To force the inclusion of determinants with a positive pt2 contribution
if (e_pert(istate) > 1d-8) then
w = -huge(1.0)
endif
end do
!!!BEGIN_DEBUG
! ! To check if the pt2 is taking determinants already in the wf
! if (is_in_wavefunction(det(N_int,1),N_int)) then
! print*, 'A determinant contributing to the pt2 is already in'
! print*, 'the wave function:'
! call print_det(det(N_int,1),N_int)
! print*,'contribution to the pt2 for the states:', e_pert(:)
! print*,'error in the filtering in'
! print*, 'cipsi/selection.irp.f sub: selecte_singles_and_doubles'
! print*, 'abort'
! call abort
! endif
!!!END_DEBUG
integer(bit_kind) :: occ(N_int,2), n
if (h0_type == 'CFG') then
@ -1556,7 +1594,7 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
! Gives the indices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)

View File

@ -60,6 +60,7 @@ subroutine add_to_selection_buffer(b, det, val)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
b%cur = b%cur-1
end if
end if
end subroutine
@ -86,43 +87,56 @@ subroutine merge_selection_buffers(b1, b2)
double precision :: rss
double precision, external :: memory_of_double
sze = max(size(b1%val), size(b2%val))
rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
call check_mem(rss,irp_here)
! rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
! call check_mem(rss,irp_here)
allocate(val(sze), detmp(N_int, 2, sze))
i1=1
i2=1
select case (N_int)
BEGIN_TEMPLATE
case $case
do i=1,nmwen
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
exit
else if (i1 > b1%cur) then
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
detmp(1:$N_int,1,i) = b2%det(1:$N_int,1,i2)
detmp(1:$N_int,2,i) = b2%det(1:$N_int,2,i2)
i2=i2+1
else if (i2 > b2%cur) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
detmp(1:$N_int,1,i) = b1%det(1:$N_int,1,i1)
detmp(1:$N_int,2,i) = b1%det(1:$N_int,2,i1)
i1=i1+1
else
if (b1%val(i1) <= b2%val(i2)) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
detmp(1:$N_int,1,i) = b1%det(1:$N_int,1,i1)
detmp(1:$N_int,2,i) = b1%det(1:$N_int,2,i1)
i1=i1+1
else
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
detmp(1:$N_int,1,i) = b2%det(1:$N_int,1,i2)
detmp(1:$N_int,2,i) = b2%det(1:$N_int,2,i2)
i2=i2+1
endif
endif
enddo
deallocate(b2%det, b2%val)
do i=nmwen+1,b2%N
val(i) = 0.d0
detmp(1:N_int,1:2,i) = 0_bit_kind
! detmp(1:$N_int,1,i) = 0_bit_kind
! detmp(1:$N_int,2,i) = 0_bit_kind
enddo
SUBST [ case, N_int ]
(1); 1;;
(2); 2;;
(3); 3;;
(4); 4;;
default; N_int;;
END_TEMPLATE
end select
deallocate(b2%det, b2%val)
b2%det => detmp
b2%val => val
b2%mini = min(b2%mini,b2%val(b2%N))
@ -144,8 +158,8 @@ subroutine sort_selection_buffer(b)
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
call check_mem(rss,irp_here)
! rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
! call check_mem(rss,irp_here)
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)))
do i=1,b%cur
iorder(i) = i
@ -225,14 +239,14 @@ subroutine make_selection_buffer_s2(b)
endif
dup = .True.
do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) .or. &
(tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
dup = .False.
exit
endif
enddo
if (dup) then
val(i) = max(val(i), val(j))
val(i) = min(val(i), val(j))
duplicate(j) = .True.
endif
j+=1
@ -282,9 +296,6 @@ subroutine make_selection_buffer_s2(b)
call configuration_to_dets_size(o(1,1,i),sze,elec_alpha_num,N_int)
n_d = n_d + sze
if (n_d > b%cur) then
! if (n_d - b%cur > b%cur - n_d + sze) then
! n_d = n_d - sze
! endif
exit
endif
enddo
@ -329,10 +340,11 @@ subroutine remove_duplicates_in_selection_buffer(b)
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical, allocatable :: duplicate(:)
n_d = b%cur
logical :: found_duplicates
double precision :: rss
double precision, external :: memory_of_double
n_d = b%cur
rss = (4*N_int+4)*memory_of_double(n_d)
call check_mem(rss,irp_here)

View File

@ -38,11 +38,11 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 8.d0 !* selection_factor
dt = 4.d0 !* selection_factor
do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
element = pt2(k) !exp(dt*(pt2(k)/avg - 1.d0))
! element = min(2.0d0 , element)
! element = max(0.5d0 , element)
pt2_match_weight(k) *= element
enddo
@ -50,9 +50,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
do k=1,N_st
element = exp(dt*(variance(k)/avg -1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
element = variance(k) ! exp(dt*(variance(k)/avg -1.d0))
! element = min(2.0d0 , element)
! element = max(0.5d0 , element)
variance_match_weight(k) *= element
enddo
@ -62,6 +62,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
variance_match_weight(:) = 1.d0
endif
pt2_match_weight(:) = pt2_match_weight(:)/sum(pt2_match_weight(:))
variance_match_weight(:) = variance_match_weight(:)/sum(variance_match_weight(:))
threshold_davidson_pt2 = min(1.d-6, &
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
@ -87,7 +90,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
selection_weight(1:N_states) = c0_weight(1:N_states)
case (2)
print *, 'Using pt2-matching weight in selection'
print *, 'Using PT2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
@ -97,7 +100,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
print *, '# var weight ', real(variance_match_weight(:),4)
case (4)
print *, 'Using variance- and pt2-matching weights in selection'
print *, 'Using variance- and PT2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
@ -112,7 +115,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
selection_weight(1:N_states) = c0_weight(1:N_states)
case (7)
print *, 'Input weights multiplied by variance- and pt2-matching'
print *, 'Input weights multiplied by variance- and PT2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
@ -128,6 +131,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
print *, '# var weight ', real(variance_match_weight(:),4)
end select
selection_weight(:) = selection_weight(:)/sum(selection_weight(:))
print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER

View File

@ -4,7 +4,7 @@ subroutine run_slave_cipsi
! Helper program for distributed parallelism
END_DOC
call omp_set_max_active_levels(1)
call set_multiple_levels_omp(.False.)
distributed_davidson = .False.
read_wf = .False.
SOFT_TOUCH read_wf distributed_davidson
@ -171,9 +171,9 @@ subroutine run_slave_main
call write_double(6,(t1-t0),'Broadcast time')
!---
call omp_set_max_active_levels(8)
call set_multiple_levels_omp(.True.)
call davidson_slave_tcp(0)
call omp_set_max_active_levels(1)
call set_multiple_levels_omp(.False.)
print *, mpi_rank, ': Davidson done'
!---
@ -311,7 +311,7 @@ subroutine run_slave_main
if (mpi_master) then
print *, 'Running PT2'
endif
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target)
i = omp_get_thread_num()
call run_pt2_slave(0,i,pt2_e0_denominator)
!$OMP END PARALLEL

View File

@ -69,8 +69,8 @@ subroutine run_stochastic_cipsi
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'

View File

@ -1,223 +0,0 @@
use bitmasks
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: n_det_connection,sze_buff
double precision, intent(in) :: coef(N_states)
integer(bit_kind), intent(in) :: det(N_int,2)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer, intent(inout) :: keys(4,sze_buff),nkeys
double precision, intent(inout) :: values(sze_buff)
integer :: i,j
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase, contrib
do i = 1, n_det_connection
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
if(degree.gt.2)cycle
contrib = 0.d0
do j = 1, N_states
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
enddo
! case of single excitations
if(degree == 1)then
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
nkeys = 0
endif
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
else
!! case of double excitations
! if (nkeys + 4 .ge. sze_buff)then
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
! nkeys = 0
! endif
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
endif
enddo
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
!nkeys = 0
end
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer(bit_kind), intent(in) :: det1(N_int,2)
integer(bit_kind), intent(in) :: det2(N_int,2)
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2),ispin,other_spin
integer :: h1,h2,p1,p2,i
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
ispin = 1
other_spin = 2
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
ispin = 2
other_spin = 1
endif
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
!update the alpha/beta part
do i = 1, n_occ_ab(other_spin)
h2 = occ(i,other_spin)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = h2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
enddo
!update the same spin part
!do i = 1, n_occ_ab(ispin)
! h2 = occ(i,ispin)
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
! h2 = list_orb_reverse_pert_rdm(h2)
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
!
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
!enddo
end
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: h1,h2,p1,p2
if (exc(0,1,1) == 1) then
! Double alpha/beta
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = p1
keys(2,nkeys) = p2
keys(3,nkeys) = h1
keys(4,nkeys) = h2
else
if (exc(0,1,1) == 2) then
! Double alpha/alpha
h1 = exc(1,1,1)
h2 = exc(2,1,1)
p1 = exc(1,2,1)
p2 = exc(2,2,1)
else if (exc(0,1,2) == 2) then
! Double beta
h1 = exc(1,1,2)
h2 = exc(2,1,2)
p1 = exc(1,2,2)
p2 = exc(2,2,2)
endif
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p1
keys(4,nkeys) = p2
endif
end

View File

@ -22,7 +22,7 @@ subroutine ZMQ_selection(N_in, pt2_data)
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')

View File

@ -5,4 +5,3 @@ interface: ezfio
size: (determinants.n_states)

View File

@ -62,6 +62,7 @@ subroutine run
else
call H_apply_cis
endif
print*,''
print *, 'N_det = ', N_det
print*,'******************************'
print *, 'Energies of the states:'
@ -69,16 +70,18 @@ subroutine run
print *, i, CI_energy(i)
enddo
if (N_states > 1) then
print*,'******************************'
print*,'Excitation energies '
print*,''
print*,'******************************************************'
print*,'Excitation energies (au) (eV)'
do i = 2, N_states
print*, i ,CI_energy(i) - CI_energy(1)
print*, i ,CI_energy(i) - CI_energy(1), (CI_energy(i) - CI_energy(1))/0.0367502d0
enddo
print*,''
endif
call ezfio_set_cis_energy(CI_energy)
psi_coef = ci_eigenvectors
SOFT_TOUCH psi_coef
call save_wavefunction_truncated(1.d-12)
call save_wavefunction_truncated(save_threshold)
end

View File

@ -63,7 +63,7 @@ subroutine run
endif
psi_coef = ci_eigenvectors
SOFT_TOUCH psi_coef
call save_wavefunction
call save_wavefunction_truncated(save_threshold)
call ezfio_set_cisd_energy(CI_energy)
do i = 1,N_states

View File

@ -779,6 +779,7 @@ subroutine binary_search_cfg(cfgInp,addcfg)
end subroutine
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_n_det, (N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
implicit none
@ -867,6 +868,29 @@ end subroutine
enddo
deallocate(dets, old_order)
integer :: ndet_conf
do i = 1, N_configuration
ndet_conf = psi_configuration_to_psi_det(2,i) - psi_configuration_to_psi_det(1,i) + 1
psi_configuration_n_det(i) = ndet_conf
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, n_elec_alpha_for_psi_configuration, (N_configuration)]
implicit none
integer :: i,j,k,l
integer(bit_kind) :: det_tmp(N_int,2),det_alpha(N_int)
n_elec_alpha_for_psi_configuration = 0
do i = 1, N_configuration
j = psi_configuration_to_psi_det(2,i)
det_tmp(:,:) = psi_det(:,:,j)
k = 0
do l = 1, N_int
det_alpha(N_int) = iand(det_tmp(l,1),psi_configuration(l,1,i))
k += popcnt(det_alpha(l))
enddo
n_elec_alpha_for_psi_configuration(i) = k
enddo
END_PROVIDER

View File

@ -1,3 +1,15 @@
BEGIN_PROVIDER [ double precision, psi_csf_coef, (N_csf, N_states) ]
implicit none
BEGIN_DOC
! Wafe function in CSF basis
END_DOC
double precision, allocatable :: buffer(:,:)
allocate ( buffer(N_det, N_states) )
buffer(1:N_det, 1:N_states) = psi_coef(1:N_det, 1:N_states)
call convertWFfromDETtoCSF(N_states, buffer, psi_csf_coef)
END_PROVIDER
subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
use cfunctions
use bitmasks
@ -26,6 +38,8 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
integer s, bfIcfg
integer countcsf
integer MS
MS = elec_alpha_num-elec_beta_num
countcsf = 0
phasedet = 1.0d0
do i = 1,N_configuration
@ -44,12 +58,17 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
enddo
enddo
s = 0
s = 0 ! s == total number of SOMOs
do k=1,N_int
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
if(iand(s,1) .EQ. 0) then
bfIcfg = max(1,nint((binom(s,s/2)-binom(s,(s/2)+1))))
else
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
endif
! perhaps blocking with CFGs of same seniority
! can be more efficient

View File

@ -1,7 +1,10 @@
real*8 function logabsgamma(x)
implicit none
real*8, intent(in) :: x
logabsgamma = 1.d32 ! Avoid floating point exception
if (x>0.d0) then
logabsgamma = log(abs(gamma(x)))
endif
end function logabsgamma
BEGIN_PROVIDER [ integer, NSOMOMax]
@ -48,11 +51,24 @@
if(cfg_seniority_index(i+2) > ncfgpersomo) then
ncfgpersomo = cfg_seniority_index(i+2)
else
k = 0
do while(cfg_seniority_index(i+2+k) < ncfgpersomo)
k = k + 2
ncfgpersomo = cfg_seniority_index(i+2+k)
! l = i+k+2
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
! Old version commented just below
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
if (cfg_seniority_index(l) >= ncfgpersomo) then
ncfgpersomo = cfg_seniority_index(l)
endif
enddo
!k = 0
!if ((i+2+k) < size(cfg_seniority_index,1)) then
! do while(cfg_seniority_index(i+2+k) < ncfgpersomo)
! k = k + 2
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
! exit
! endif
! ncfgpersomo = cfg_seniority_index(i+2+k)
! enddo
!endif
endif
endif
ncfg = ncfgpersomo - ncfgprev
@ -62,34 +78,33 @@
dimcsfpercfg = 2
else
if(iand(MS,1) .EQ. 0) then
!dimcsfpercfg = max(1,nint((binom(i,i/2)-binom(i,i/2+1))))
binom1 = dexp(logabsgamma(1.0d0*(i+1)) &
- logabsgamma(1.0d0*((i/2)+1)) &
- logabsgamma(1.0d0*(i-((i/2))+1)));
binom2 = dexp(logabsgamma(1.0d0*(i+1)) &
- logabsgamma(1.0d0*(((i/2)+1)+1)) &
- logabsgamma(1.0d0*(i-((i/2)+1)+1)));
dimcsfpercfg = max(1,nint(binom1 - binom2))
dimcsfpercfg = max(1,nint((binom(i,i/2)-binom(i,i/2+1))))
else
!dimcsfpercfg = max(1,nint((binom(i,(i+1)/2)-binom(i,(i+3)/2))))
binom1 = dexp(logabsgamma(1.0d0*(i+1)) &
- logabsgamma(1.0d0*(((i+1)/2)+1)) &
- logabsgamma(1.0d0*(i-(((i+1)/2))+1)));
binom2 = dexp(logabsgamma(1.0d0*(i+1)) &
- logabsgamma(1.0d0*((((i+3)/2)+1)+1)) &
- logabsgamma(1.0d0*(i-(((i+3)/2)+1)+1)));
dimcsfpercfg = max(1,nint(binom1 - binom2))
dimcsfpercfg = max(1,nint((binom(i,(i+1)/2)-binom(i,(i+3)/2))))
endif
endif
n_CSF += ncfg * dimcsfpercfg
if(cfg_seniority_index(i+2) > ncfgprev) then
ncfgprev = cfg_seniority_index(i+2)
else
k = 0
do while(cfg_seniority_index(i+2+k) < ncfgprev)
k = k + 2
ncfgprev = cfg_seniority_index(i+2+k)
! l = i+k+2
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
! Old version commented just below
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
if (cfg_seniority_index(l) >= ncfgprev) then
ncfgprev = cfg_seniority_index(l)
endif
enddo
!k = 0
!if ((i+2+k) < size(cfg_seniority_index,1)) then
! do while(cfg_seniority_index(i+2+k) < ncfgprev)
! k = k + 2
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
! exit
! endif
! ncfgprev = cfg_seniority_index(i+2+k)
! enddo
!endif
endif
enddo
END_PROVIDER

View File

@ -0,0 +1,451 @@
subroutine davidson_general_ext_rout_diag_dressed(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
use mmap_module
implicit none
BEGIN_DOC
! Generic Davidson diagonalization with ONE DIAGONAL DRESSING OPERATOR
!
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
integer :: iter, N_st_diag
integer :: i,j,k,l,m
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: cmax
double precision, allocatable :: U(:,:), overlap(:,:)!, S_d(:,:)
double precision, pointer :: W(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
include 'constants.include.F'
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
provide threshold_davidson !nthreads_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 2.0d0*(N_st_diag*itermax)**2 &! h,y
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_S2_u_0_nstates_zmq
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of basis functions')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
double precision, allocatable :: H_jj_tmp(:)
ASSERT (N_st > 0)
ASSERT (sze > 0)
allocate(H_jj_tmp(sze))
do i=1,sze
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
enddo
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
allocate(W(sze,N_st_diag*itermax))
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
! Initialize from N_st to N_st_diat with gaussian random numbers
! to be sure to have overlap with any eigenvectors
do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
! Normalize all states
do k=1,N_st_diag
call normalize(u_in(1,k),sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U,size(U,1),sze,shift2)
call ortho_qr(U,size(U,1),sze,shift2)
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
! where sze is the size of the vector, N_st_diag is the number of states
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
! Compute then the DIAGONAL PART OF THE DRESSING
! <i|W_k> += Dress_jj(i) * <i|U>
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
else
! Already computed in update below
continue
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
! Diagonalize h y = lambda y
! ---------------
call lapack_diag(lambda,y,h,size(h,1),shift2)
if (state_following) then
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
endif
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
/max(H_jj_tmp(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
do k=1,N_st
if (residual_norm(k) > 1.e8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U,size(U,1),sze,N_st_diag)
call ortho_qr(U,size(U,1),sze,N_st_diag)
do j=1,N_st_diag
k=1
do while ((k<sze).and.(U(k,j) == 0.d0))
k = k+1
enddo
if (U(k,j) * u_in(k,j) < 0.d0) then
do i=1,sze
W(i,j) = -W(i,j)
enddo
endif
enddo
enddo
do k=1,N_st
energies(k) = lambda(k)
enddo
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate ( &
residual_norm, &
U, h, &
y, &
lambda &
)
deallocate(overlap)
FREE nthreads_davidson
end
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
implicit none
BEGIN_DOC
! Routine that computes the diagonal part of the dressing
!
! v(i) += u(i) * dress_diag(i)
!
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
!
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,istate
do istate = 1, N_st
do i = 1, sze
v(i,istate) += dress_diag(i) * u(i,istate)
enddo
enddo
end

View File

@ -0,0 +1,518 @@
subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc)
use mmap_module
BEGIN_DOC
! Generic Davidson diagonalization with TWO DRESSING VECTORS
!
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
!
! Dressing_vec : COLUMN / LINE DRESSING VECTOR
!
! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff)
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
implicit none
integer, intent(in) :: sze, N_st, N_st_diag, idx_dress
double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st)
double precision, intent(inout) :: u_in(sze,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
logical, intent(out) :: converged
external hcalc
double precision, allocatable :: H_jj_tmp(:)
ASSERT (N_st > 0)
ASSERT (sze > 0)
allocate(H_jj_tmp(sze))
do i=1,sze
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
enddo
do k=1,N_st
do i=1,sze
H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k)
enddo
enddo
integer :: iter
integer :: i,j,k,l,m
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st),inv_c_idx_dress
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag)
double precision :: cmax
double precision, allocatable :: U(:,:), overlap(:,:)
double precision, pointer :: W(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag*davidson_sze_max)
allocate(inv_c_idx_dress_vec(N_st))
inv_c_idx_dress = 1.d0/u_in(idx_dress,1)
do i = 1, N_st
inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i)
enddo
include 'constants.include.F'
integer :: N_st_diag_in
N_st_diag_in = N_st_diag
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag_in*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag_in*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag_in*itermax) &! U
+ 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W
+ 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag_in*itermax) &! lambda
+ 1.d0*(N_st_diag_in) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag_in,'Number of states in diagonalization')
call write_int(6,sze,'Number of basis functions ')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
allocate(W(sze,N_st_diag_in*itermax))
allocate( &
! Large
U(sze,N_st_diag_in*itermax), &
! Small
h(N_st_diag_in*itermax,N_st_diag_in*itermax), &
y(N_st_diag_in*itermax,N_st_diag_in*itermax), &
s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), &
residual_norm(N_st_diag_in), &
lambda(N_st_diag_in*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag_in >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
do k=N_st+1,N_st_diag_in
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
enddo
u_in(k,k) = u_in(k,k) + 10.d0
enddo
do k=1,N_st_diag_in
call normalize(u_in(1,k),sze)
enddo
do k=1,N_st_diag_in
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot+1
if (itertot == 2) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag_in*(iter-1)
shift2 = N_st_diag_in*iter
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze)
! Compute then the DIAGONAL PART OF THE DRESSING
! <i|W_k> += Dress_jj(i) * <i|U>
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
else
! Already computed in update below
continue
endif
if (N_st == 1) then
l = idx_dress
double precision :: f
f = inv_c_idx_dress
do istate=1,N_st_diag_in
do i=1,sze
W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate)
W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate)
enddo
enddo
else
print*,'dav_double_dressed routine not yet implemented for N_st > 1'
!
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
! psi_coef, size(psi_coef,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
!
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
! Dressing_vec, size(Dressing_vec,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), U, size(U,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag_in
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag_in, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag_in, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag_in
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
/max(H_jj_tmp(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag_in
do i=1,sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag_in
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
enddo
call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag_in
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag_in
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate ( &
residual_norm, &
U, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
implicit none
BEGIN_DOC
! Routine that computes the diagonal part of the dressing
!
! v(i) += u(i) * dress_diag(i)
!
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
!
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,istate
do istate = 1, N_st
do i = 1, sze
v(i,istate) += dress_diag(i) * u(i,istate)
enddo
enddo
end

View File

@ -0,0 +1,485 @@
subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_diag,dressing_state,dressing_vec,idress,converged,hcalc)
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization.
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: sze, N_st, N_st_diag,idress
double precision, intent(inout) :: u_in(sze,N_st_diag)
double precision, intent(inout) :: H_jj(sze)
double precision, intent(out) :: energies(N_st_diag)
double precision, intent(in) :: dressing_vec(sze,N_st)
integer, intent(in) :: dressing_state
logical, intent(out) :: converged
external hcalc
double precision :: f
integer :: iter
integer :: i,j,k,l,m
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag)
double precision :: cmax
double precision, allocatable :: U(:,:), overlap(:,:)
double precision, pointer :: W(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag*davidson_sze_max)
!!!! TO CHANGE !!!!
integer :: idx_dress(1)
idx_dress = idress
if (dressing_state > 0) then
do k=1,N_st
do i=1,sze
H_jj(i) += u_in(i,k) * dressing_vec(i,k)
enddo
enddo
endif
l = idx_dress(1)
f = 1.0d0/u_in(l,1)
include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
provide threshold_davidson !nthreads_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
! maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag*itermax) &! lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of basis function')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
allocate(W(sze,N_st_diag*itermax))
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
do k=N_st+1,N_st_diag
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
enddo
u_in(k,k) = u_in(k,k) + 10.d0
enddo
! Normalize all states
do k=1,N_st_diag
call normalize(u_in(1,k),sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U,size(U,1),sze,shift2)
call ortho_qr(U,size(U,1),sze,shift2)
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
! where sze is the size of the vector, N_st_diag is the number of states
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
else
! Already computed in update below
continue
endif
if (dressing_state > 0) then
if (N_st == 1) then
do istate=1,N_st_diag
do i=1,sze
W(i,shift+istate) += dressing_vec(i,1) *f * U(l,shift+istate)
W(l,shift+istate) += dressing_vec(i,1) *f * U(i,shift+istate)
enddo
enddo
else
print*,'Not implemented yet for multi state ...'
stop
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
! psi_coef, size(psi_coef,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! dressing_vec, size(dressing_vec,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
!
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
! dressing_vec, size(dressing_vec,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
endif
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), U, size(U,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
/max(H_jj(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
enddo
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate ( &
residual_norm, &
U, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end

View File

@ -1,15 +1,15 @@
subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,hcalc)
subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
! Generic Davidson diagonalization
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! dim_in : leftmost dimension of u_in
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
@ -21,9 +21,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
@ -157,19 +157,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
write(6,'(A)') write_buffer(1:6+41*N_st)
! if (disk_based) then
! ! Create memory-mapped files for W and S
! type(c_ptr) :: ptr_w, ptr_s
! integer :: fd_s, fd_w
! call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
! 8, fd_w, .False., ptr_w)
! call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),&
! 4, fd_s, .False., ptr_s)
! call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
! call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
! else
allocate(W(sze,N_st_diag*itermax))
! endif
allocate( &
! Large
@ -233,7 +221,6 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U,size(U,1),sze,shift2)
call ortho_qr(U,size(U,1),sze,shift2)
@ -357,6 +344,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag

View File

@ -8,12 +8,13 @@ program test_dav
touch read_wf
PROVIDE threshold_davidson nthreads_davidson
call routine
call test_dav_dress
end
subroutine routine
implicit none
double precision, allocatable :: u_in(:,:), H_jj(:), energies(:),h_mat(:,:)
integer :: dim_in,sze,N_st,N_st_diag_in,dressing_state
integer :: dim_in,sze,N_st,N_st_diag_in
logical :: converged
integer :: i,j
external hcalc_template
@ -21,9 +22,8 @@ subroutine routine
N_st_diag_in = N_states_diag
sze = N_det
dim_in = sze
dressing_state = 0
!!!! MARK THAT u_in mut dimensioned with "N_st_diag_in" as a second dimension
allocate(u_in(dim_in,N_st_diag_in),H_jj(sze),h_mat(sze,sze),energies(N_st))
allocate(u_in(dim_in,N_st_diag_in),H_jj(sze),h_mat(sze,sze),energies(N_st_diag_in))
u_in = 0.d0
do i = 1, N_st
u_in(1,i) = 1.d0
@ -42,7 +42,38 @@ subroutine routine
print*,'energies = ',energies
!!! hcalc_template is the routine that computes v = H u
!!! and you can use the routine "davidson_general_ext_rout"
call davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,hcalc_template)
call davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc_template)
print*,'energies = ',energies
end
subroutine test_dav_dress
implicit none
double precision, allocatable :: u_in(:,:), H_jj(:), energies(:)
integer :: sze,N_st,N_st_diag_in,dressing_state
logical :: converged
integer :: i,j
external hcalc_template
double precision, allocatable :: dressing_vec(:)
integer :: idress
N_st = N_states
N_st_diag_in = N_states_diag
sze = N_det
dressing_state = 0
idress = 1
!!!! MARK THAT u_in mut dimensioned with "N_st_diag_in" as a second dimension
allocate(u_in(sze,N_st_diag_in),H_jj(sze),energies(N_st_diag_in))
allocate(dressing_vec(sze))
dressing_vec = 0.d0
u_in = 0.d0
do i = 1, N_st
u_in(1,i) = 1.d0
enddo
do i = 1, sze
H_jj(i) = H_matrix_all_dets(i,i) + nuclear_repulsion
enddo
print*,'dressing davidson '
call davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_diag_in,dressing_state,dressing_vec,idress,converged,hcalc_template)
print*,'energies(1) = ',energies(1)
end

View File

@ -508,7 +508,7 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
endif
call omp_set_max_active_levels(5)
call set_multiple_levels_omp(.True.)
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
ithread = omp_get_thread_num()

View File

@ -464,7 +464,8 @@ subroutine H_u_0_nstates_zmq(v_0,u_0,N_st,sze)
print *, irp_here, ': Failed in zmq_set_running'
endif
call omp_set_max_active_levels(4)
call set_multiple_levels_omp(.True.)
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
ithread = omp_get_thread_num()
if (ithread == 0 ) then

View File

@ -464,7 +464,8 @@ subroutine H_u_0_nstates_zmq(v_0,u_0,N_st,sze)
print *, irp_here, ': Failed in zmq_set_running'
endif
call omp_set_max_active_levels(4)
call set_multiple_levels_omp(.True.)
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
ithread = omp_get_thread_num()
if (ithread == 0 ) then

View File

@ -299,7 +299,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if ((iter > 1).or.(itertot == 1)) then
! if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
@ -309,10 +309,10 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
else
call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
endif
else
! Already computed in update below
continue
endif
! else
! ! Already computed in update below
! continue
! endif
if (dressing_state > 0) then
@ -508,17 +508,8 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
W_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
! Re-contract U
! -------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))

View File

@ -349,7 +349,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if ((iter > 1).or.(itertot == 1)) then
! if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
@ -359,10 +359,10 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
endif
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
else
! Already computed in update below
continue
endif
! else
! ! Already computed in update below
! continue
! endif
if (dressing_state > 0) then

View File

@ -1,9 +1,9 @@
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
implicit none
BEGIN_DOC
! :c:data:`n_states` lowest eigenvalues of the |CI| matrix
END_DOC
PROVIDE distributed_davidson
integer :: j
character*(8) :: st
@ -247,6 +247,7 @@ subroutine diagonalize_CI
! eigenstates of the |CI| matrix.
END_DOC
integer :: i,j
PROVIDE distributed_davidson
do j=1,N_states
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors(i,j)

View File

@ -203,7 +203,7 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer, allocatable :: idx(:), buffer_lrow(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
logical :: compute_singles
@ -253,7 +253,7 @@ compute_singles=.True.
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
!$OMP buffer, doubles, n_doubles, umax, &
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
!$OMP tmp_det2, hij, sij, idx, buffer_lrow, l, kcol_prev, &
!$OMP singles_a, n_singles_a, singles_b, ratio, &
!$OMP n_singles_b, k8, last_found,left,right,right_max)
@ -264,7 +264,7 @@ compute_singles=.True.
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab), utl(N_st,block_size))
idx(maxab), buffer_lrow(maxab), utl(N_st,block_size))
kcol_prev=-1
@ -332,18 +332,20 @@ compute_singles=.True.
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
!DIR$ UNROLL(8)
!DIR$ LOOP COUNT avg(50000)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
buffer_lrow(j) = lrow
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, buffer_lrow(j)) ! hot spot
enddo
j = j-1
call get_all_spin_singles_$N_int( &
@ -789,7 +791,7 @@ compute_singles=.True.
end do
!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx, utl)
deallocate(buffer, singles_a, singles_b, doubles, idx, buffer_lrow, utl)
!$OMP END PARALLEL
end

View File

@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
enddo
do j=1,min(N_det,N_states)
write(st,'(I4)') j
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
call write_double(6,CI_energy_dressed(j),'Energy dressed of state '//trim(st))
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
enddo
@ -38,6 +38,8 @@ END_PROVIDER
double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
logical :: converged
logical :: do_csf
PROVIDE threshold_davidson nthreads_davidson
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
@ -53,6 +55,8 @@ END_PROVIDER
enddo
enddo
do_csf = s2_eig .and. only_expected_s2 .and. csf_based
if (diag_algorithm == "Davidson") then
do j=1,min(N_states,N_det)
@ -60,14 +64,78 @@ END_PROVIDER
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
logical :: converged
converged = .False.
if (do_csf) then
call davidson_diag_H_csf(psi_det,CI_eigenvectors_dressed, &
size(CI_eigenvectors_dressed,1),CI_electronic_energy_dressed, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
else
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
endif
integer :: N_states_diag_save
N_states_diag_save = N_states_diag
do while (.not.converged)
double precision, allocatable :: CI_electronic_energy_tmp (:)
double precision, allocatable :: CI_eigenvectors_tmp (:,:)
double precision, allocatable :: CI_s2_tmp (:)
N_states_diag *= 2
TOUCH N_states_diag
if (do_csf) then
allocate (CI_electronic_energy_tmp (N_states_diag) )
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
call davidson_diag_H_csf(psi_det,CI_eigenvectors_tmp, &
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
deallocate (CI_electronic_energy_tmp)
deallocate (CI_eigenvectors_tmp)
else
allocate (CI_electronic_energy_tmp (N_states_diag) )
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
allocate (CI_s2_tmp (N_states_diag) )
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
CI_s2_tmp(1:N_states_diag_save) = CI_eigenvectors_s2_dressed(1:N_states_diag_save)
call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, &
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
CI_eigenvectors_s2_dressed(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save)
deallocate (CI_electronic_energy_tmp)
deallocate (CI_eigenvectors_tmp)
deallocate (CI_s2_tmp)
endif
enddo
if (N_states_diag > N_states_diag_save) then
N_states_diag = N_states_diag_save
TOUCH N_states_diag
endif
else if (diag_algorithm == "Lapack") then
print *, 'Diagonalization of H using Lapack'
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))

View File

@ -42,7 +42,7 @@ default: 2
[weight_selection]
type: integer
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and rPT2 matching 8: input state-average multiplied by rPT2 matching 9: input state-average multiplied by variance matching
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: PT2 matching, 3: variance matching, 4: variance and PT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and PT2 matching 8: input state-average multiplied by PT2 matching 9: input state-average multiplied by variance matching
interface: ezfio,provider,ocaml
default: 1
@ -136,3 +136,8 @@ doc: If |true|, discard any Slater determinants with an interaction smaller than
interface: ezfio,provider,ocaml
default: False
[save_threshold]
type: Threshold
doc: Cut-off to apply to the CI coefficients when the wave function is stored
interface: ezfio,provider,ocaml
default: 1.e-14

View File

@ -268,6 +268,44 @@ subroutine set_natural_mos
soft_touch mo_occ
end
subroutine save_natural_mos_canon_label
implicit none
BEGIN_DOC
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
! the |MO| basis
END_DOC
call set_natural_mos_canon_label
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
call orthonormalize_mos
call save_mos
end
subroutine set_natural_mos_canon_label
implicit none
BEGIN_DOC
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
! in the |MO| basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:)
label = "Canonical"
integer :: i,j,iorb,jorb
do i = 1, n_virt_orb
iorb = list_virt(i)
do j = 1, n_core_inact_act_orb
jorb = list_core_inact_act(j)
enddo
enddo
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
soft_touch mo_occ
end
subroutine set_natorb_no_ov_rot
implicit none
BEGIN_DOC
@ -330,12 +368,12 @@ BEGIN_PROVIDER [ double precision, c0_weight, (N_states) ]
c = maxval(psi_coef(:,i) * psi_coef(:,i))
c0_weight(i) = 1.d0/(c+1.d-20)
enddo
c = 1.d0/minval(c0_weight(:))
c = 1.d0/sum(c0_weight(:))
do i=1,N_states
c0_weight(i) = c0_weight(i) * c
enddo
else
c0_weight = 1.d0
c0_weight(:) = 1.d0
endif
END_PROVIDER
@ -352,7 +390,7 @@ BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
if (weight_one_e_dm == 0) then
state_average_weight(:) = c0_weight(:)
else if (weight_one_e_dm == 1) then
state_average_weight(:) = 1./N_states
state_average_weight(:) = 1.d0/N_states
else
call ezfio_has_determinants_state_average_weight(exists)
if (exists) then

View File

@ -77,6 +77,9 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
END_DOC
PROVIDE ezfio_filename
logical :: exists
psi_det_size = 1
PROVIDE mpi_master
if (read_wf) then
if (mpi_master) then
call ezfio_has_determinants_n_det(exists)
if (exists) then
@ -84,7 +87,6 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
else
psi_det_size = 1
endif
psi_det_size = max(psi_det_size,100000)
call write_int(6,psi_det_size,'Dimension of the psi arrays')
endif
IRP_IF MPI_DEBUG
@ -99,7 +101,7 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
stop 'Unable to read psi_det_size with MPI'
endif
IRP_ENDIF
endif
END_PROVIDER

View File

@ -9,7 +9,7 @@
double precision :: weight, r(3)
double precision :: cpu0,cpu1,nuclei_part_z,nuclei_part_y,nuclei_part_x
call cpu_time(cpu0)
! call cpu_time(cpu0)
z_dipole_moment = 0.d0
y_dipole_moment = 0.d0
x_dipole_moment = 0.d0
@ -26,10 +26,10 @@
enddo
enddo
print*,'electron part for z_dipole = ',z_dipole_moment
print*,'electron part for y_dipole = ',y_dipole_moment
print*,'electron part for x_dipole = ',x_dipole_moment
! print*,'electron part for z_dipole = ',z_dipole_moment
! print*,'electron part for y_dipole = ',y_dipole_moment
! print*,'electron part for x_dipole = ',x_dipole_moment
!
nuclei_part_z = 0.d0
nuclei_part_y = 0.d0
nuclei_part_x = 0.d0
@ -38,28 +38,39 @@
nuclei_part_y += nucl_charge(i) * nucl_coord(i,2)
nuclei_part_x += nucl_charge(i) * nucl_coord(i,1)
enddo
print*,'nuclei part for z_dipole = ',nuclei_part_z
print*,'nuclei part for y_dipole = ',nuclei_part_y
print*,'nuclei part for x_dipole = ',nuclei_part_x
! print*,'nuclei part for z_dipole = ',nuclei_part_z
! print*,'nuclei part for y_dipole = ',nuclei_part_y
! print*,'nuclei part for x_dipole = ',nuclei_part_x
!
do istate = 1, N_states
z_dipole_moment(istate) += nuclei_part_z
y_dipole_moment(istate) += nuclei_part_y
x_dipole_moment(istate) += nuclei_part_x
enddo
call cpu_time(cpu1)
print*,'Time to provide the dipole moment :',cpu1-cpu0
! call cpu_time(cpu1)
! print*,'Time to provide the dipole moment :',cpu1-cpu0
END_PROVIDER
subroutine print_z_dipole_moment_only
subroutine print_dipole_moments
implicit none
integer :: i
print*, ''
print*, ''
print*, '****************************************'
print*, 'z_dipole_moment = ',z_dipole_moment
write(*,'(A10)',advance='no') ' State : '
do i = 1,N_states
write(*,'(i16)',advance='no') i
end do
write(*,*) ''
write(*,'(A17,100(1pE16.8))') 'x_dipole_moment = ',x_dipole_moment
write(*,'(A17,100(1pE16.8))') 'y_dipole_moment = ',y_dipole_moment
write(*,'(A17,100(1pE16.8))') 'z_dipole_moment = ',z_dipole_moment
!print*, 'x_dipole_moment = ',x_dipole_moment
!print*, 'y_dipole_moment = ',y_dipole_moment
!print*, 'z_dipole_moment = ',z_dipole_moment
print*, '****************************************'
end

View File

@ -322,10 +322,7 @@ subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
enddo
do i=1,n_selected
do j=1,N_int
H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i)
H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i)
enddo
H_apply_buffer(iproc)%det(:,:,i+H_apply_buffer(iproc)%N_det) = det_buffer(:,:,i)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num)
enddo

View File

@ -103,13 +103,17 @@ BEGIN_PROVIDER [ double precision, expected_s2]
END_PROVIDER
BEGIN_PROVIDER [ double precision, s2_values, (N_states) ]
BEGIN_PROVIDER [ double precision, s2_values, (N_states) ]
&BEGIN_PROVIDER [ double precision, s_values, (N_states) ]
implicit none
BEGIN_DOC
! array of the averaged values of the S^2 operator on the various states
END_DOC
integer :: i
call u_0_S2_u_0(s2_values,psi_coef,n_det,psi_det,N_int,N_states,psi_det_size)
do i = 1, N_states
s_values(i) = 0.5d0 *(-1.d0 + dsqrt(1.d0 + 4 * s2_values(i)))
enddo
END_PROVIDER

View File

@ -438,7 +438,7 @@ subroutine bitstring_to_list_ab( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
! Gives the indices(+1) of the bits set to 1 in the bit string
! For alpha/beta determinants.
END_DOC
integer, intent(in) :: Nint
@ -472,6 +472,35 @@ subroutine bitstring_to_list_ab( string, list, n_elements, Nint)
end
!subroutine bitstring_to_list( string, list, n_elements, Nint)
! use bitmasks
! implicit none
! BEGIN_DOC
! ! Gives the indices(+1) of the bits set to 1 in the bit string
! END_DOC
! integer, intent(in) :: Nint
! integer(bit_kind), intent(in) :: string(Nint)
! integer, intent(out) :: list(Nint*bit_kind_size)
! integer, intent(out) :: n_elements
!
! integer :: i, j, ishift
! integer(bit_kind) :: l
!
! n_elements = 0
! ishift = 1
! do i=1,Nint
! l = string(i)
! do while (l /= 0_bit_kind)
! j = trailz(l)
! n_elements = n_elements + 1
! l = ibclr(l,j)
! list(n_elements) = ishift+j
! enddo
! ishift = ishift + bit_kind_size
! enddo
!
!end
subroutine i_H_j_s2(key_i,key_j,Nint,hij,s2)
use bitmasks

View File

@ -585,7 +585,7 @@ END_PROVIDER
enddo
!$OMP ENDDO
!$OMP END PARALLEL
call i8radix_sort(to_sort, psi_bilinear_matrix_transp_order, N_det,-1)
call i8sort(to_sort, psi_bilinear_matrix_transp_order, N_det)
call iset_order(psi_bilinear_matrix_transp_rows,psi_bilinear_matrix_transp_order,N_det)
call iset_order(psi_bilinear_matrix_transp_columns,psi_bilinear_matrix_transp_order,N_det)
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(l)

View File

@ -8,6 +8,7 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
double precision :: hij
integer :: degree(N_det),idx(0:N_det)
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
print*,'Providing the H_matrix_all_dets ...'
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hij,degree,idx,k) &
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets)
do i =1,N_det
@ -18,6 +19,26 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
enddo
enddo
!$OMP END PARALLEL DO
print*,'H_matrix_all_dets done '
END_PROVIDER
BEGIN_PROVIDER [ double precision, H_matrix_diag_all_dets,(N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! |H| matrix on the basis of the Slater determinants defined by psi_det
END_DOC
integer :: i
double precision :: hij
integer :: degree(N_det)
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,hij,degree) &
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_diag_all_dets)
do i =1,N_det
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
H_matrix_diag_all_dets(i) = hij
enddo
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -16,3 +16,8 @@ doc: Percentage of HF exchange in the DFT model
interface: ezfio,provider,ocaml
default: 0.
[mu_dft_type]
type: character*(32)
doc: type of mu(r) for rsdft [ cst ]
interface: ezfio, provider, ocaml
default: cst

View File

@ -6,3 +6,4 @@ ao_one_e_ints
ao_two_e_ints
mo_two_e_erf_ints
ao_two_e_erf_ints
mu_of_r

View File

@ -8,3 +8,73 @@ BEGIN_PROVIDER [double precision, mu_erf_dft]
mu_erf_dft = mu_erf
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_of_r_dft, (n_points_final_grid)]
implicit none
integer :: i
if(mu_dft_type == "Read")then
call ezfio_get_mu_of_r_mu_of_r_disk(mu_of_r_dft)
else
do i = 1, n_points_final_grid
if(mu_dft_type == "cst")then
mu_of_r_dft(i) = mu_erf_dft
else if(mu_dft_type == "hf")then
mu_of_r_dft(i) = mu_of_r_hf(i)
else if(mu_dft_type == "rsc")then
mu_of_r_dft(i) = mu_rsc_of_r(i)
else if(mu_dft_type == "grad_rho")then
mu_of_r_dft(i) = mu_grad_rho(i)
else
print*,'mu_dft_type is not of good type = ',mu_dft_type
print*,'it must be of type Read, cst, hf, rsc'
print*,'Stopping ...'
stop
endif
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_rsc_of_r, (n_points_final_grid)]
implicit none
integer :: i
double precision :: mu_rs_c,rho,r(3), dm_a, dm_b
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
rho = dm_a + dm_b
mu_rsc_of_r(i) = mu_rs_c(rho)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_grad_rho, (n_points_final_grid)]
implicit none
integer :: i
double precision :: mu_grad_rho_func, r(3)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
mu_grad_rho(i) = mu_grad_rho_func(r)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_of_r_dft_average]
implicit none
integer :: i
double precision :: mu_rs_c,rho,r(3), dm_a, dm_b
mu_of_r_dft_average = 0.d0
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
rho = dm_a + dm_b
if(mu_of_r_dft(i).gt.1.d+3)cycle
mu_of_r_dft_average += rho * mu_of_r_dft(i) * final_weight_at_r_vector(i)
enddo
mu_of_r_dft_average = mu_of_r_dft_average / dble(elec_alpha_num + elec_beta_num)
print*,'mu_of_r_dft_average = ',mu_of_r_dft_average
END_PROVIDER

View File

@ -0,0 +1,37 @@
double precision function mu_rs_c(rho)
implicit none
double precision, intent(in) :: rho
include 'constants.include.F'
double precision :: cst_rs,alpha_rs,rs
cst_rs = (4.d0 * dacos(-1.d0)/3.d0)**(-1.d0/3.d0)
alpha_rs = 2.d0 * dsqrt((9.d0 * dacos(-1.d0)/4.d0)**(-1.d0/3.d0)) / sqpi
rs = cst_rs * rho**(-1.d0/3.d0)
mu_rs_c = alpha_rs/dsqrt(rs)
end
double precision function mu_grad_rho_func(r)
implicit none
double precision , intent(in) :: r(3)
integer :: m
double precision :: rho, dm_a, dm_b, grad_dm_a(3), grad_dm_b(3)
double precision :: eta, grad_rho(3), grad_sqr
eta = mu_erf
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
rho = dm_a + dm_b
do m = 1,3
grad_rho(m) = grad_dm_a(m) + grad_dm_b(m)
enddo
grad_sqr=0.d0
do m = 1,3
grad_sqr=grad_sqr+grad_rho(m)*grad_rho(m)
enddo
grad_sqr = dsqrt(grad_sqr)
if (rho<1.d-12) then
mu_grad_rho_func = 1.d-10
else
mu_grad_rho_func = eta * grad_sqr / rho
endif
end

View File

@ -91,7 +91,19 @@
enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_lapl_in_r_array, (ao_num,n_points_final_grid,3)]
BEGIN_PROVIDER [double precision, aos_lapl_in_r_array_transp, (ao_num, n_points_final_grid,3)]
implicit none
integer :: i,j,m
do i = 1, n_points_final_grid
do j = 1, ao_num
do m = 1, 3
aos_lapl_in_r_array_transp(j,i,m) = aos_lapl_in_r_array(m,j,i)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, aos_lapl_in_r_array, (3,ao_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! aos_lapl_in_r_array(i,j,k) = value of the kth component of the laplacian of jth ao on the ith grid point
@ -100,20 +112,20 @@
END_DOC
integer :: i,j,m
double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(ao_num,3)
double precision :: aos_lapl_array(ao_num,3)
double precision :: aos_grad_array(3,ao_num)
double precision :: aos_lapl_array(3,ao_num)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,r,aos_array,aos_grad_array,aos_lapl_array,j,m) &
!$OMP SHARED(aos_lapl_in_r_array,n_points_final_grid,ao_num,final_grid_points)
do m = 1, 3
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,aos_grad_array,aos_lapl_array)
do j = 1, ao_num
aos_lapl_in_r_array(j,i,m) = aos_lapl_array(j,m)
do m = 1, 3
aos_lapl_in_r_array(m,j,i) = aos_lapl_array(m,j)
enddo
enddo
enddo

View File

@ -0,0 +1,39 @@
BEGIN_PROVIDER [ double precision, mo_grad_ints, (mo_num, mo_num,3)]
implicit none
BEGIN_DOC
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
END_DOC
integer :: i,j,ipoint,m
double precision :: weight
mo_grad_ints = 0.d0
do m = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
do j = 1, mo_num
do i = 1, mo_num
mo_grad_ints(i,j,m) += mos_grad_in_r_array(j,ipoint,m) * mos_in_r_array(i,ipoint) * weight
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_grad_ints_transp, (3,mo_num, mo_num)]
implicit none
BEGIN_DOC
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
END_DOC
integer :: i,j,ipoint,m
double precision :: weight
do m = 1, 3
do j = 1, mo_num
do i = 1, mo_num
mo_grad_ints_transp(m,i,j) = mo_grad_ints(i,j,m)
enddo
enddo
enddo
END_PROVIDER

View File

@ -138,7 +138,7 @@
integer :: m
mos_lapl_in_r_array = 0.d0
do m=1,3
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_lapl_in_r_array(1,1,m),ao_num,0.d0,mos_lapl_in_r_array(1,1,m),mo_num)
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_lapl_in_r_array_transp(1,1,m),ao_num,0.d0,mos_lapl_in_r_array(1,1,m),mo_num)
enddo
END_PROVIDER

View File

@ -1179,7 +1179,7 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
! Gives the indices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)

View File

@ -72,7 +72,7 @@ subroutine run_dress_slave(thread,iproce,energy)
provide psi_energy
ending = dress_N_cp+1
ntask_tbd = 0
call omp_set_max_active_levels(8)
call set_multiple_levels_omp(.True.)
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(interesting, breve_delta_m, task_id) &
@ -84,7 +84,7 @@ subroutine run_dress_slave(thread,iproce,energy)
zmq_socket_push = new_zmq_push_socket(thread)
integer, external :: connect_to_taskserver
!$OMP CRITICAL
call omp_set_max_active_levels(1)
call set_multiple_levels_omp(.False.)
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
print *, irp_here, ': Unable to connect to task server'
stop -1
@ -296,7 +296,7 @@ subroutine run_dress_slave(thread,iproce,energy)
!$OMP END CRITICAL
!$OMP END PARALLEL
call omp_set_max_active_levels(1)
call set_multiple_levels_omp(.False.)
! do i=0,dress_N_cp+1
! call omp_destroy_lock(lck_sto(i))
! end do

View File

@ -25,7 +25,7 @@ subroutine write_time(iunit)
ct = ct - output_cpu_time_0
call wall_time(wt)
wt = wt - output_wall_time_0
write(6,'(A,F14.6,A,F14.6,A)') &
write(6,'(A,F14.2,A,F14.2,A)') &
'.. >>>>> [ WALL TIME: ', wt, ' s ] [ CPU TIME: ', ct, ' s ] <<<<< ..'
write(6,*)
end

View File

@ -59,43 +59,43 @@ function run_stoch() {
@test "HCO" { # 12.2868s
qp set_file hco.ezfio
run -113.389297812482 6.e-4 100000
run -113.393356604085 1.e-3 100000
}
@test "H2O2" { # 12.9214s
qp set_file h2o2.ezfio
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
run -151.00467 1.e-4 100000
run -151.005848404095 1.e-3 100000
}
@test "HBO" { # 13.3144s
[[ -n $TRAVIS ]] && skip
qp set_file hbo.ezfio
run -100.212560384678 1.e-3 100000
run -100.214099486337 1.e-3 100000
}
@test "H2O" { # 11.3727s
[[ -n $TRAVIS ]] && skip
qp set_file h2o.ezfio
run -76.2361605151999 3.e-4 100000
run -76.2361605151999 5.e-4 100000
}
@test "ClO" { # 13.3755s
[[ -n $TRAVIS ]] && skip
qp set_file clo.ezfio
run -534.545616787223 3.e-4 100000
run -534.546453546852 1.e-3 100000
}
@test "SO" { # 13.4952s
[[ -n $TRAVIS ]] && skip
qp set_file so.ezfio
run -26.0096209515081 1.e-3 100000
run -26.0176563764039 1.e-3 100000
}
@test "H2S" { # 13.6745s
[[ -n $TRAVIS ]] && skip
qp set_file h2s.ezfio
run -398.859168655255 3.e-4 100000
run -398.859577605891 5.e-4 100000
}
@test "OH" { # 13.865s
@ -113,13 +113,13 @@ function run_stoch() {
@test "H3COH" { # 14.7299s
[[ -n $TRAVIS ]] && skip
qp set_file h3coh.ezfio
run -115.205191406072 3.e-4 100000
run -115.205632960026 1.e-3 100000
}
@test "SiH3" { # 15.99s
[[ -n $TRAVIS ]] && skip
qp set_file sih3.ezfio
run -5.57241217753818 3.e-4 100000
run -5.57241217753818 5.e-4 100000
}
@test "CH4" { # 16.1612s
@ -132,28 +132,28 @@ function run_stoch() {
@test "ClF" { # 16.8864s
[[ -n $TRAVIS ]] && skip
qp set_file clf.ezfio
run -559.169313755572 3.e-4 100000
run -559.169748890031 1.5e-3 100000
}
@test "SO2" { # 17.5645s
[[ -n $TRAVIS ]] && skip
qp set_file so2.ezfio
qp set_mo_class --core="[1-8]" --act="[9-87]"
run -41.5746738713298 3.e-4 100000
run -41.5746738713298 1.5e-3 100000
}
@test "C2H2" { # 17.6827s
[[ -n $TRAVIS ]] && skip
qp set_file c2h2.ezfio
qp set_mo_class --act="[1-30]" --del="[31-36]"
run -12.3685464085969 3.e-4 100000
run -12.3685464085969 2.e-3 100000
}
@test "N2" { # 18.0198s
[[ -n $TRAVIS ]] && skip
qp set_file n2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-60]"
run -109.28681540699360 3.e-4 100000
run -109.287917088107 1.5e-3 100000
}
@test "N2H4" { # 18.5006s
@ -167,7 +167,7 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file co2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-30]" --del="[31-42]"
run -187.968547952413 3.e-4 100000
run -187.970184372047 1.5e-3 100000
}
@ -182,6 +182,6 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file hcn.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-55]"
run -93.0771143355433 3.e-4 100000
run -93.0777619629755 1.e-3 100000
}

View File

@ -21,7 +21,9 @@
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
call ex_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
double precision :: mu_local
mu_local = mu_of_r_dft(i)
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
energy_x_sr_lda(istate) += weight * e_x
enddo
enddo
@ -48,7 +50,9 @@
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
call ec_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
double precision :: mu_local
mu_local = mu_of_r_dft(i)
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
energy_c_sr_lda(istate) += weight * e_c
enddo
enddo
@ -122,8 +126,10 @@ END_PROVIDER
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
call ec_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
double precision :: mu_local
mu_local = mu_of_r_dft(i)
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num
aos_sr_vc_alpha_lda_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight
aos_sr_vc_beta_lda_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight
@ -147,8 +153,6 @@ END_PROVIDER
double precision :: mu,weight
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
double precision, allocatable :: rhoa(:),rhob(:)
double precision :: mu_local
mu_local = mu_erf_dft
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
@ -158,6 +162,8 @@ END_PROVIDER
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
double precision :: mu_local
mu_local = mu_of_r_dft(i)
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num

View File

@ -36,8 +36,10 @@
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
double precision :: mu_local
mu_local = mu_of_r_dft(i)
! inputs
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
energy_x_sr_pbe(istate) += ex * weight
@ -135,8 +137,10 @@ END_PROVIDER
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
double precision :: mu_local
mu_local = mu_of_r_dft(i)
! inputs
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a *= weight
@ -292,8 +296,10 @@ END_PROVIDER
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
double precision :: mu_local
mu_local = mu_of_r_dft(i)
! inputs
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a *= weight

View File

@ -98,7 +98,7 @@ subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s
enddo
endif
call print_energy_components()
! call print_energy_components()
end subroutine

View File

@ -17,7 +17,7 @@ program rs_ks_scf
print*, '**************************'
print*, 'mu_erf_dft = ',mu_erf_dft
print*, '**************************'
call check_coherence_functional
! call check_coherence_functional
call create_guess
call orthonormalize_mos
call run

View File

@ -1,6 +1,9 @@
subroutine give_all_mos_at_r(r,mos_array)
implicit none
BEGIN_DOC
! mos_array(i) = ith MO function evaluated at "r"
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out) :: mos_array(mo_num)
double precision :: aos_array(ao_num)

View File

@ -7,7 +7,7 @@ subroutine hcore_guess
label = 'Guess'
call mo_as_eigvectors_of_mo_matrix(mo_one_e_integrals, &
size(mo_one_e_integrals,1), &
size(mo_one_e_integrals,2),label,1,.false.)
size(mo_one_e_integrals,2),label,1,.true.)
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-12 )
call save_mos
TOUCH mo_coef mo_label

View File

@ -302,21 +302,21 @@ end
integer(key_kind) :: idx
double precision :: tmp
icount = 1 ! Avoid division by zero
do j=1,mo_num
do i=1,j-1
call two_e_integrals_index(i,j,j,i,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_map,idx,tmp)
banned_excitation(i,j) = dabs(tmp) < 1.d-14
banned_excitation(j,i) = banned_excitation(i,j)
if (banned_excitation(i,j)) icount = icount+2
enddo
enddo
use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
if (use_banned_excitation) then
print *, 'Using sparsity of exchange integrals'
endif
!icount = 1 ! Avoid division by zero
!do j=1,mo_num
! do i=1,j-1
! call two_e_integrals_index(i,j,j,i,idx)
! !DIR$ FORCEINLINE
! call map_get(mo_integrals_map,idx,tmp)
! banned_excitation(i,j) = dabs(tmp) < 1.d-14
! banned_excitation(j,i) = banned_excitation(i,j)
! if (banned_excitation(i,j)) icount = icount+2
! enddo
!enddo
!use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
!if (use_banned_excitation) then
! print *, 'Using sparsity of exchange integrals'
!endif
END_PROVIDER

View File

@ -10,7 +10,7 @@ type:integer
interface: ezfio,provider
[pseudo_n_k]
doc: Number of gaussians in the local component
doc: Powers of r - 2 in the local component
type: integer
interface: ezfio,provider
size: (nuclei.nucl_num,pseudo.pseudo_klocmax)
@ -38,7 +38,7 @@ type:integer
interface: ezfio,provider
[pseudo_n_kl]
doc: Number of functions in the non-local component
doc: Powers of r - 2 in the non-local component
type: integer
interface: ezfio,provider
size: (nuclei.nucl_num,pseudo.pseudo_kmax,0:pseudo.pseudo_lmax)

View File

@ -2,3 +2,4 @@ fci
mo_two_e_erf_ints
aux_quantities
hartree_fock
two_body_rdm

View File

@ -52,8 +52,8 @@ program molden
l += 1
if (l > ao_num) exit
enddo
write(i_unit_output,*)''
enddo
write(i_unit_output,*)''
enddo

Some files were not shown because too many files have changed in this diff Show More