mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 04:16:14 +01:00
added providers for the totally symmetrized integrals
This commit is contained in:
parent
9eba8d692d
commit
a5ded6cd59
@ -113,7 +113,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
double precision :: three_e_diag_parrallel_spin, direct_int, exchange_int
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
|
||||
if (iorb < 1) then
|
||||
@ -163,7 +163,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
jj = occ(j,ispin)
|
||||
do m = j+1, na
|
||||
mm = occ(m,ispin)
|
||||
hthree += three_e_diag_parrallel_spin(mm,jj,iorb)
|
||||
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
||||
enddo
|
||||
enddo
|
||||
!! same-spin/oposite-spin
|
||||
@ -210,7 +210,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hmono,htwoe,hthree
|
||||
|
||||
double precision :: direct_int, exchange_int, three_e_diag_parrallel_spin
|
||||
double precision :: direct_int, exchange_int
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
@ -250,7 +250,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
jj = occ(j,ispin)
|
||||
do m = j+1, na
|
||||
mm = occ(m,ispin)
|
||||
hthree -= three_e_diag_parrallel_spin(mm,jj,iorb)
|
||||
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
||||
enddo
|
||||
enddo
|
||||
!! same-spin/oposite-spin
|
||||
|
@ -84,7 +84,7 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
|
||||
integer(bit_kind) :: det_tmp(N_int,2)
|
||||
integer :: ipart, ihole
|
||||
double precision :: direct_int, exchange_int, three_e_double_parrallel_spin
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
nexc(1) = 0
|
||||
nexc(2) = 0
|
||||
@ -118,9 +118,9 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
ispin = 1 ! i==alpha ==> pure same spin terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
ipart=occ_particle(i,ispin)
|
||||
hthree += three_e_double_parrallel_spin(ipart,p2,h2,p1,h1)
|
||||
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
|
||||
ihole=occ_hole(i,ispin)
|
||||
hthree -= three_e_double_parrallel_spin(ihole,p2,h2,p1,h1)
|
||||
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
|
||||
enddo
|
||||
ispin = 2 ! i==beta ==> alpha/alpha/beta terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
@ -145,9 +145,9 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
ispin = 2 ! i==beta ==> pure same spin terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
ipart=occ_particle(i,ispin)
|
||||
hthree += three_e_double_parrallel_spin(ipart,p2,h2,p1,h1)
|
||||
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
|
||||
ihole=occ_hole(i,ispin)
|
||||
hthree -= three_e_double_parrallel_spin(ihole,p2,h2,p1,h1)
|
||||
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
|
||||
enddo
|
||||
ispin = 1 ! i==alpha==> beta/beta/alpha terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
@ -305,13 +305,12 @@ subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
double precision, intent(out) :: contrib
|
||||
integer :: mm,m
|
||||
double precision :: direct_int, exchange_int
|
||||
double precision :: three_e_double_parrallel_spin
|
||||
!! h1,p1 == alpha
|
||||
!! h2,p2 == alpha
|
||||
contrib = 0.d0
|
||||
do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution
|
||||
m = occ(mm,1)
|
||||
contrib += three_e_double_parrallel_spin(m,p2,h2,p1,h1)
|
||||
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
|
||||
enddo
|
||||
|
||||
do mm = 1, Ne(2) !! beta
|
||||
@ -371,13 +370,12 @@ subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
double precision, intent(out) :: contrib
|
||||
integer :: mm,m
|
||||
double precision :: direct_int, exchange_int
|
||||
double precision :: three_e_double_parrallel_spin
|
||||
!! h1,p1 == beta
|
||||
!! h2,p2 == beta
|
||||
contrib = 0.d0
|
||||
do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution
|
||||
m = occ(mm,1)
|
||||
contrib += three_e_double_parrallel_spin(m,p2,h2,p1,h1)
|
||||
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
|
||||
enddo
|
||||
|
||||
do mm = 1, Ne(1) !! alpha
|
||||
|
@ -196,7 +196,7 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,j
|
||||
double precision :: three_e_single_parrallel_spin, direct_int, exchange_int
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
|
||||
if (iorb < 1) then
|
||||
@ -236,7 +236,7 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
|
||||
!! jj = ispin = ispin_fock >> pure parallel spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
hthree += three_e_single_parrallel_spin(jj,iorb,p_fock,h_fock)
|
||||
hthree += three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
|
||||
enddo
|
||||
!! spin of jj == other spin than ispin AND ispin_fock
|
||||
!! exchange between the iorb and (h_fock, p_fock)
|
||||
@ -287,7 +287,7 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hthree
|
||||
|
||||
double precision :: direct_int, exchange_int, three_e_single_parrallel_spin
|
||||
double precision :: direct_int, exchange_int
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
@ -315,7 +315,7 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
|
||||
!! jj = ispin = ispin_fock >> pure parallel spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
hthree -= three_e_single_parrallel_spin(jj,iorb,p_fock,h_fock)
|
||||
hthree -= three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
|
||||
enddo
|
||||
!! spin of jj == other spin than ispin AND ispin_fock
|
||||
!! exchange between the iorb and (h_fock, p_fock)
|
||||
|
140
src/tc_bi_ortho/symmetrized_3_e_int_prov.irp.f
Normal file
140
src/tc_bi_ortho/symmetrized_3_e_int_prov.irp.f
Normal file
@ -0,0 +1,140 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
|
||||
!
|
||||
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
|
||||
|
||||
three_e_diag_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
|
||||
|
||||
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
|
||||
|
||||
three_e_single_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
|
||||
|
||||
integral = three_e_single_parrallel_spin(1,1,1,1)
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
|
||||
|
||||
three_e_double_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
integral = three_e_double_parrallel_spin(1,1,1,1,1)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -57,7 +57,7 @@ subroutine test_slater_tc_opt
|
||||
! print*,hthree,hnewthree,dabs(hthree-hnewthree)
|
||||
stop
|
||||
endif
|
||||
print*,htot,hnewtot,dabs(htot-hnewtot)
|
||||
! print*,htot,hnewtot,dabs(htot-hnewtot)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
Loading…
Reference in New Issue
Block a user