mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
This commit is contained in:
commit
a4db5a87e0
@ -83,6 +83,7 @@ def main(arguments):
|
||||
elif charge <= 118: n_frozen += 43
|
||||
|
||||
elif arguments["--small"]:
|
||||
for charge in ezfio.nuclei_nucl_charge:
|
||||
if charge <= 4: pass
|
||||
elif charge <= 18: n_frozen += 1
|
||||
elif charge <= 36: n_frozen += 5
|
||||
|
@ -46,6 +46,7 @@ The following people have contributed to this project (by alphabetical order):
|
||||
* Nicolas Renon
|
||||
* Lorenzo Tenti
|
||||
* Julien Toulouse
|
||||
* Diata Traoré
|
||||
* Mikaël Véril
|
||||
|
||||
|
||||
|
@ -39,9 +39,10 @@
|
||||
programmers_guide/programming
|
||||
programmers_guide/ezfio
|
||||
programmers_guide/plugins
|
||||
programmers_guide/plugins_tuto_intro
|
||||
programmers_guide/plugins_tuto_I
|
||||
programmers_guide/new_ks
|
||||
programmers_guide/index
|
||||
programmers_guide/plugins
|
||||
|
||||
|
||||
.. toctree::
|
||||
@ -52,5 +53,6 @@
|
||||
appendix/benchmarks
|
||||
appendix/license
|
||||
appendix/contributors
|
||||
appendix/references
|
||||
|
||||
|
||||
|
1
docs/source/programmers_guide/plugins_tuto_I.rst
Normal file
1
docs/source/programmers_guide/plugins_tuto_I.rst
Normal file
@ -0,0 +1 @@
|
||||
.. include:: ../../../plugins/local/tuto_plugins/tuto_I/tuto_I.rst
|
1
docs/source/programmers_guide/plugins_tuto_intro.rst
Normal file
1
docs/source/programmers_guide/plugins_tuto_intro.rst
Normal file
@ -0,0 +1 @@
|
||||
.. include:: ../../../plugins/README.rst
|
2
external/irpf90
vendored
2
external/irpf90
vendored
@ -1 +1 @@
|
||||
Subproject commit ba1a2837aa61cb8f9892860cec544d7c6659badd
|
||||
Subproject commit 4ab1b175fc7ed0d96c1912f13dc53579b24157a6
|
131
plugins/README.rst
Normal file
131
plugins/README.rst
Normal file
@ -0,0 +1,131 @@
|
||||
==============================
|
||||
Tutorial for creating a plugin
|
||||
==============================
|
||||
|
||||
Introduction: what is a plugin, and what tutorial will be about ?
|
||||
=================================================================
|
||||
|
||||
The |QP| is split into two kinds of routines/global variables (i.e. *providers*):
|
||||
1) the **core modules** locatedin qp2/src/, which contains all the bulk of a quantum chemistry software (integrals, matrix elements between Slater determinants, linear algebra routines, DFT stuffs etc..)
|
||||
2) the **plugins** which are external routines/*providers* connected to the qp2/src/ routines/*providers*.
|
||||
|
||||
More precisely, a **plugin** of the |QP| is a directory where you can create routines,
|
||||
providers and executables that use all the global variables/functions/routines already created
|
||||
in the modules of qp2/src or in other plugins.
|
||||
|
||||
Instead of giving a theoretical lecture on what is a plugin,
|
||||
we will go through a series of examples that allow you to do the following thing:
|
||||
|
||||
1) print out **one- and two-electron integrals** on the AO/MO basis, creates two providers which manipulate these objects, print out these providers,
|
||||
|
||||
2) browse the **Slater determinants stored** in the |EZFIO| wave function and compute their matrix elements,
|
||||
|
||||
3) build the **Hamiltonian matrix** and **diagonalize** it either with **Lapack or Davidson**,
|
||||
|
||||
4) print out the **one- and two-electron rdms**,
|
||||
|
||||
5) obtain the **AOs** and **MOs** on the **DFT grid**, together with the **density**,
|
||||
|
||||
How the tutorial will be done
|
||||
-----------------------------
|
||||
|
||||
This tuto is as follows:
|
||||
|
||||
1) you **READ THIS FILE UNTIL THE END** in order to get the big picture and vocabulary,
|
||||
|
||||
2) you go to the directory :file:`qp2/plugins/tuto_plugins/` and you will find detailed tutorials for each of the 5 examples.
|
||||
|
||||
Creating a plugin: the basic
|
||||
----------------------------
|
||||
|
||||
The first thing to do is to be in the QPSH mode: you execute the qp2/bin/qpsh script that essentially loads all
|
||||
the environement variables and allows for the completion of command lines in bash (that is an AMAZING feature :)
|
||||
|
||||
Then, you need to known **where** you want to create your plugin, and what is the **name** of the plugin.
|
||||
|
||||
.. important::
|
||||
|
||||
The plugins are **NECESSARILY** located in qp2/plugins/, and from there you can create any structures of directories.
|
||||
|
||||
|
||||
Ex: If you want to create a plugin named "my_fancy_plugin" in the directory plugins/plugins_test/,
|
||||
this goes with the command
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp plugins create -n my_fancy_plugin -r plugins_test/
|
||||
|
||||
Then, to create the plugin of your dreams, the two questions you need to answer are the following:
|
||||
|
||||
1) What do I **need** to compute what I want, which means what are the **objects** that I need ?
|
||||
|
||||
There are two kind of objects:
|
||||
|
||||
+ the *routines/functions*:
|
||||
|
||||
Ex: Linear algebra routines, integration routines etc ...
|
||||
|
||||
+ the global variables which are called the *providers*:
|
||||
|
||||
Ex: one-electron integrals, Slater determinants, density matrices etc ...
|
||||
|
||||
2) **Where do I find** these objects ?
|
||||
|
||||
The objects (routines/functions/providers) are necessarily created in other *modules/plugins*.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The routine :c:func:`lapack_diagd` (which diagonalises a real hermitian matrix) is located in the file
|
||||
:file:`qp2/src/utils/linear_algebra.irp.f`
|
||||
therefore it "belongs" to the module :ref:`module_utils`
|
||||
|
||||
The routine :c:func:`ao_to_mo` (which converts a given matrix A from the AO basis to the MO basis) is located in the file
|
||||
:file:`qp2/src/mo_one_e_ints/ao_to_mo.irp.f`
|
||||
therefore it "belongs" to the module :ref:`module_mo_one_e_ints`
|
||||
|
||||
The provider :c:data:`ao_one_e_integrals` (which is the integrals of one-body part of H on the AO basis) is located in the file
|
||||
:file:`qp2/src/ao_one_e_ints/ao_one_e_ints.irp.f`
|
||||
therefore it belongs to the module :ref:`module_ao_one_e_ints`
|
||||
|
||||
The provider :c:data:`one_e_dm_mo_beta_average` (which is the state average beta density matrix on the MO basis) is located in the file
|
||||
:file:`qp2/src/determinants/density_matrix.irp.f`
|
||||
therefore it belongs to the module :ref:`module_determinants`
|
||||
|
||||
To import all the variables that you need, you just need to write the name of the plugins in the :file:`NEED` file .
|
||||
|
||||
To import all the variables/routines of the module :ref:`module_utils`, :ref:`module_determinants` and :ref:`module_mo_one_e_ints`, the :file:`NEED` file you will need is simply the following:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cat NEED
|
||||
|
||||
utils
|
||||
determinants
|
||||
mo_one_e_ints
|
||||
|
||||
|
||||
.. important::
|
||||
|
||||
There are **many** routines/providers in the core modules of QP.
|
||||
|
||||
Nevertheless, as everything is coded with the |IRPF90|, you can use the following amazing tools: :command:`irpman`
|
||||
|
||||
:command:`irpman` can be used in command line in bash to obtain all the info on a routine or variable !
|
||||
|
||||
|
||||
Example: execute the following command line :
|
||||
|
||||
.. code:: bash
|
||||
|
||||
irpman ao_one_e_integrals
|
||||
|
||||
Then all the information you need on :c:data:`ao_one_e_integrals` will appear on the screen.
|
||||
This includes
|
||||
|
||||
- **where** the provider is created, (*i.e.* the actual file where the provider is designed)
|
||||
- the **type** of the provider (*i.e.* a logical, integer etc ...)
|
||||
- the **dimension** if it is an array,
|
||||
- what other *providers* are **needed** to build this provider,
|
||||
- what other *providers* **need** this provider.
|
||||
|
||||
|
@ -960,7 +960,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
! endif
|
||||
e_pert(istate) = 0.25 * val / delta_E
|
||||
! e_pert(istate) = 0.5d0 * (tmp - delta_E)
|
||||
if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then
|
||||
if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
|
||||
coef(istate) = e_pert(istate) / psi_h_alpha
|
||||
else
|
||||
coef(istate) = alpha_h_psi / delta_E
|
||||
|
6
plugins/local/tuto_plugins/H2.xyz
Normal file
6
plugins/local/tuto_plugins/H2.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
2
|
||||
H2, equilibrium geometry
|
||||
H 0.0 0.0 0.
|
||||
H 0.0 0.0 0.74
|
||||
|
||||
|
4
plugins/local/tuto_plugins/n2.xyz
Normal file
4
plugins/local/tuto_plugins/n2.xyz
Normal file
@ -0,0 +1,4 @@
|
||||
2
|
||||
N2 Geo: Experiment Mult: 1 symmetry: 14
|
||||
N 0.0 0.0 0.5488
|
||||
N 0.0 0.0 -0.5488
|
20
plugins/local/tuto_plugins/tuto_I/print_one_e_h.irp.f
Normal file
20
plugins/local/tuto_plugins/tuto_I/print_one_e_h.irp.f
Normal file
@ -0,0 +1,20 @@
|
||||
program my_program_to_print_stuffs
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
print*,'AO integrals '
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
print*,j,i,ao_one_e_integrals(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*,'MO integrals '
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
print*,j,i,mo_one_e_integrals(j,i)
|
||||
enddo
|
||||
enddo
|
||||
end
|
24
plugins/local/tuto_plugins/tuto_I/print_traces_on_e.irp.f
Normal file
24
plugins/local/tuto_plugins/tuto_I/print_traces_on_e.irp.f
Normal file
@ -0,0 +1,24 @@
|
||||
program my_program
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This program is there essentially to show how one can use providers in programs
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
print*,'Trace on the AO basis '
|
||||
print*,trace_ao_one_e_ints
|
||||
print*,'Trace on the AO basis after projection on the MO basis'
|
||||
print*,trace_ao_one_e_ints_from_mo
|
||||
print*,'Trace of MO integrals '
|
||||
print*,trace_mo_one_e_ints
|
||||
print*,'ao_num = ',ao_num
|
||||
print*,'mo_num = ',mo_num
|
||||
if(ao_num .ne. mo_num)then
|
||||
print*,'The AO basis and MO basis are different ...'
|
||||
print*,'Trace on the AO basis should not be the same as Trace of MO integrals'
|
||||
print*,'Only the second one must be equal to the trace on the MO integrals'
|
||||
else
|
||||
print*,'The AO basis and MO basis are the same !'
|
||||
print*,'All traces should coincide '
|
||||
endif
|
||||
end
|
32
plugins/local/tuto_plugins/tuto_I/print_two_e_h.irp.f
Normal file
32
plugins/local/tuto_plugins/tuto_I/print_two_e_h.irp.f
Normal file
@ -0,0 +1,32 @@
|
||||
program my_program_to_print_stuffs
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
double precision :: integral
|
||||
double precision :: get_ao_two_e_integral, get_two_e_integral ! declaration of the functions
|
||||
print*,'AO integrals, physicist notations : <i j|k l>'
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
integral = get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
|
||||
print*,i,j,k,l,integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*,'MO integrals, physicist notations : <i j|k l>'
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
integral = get_two_e_integral(i, j, k, l, mo_integrals_map)
|
||||
print*,i,j,k,l,integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
111
plugins/local/tuto_plugins/tuto_I/traces_one_e.irp.f
Normal file
111
plugins/local/tuto_plugins/tuto_I/traces_one_e.irp.f
Normal file
@ -0,0 +1,111 @@
|
||||
|
||||
! This file is an example of the kind of manipulations that you can do with providers
|
||||
!
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!! Main providers useful for the program !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
!!! type name
|
||||
BEGIN_PROVIDER [ double precision, trace_mo_one_e_ints]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! trace_mo_one_e_ints = Trace of the one-electron integrals on the MO basis
|
||||
!
|
||||
! = sum_i mo_one_e_integrals(i,i)
|
||||
END_DOC
|
||||
integer :: i
|
||||
trace_mo_one_e_ints = 0.d0
|
||||
do i = 1, mo_num
|
||||
trace_mo_one_e_ints += mo_one_e_integrals(i,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, trace_ao_one_e_ints]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! trace_ao_one_e_ints = Trace of the one-electron integrals on the AO basis taking into account the non orthogonality
|
||||
!
|
||||
! Be aware that the trace of an operator in a non orthonormal basis is Tr(A S^{-1}) = \sum_{m,n}(A_mn S^{-1}_mn)
|
||||
!
|
||||
! WARNING: it is equal to the trace on the MO basis if and only if the AO basis and MO basis
|
||||
! have the same number of functions
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision, allocatable :: inv_overlap_times_integrals(:,:) ! = h S^{-1}
|
||||
allocate(inv_overlap_times_integrals(ao_num,ao_num))
|
||||
! routine that computes the product of two matrices, you can check it with
|
||||
! irpman get_AB_prod
|
||||
call get_AB_prod(ao_one_e_integrals,ao_num,ao_num,s_inv,ao_num,inv_overlap_times_integrals)
|
||||
! Tr(inv_overlap_times_integrals) = Tr(h S^{-1})
|
||||
trace_ao_one_e_ints = 0.d0
|
||||
do i = 1, ao_num
|
||||
trace_ao_one_e_ints += inv_overlap_times_integrals(i,i)
|
||||
enddo
|
||||
!
|
||||
! testing the formula Tr(A S^{-1}) = \sum_{m,n}(A_mn S^{-1}_mn)
|
||||
double precision :: test
|
||||
test = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
test += ao_one_e_integrals(j,i) * s_inv(i,j)
|
||||
enddo
|
||||
enddo
|
||||
if(dabs(accu - trace_ao_one_e_ints).gt.1.d-12)then
|
||||
print*,'Warning ! '
|
||||
print*,'Something is wrong because Tr(AB) \ne sum_{mn}A_mn B_nm'
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, trace_ao_one_e_ints_from_mo]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! trace_ao_one_e_ints_from_mo = Trace of the one-electron integrals on the AO basis after projection on the MO basis
|
||||
!
|
||||
! = Tr([SC h {SC}^+] S^{-1})
|
||||
!
|
||||
! = Be aware that the trace of an operator in a non orthonormal basis is = Tr(A S^{-1}) where S is the metric
|
||||
! Must be equal to the trace_mo_one_e_ints
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision, allocatable :: inv_overlap_times_integrals(:,:)
|
||||
allocate(inv_overlap_times_integrals(ao_num,ao_num))
|
||||
! Using the provider ao_one_e_integrals_from_mo = [SC h {SC}^+]
|
||||
call get_AB_prod(ao_one_e_integrals_from_mo,ao_num,ao_num,s_inv,ao_num,inv_overlap_times_integrals)
|
||||
! inv_overlap_times_integrals = [SC h {SC}^+] S^{-1}
|
||||
trace_ao_one_e_ints_from_mo = 0.d0
|
||||
! Computing the trace
|
||||
do i = 1, ao_num
|
||||
trace_ao_one_e_ints_from_mo += inv_overlap_times_integrals(i,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!! Additional providers to check some stuffs !!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_one_e_int_no_ov_from_mo, (ao_num, ao_num) ]
|
||||
BEGIN_DOC
|
||||
! ao_one_e_int_no_ov_from_mo = C mo_one_e_integrals C^T
|
||||
!
|
||||
! WARNING : NON EQUAL TO ao_one_e_integrals due to the non orthogonality
|
||||
END_DOC
|
||||
call mo_to_ao_no_overlap(mo_one_e_integrals,mo_num,ao_one_e_int_no_ov_from_mo,ao_num)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_one_e_int_no_ov_from_mo_ov_ov, (ao_num, ao_num)]
|
||||
BEGIN_DOC
|
||||
! ao_one_e_int_no_ov_from_mo_ov_ov = S ao_one_e_int_no_ov_from_mo S = SC mo_one_e_integrals (SC)^T
|
||||
!
|
||||
! EQUAL TO ao_one_e_integrals ONLY IF ao_num = mo_num
|
||||
END_DOC
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
allocate(tmp(ao_num, ao_num))
|
||||
call get_AB_prod(ao_overlap,ao_num,ao_num,ao_one_e_int_no_ov_from_mo,ao_num,tmp)
|
||||
call get_AB_prod(tmp,ao_num,ao_num,ao_overlap,ao_num,ao_one_e_int_no_ov_from_mo_ov_ov)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, c_t_s_c, (mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! C^T S C = should be the identity
|
||||
END_DOC
|
||||
call get_AB_prod(mo_coef_transp,mo_num,ao_num,S_mo_coef,mo_num,c_t_s_c)
|
||||
END_PROVIDER
|
||||
|
218
plugins/local/tuto_plugins/tuto_I/tuto_I.rst
Normal file
218
plugins/local/tuto_plugins/tuto_I/tuto_I.rst
Normal file
@ -0,0 +1,218 @@
|
||||
=============================================
|
||||
Tuto I: One- and two-e integrals (20 minutes)
|
||||
=============================================
|
||||
|
||||
Requirements
|
||||
------------
|
||||
1) You know how to create an |EZFIO| file and run calculations with |QP| (check the tuto: `<https://quantumpackage.github.io/qp2/post/hartree-fock/>`_),
|
||||
|
||||
2) You have an |EZFIO| file with MOs created (with the :ref:`scf` executable for instance). As we are going to print out some integrals, don't take a too large system/basis (Ex: H2, cc-pVDZ is ok :)
|
||||
|
||||
3) You made an qp set_file YOUR_EZFIO_FILE_FOR_H2 in order to work on that ezfio folder.
|
||||
|
||||
4) You have READ the :file:`qp2/plugins/README.rst` file to HAVE THE **VOCABULARY**.
|
||||
|
||||
Our goals:
|
||||
----------
|
||||
We want to create a plugin to do the following things:
|
||||
1) print out one- and two-electron integrals on the AO/MO basis,
|
||||
|
||||
2) creates two providers which manipulate these objects,
|
||||
|
||||
3) print out these providers.
|
||||
|
||||
I) Getting started: creating the plugin
|
||||
---------------------------------------
|
||||
We will go step-by-step through these plugins.
|
||||
|
||||
We will create a plugin named "plugin_I", and its location will be in "tuto_plugins".
|
||||
Therefore to create the plugin, we do:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp plugins create -n plugin_I -r tuto_plugins
|
||||
|
||||
Then do an "ls" in qp2/plugins/tuto_plugins/ and you will find a directory called "plugin_I".
|
||||
|
||||
In that directory you will find:
|
||||
|
||||
1) a :file:`NEED` file that will eventually contain all the other modules/plugins needed by our "plugin_I",
|
||||
|
||||
2) a :file:`README.rst` file that you can and **SHOULD** modify in order to **DOCUMENT** what is doing the plugin,
|
||||
|
||||
3) a :file:`plugin_I.irp.f` file that is a program to be compiled and just printing "Hello world"
|
||||
|
||||
II) Specifying the dependencies
|
||||
-------------------------------
|
||||
The next step is to know what are the other modules/plugins that we need to do what we want.
|
||||
We need here
|
||||
|
||||
a) the one-electron integrals on the AO basis, which are computed in :file:`qp2/src/ao_one_e_ints/`
|
||||
|
||||
b) the one-electron integrals on the MO basis, which are computed in :file:`qp2/src/mo_one_e_ints/`
|
||||
|
||||
c) the two-electron integrals on the AO basis, which are computed in :file:`qp2/src/ao_two_e_ints/`
|
||||
|
||||
d) the two-electron integrals on the MO basis, which are computed in :file:`qp2/src/mo_two_e_ints/`
|
||||
|
||||
Therefore, we will need the following four modules:
|
||||
|
||||
a) ao_one_e_ints
|
||||
b) mo_one_e_ints
|
||||
c) ao_two_e_ints
|
||||
d) mo_two_e_ints
|
||||
|
||||
You can then create the following "NEED" file by executing the following command
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cat <<EOF > NEED
|
||||
ao_one_e_ints
|
||||
mo_one_e_ints
|
||||
ao_two_e_ints
|
||||
mo_two_e_ints
|
||||
EOF
|
||||
|
||||
II) Installing the plugin
|
||||
-------------------------
|
||||
Now that we have specified the various depenencies we need now to INSTALL the plugin, which means to create the equivalent of a Makefile for the compilation.
|
||||
|
||||
To do it we simply do
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp plugins install plugin_I
|
||||
|
||||
|
||||
III) Compiling the void plugin
|
||||
------------------------------
|
||||
It is customary to compile first your "void" plugin, void in the sense that it does not contain anything else than the program printing "Hello world".
|
||||
|
||||
To do so, just go in the plugin and execute the following command
|
||||
|
||||
.. code:: bash
|
||||
|
||||
ninja
|
||||
|
||||
It does a lot of stuffs, but it must conclude with something like
|
||||
|
||||
.. code:: bash
|
||||
|
||||
make: Leaving directory 'SOME_PATH_TOWARD_YOUR_QP2_DIRECTORY/qp2/ocaml'
|
||||
|
||||
|
||||
Since that it has compiled, an executable "plugin_I" has been created.
|
||||
|
||||
Also, if you make "ls" in the "plugin_I" you will notice that many symbolink links have been created, and among which the four modules that you included in the NEED file.
|
||||
|
||||
All the other modules (Ex::ref:`module_ao_basis`, :ref:`module_utils`) are here because they are need by some of the four modules that you need.
|
||||
The variables that we need are
|
||||
|
||||
:data:`ao_one_e_integrals`
|
||||
|
||||
:data:`mo_one_e_integrals`
|
||||
|
||||
You can check them with
|
||||
|
||||
.. code:: bash
|
||||
|
||||
irpman ao_one_e_integrals
|
||||
|
||||
|
||||
.. code:: bash
|
||||
|
||||
irpman mo_one_e_integrals
|
||||
|
||||
in order to get some information on where they are created, and many more information.
|
||||
We will now create an executable such that it prints out the integrals.
|
||||
|
||||
|
||||
IV) Printing out the one-electron integrals
|
||||
--------------------------------------------
|
||||
We will now create a program that will print out the one-electron integrals on the AO and MO basis.
|
||||
|
||||
You can then copy the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_one_e_h.irp.f` in your plugin.
|
||||
|
||||
In this file you will see that we simply browse the two arrays :data:`ao_one_e_integrals` and :data:`mo_one_e_integrals`, which are the providers and we browse them until either :data:`ao_num` or :data:`mo_num` which are also providers representing the number of AOs or MOs.
|
||||
|
||||
|
||||
.. seealso::
|
||||
|
||||
You can check these variables with :command:`irpman` !
|
||||
|
||||
If you recompile using |ninja| as before, and another executable has been created "print_one_e_h".
|
||||
Then, you can run the program on the ezfio file by doing
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp run print_one_e_h
|
||||
|
||||
and will print out the data you need :)
|
||||
|
||||
By the way, as the file :file:`plugin_I.irp.f` contains nothing but a "Hello world" print, you can simply remove it if you want.
|
||||
|
||||
V) Printing out the two-electron integrals
|
||||
------------------------------------------
|
||||
We will now create a file that prints out the two-electron integrals in the AO and MO basis.
|
||||
These can be accessed with the following subroutines :
|
||||
|
||||
1- :c:func:`get_ao_two_e_integral` for the AO basis
|
||||
|
||||
2- :c:func:`get_two_e_integral` for the MO basis
|
||||
|
||||
|
||||
.. seealso::
|
||||
|
||||
check them with irpman !
|
||||
|
||||
To print the two-electron integrals, you can copy the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_two_e_h.irp.f` in your plugin and recompile with |ninja|.
|
||||
Then just run the program
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp run print_two_e_h
|
||||
|
||||
and it will print all the things you want :)
|
||||
|
||||
VI) Creating new providers and a program to print them
|
||||
------------------------------------------------------
|
||||
We will now create new providers that manipulates the objects that we just printed.
|
||||
As an example, we will compute the trace of the one electron integrals in the AO and MO basis.
|
||||
In the file :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` you will find the several new providers among which
|
||||
|
||||
1- :c:data:`trace_mo_one_e_ints` : simply the sum of the diagonal matrix element of the one-electron integrals
|
||||
|
||||
2- :c:data:`trace_ao_one_e_ints` : the corresponding trace on the AO basis
|
||||
.. math::
|
||||
|
||||
\text{Tr}({\bf h}{\bf S}^{-1}) = \sum_{m,n} S^{-1}_{mn} h_{mn}
|
||||
|
||||
|
||||
3- :c:data:`trace_ao_one_e_ints_from_mo` : the trace on the AO basis with the integrals obtained first from the MO basis
|
||||
.. math::
|
||||
|
||||
\text{Tr}({\bf \tilde{h}}{\bf S}^{-1}) = \text{Tr}\big({\bf SC h}({\bf SC }^T){\bf S}^{-1}\big)
|
||||
|
||||
Just copy the :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` in your plugin and recompile.
|
||||
|
||||
.. seealso::
|
||||
|
||||
Once it has compiled, check your new providers with :command:`irpman` !
|
||||
|
||||
As explained in the files :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` and :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f`, :c:data:`trace_mo_one_e_ints` is equal to :c:data:`trace_ao_one_e_ints` only if the number of AO basis functions is equal to the number of MO basis functions, which means if you work with cartesian functions.
|
||||
|
||||
|
||||
.. seealso::
|
||||
|
||||
You can check with :command:`qp create_ezfio -h` for the option to create an |EZFIO| with cartesian basis functions
|
||||
|
||||
In the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f` you will find an example of executable that prints out the various providers.
|
||||
Copy these two files in your plugin and recompile to execute it.
|
||||
|
||||
Execute the program print_traces_on_e and check for the results with
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp run print_traces_on_e
|
||||
|
||||
The code in :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f` should be easy to read, I let the reader interpret it.
|
@ -45,3 +45,13 @@ BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_one_e_integrals_from_mo, (ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Integrals of the one e hamiltonian obtained from the integrals on the MO basis
|
||||
!
|
||||
! WARNING : this is equal to ao_one_e_integrals only if the AO and MO basis have the same number of functions
|
||||
END_DOC
|
||||
call mo_to_ao(mo_one_e_integrals,mo_num,ao_one_e_integrals_from_mo,ao_num)
|
||||
END_PROVIDER
|
||||
|
@ -522,6 +522,84 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (state_following) then
|
||||
if (.not. only_expected_s2) then
|
||||
print*,''
|
||||
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
|
||||
STOP
|
||||
endif
|
||||
endif
|
||||
|
||||
if (state_following) then
|
||||
|
||||
integer :: state(N_st), idx
|
||||
double precision :: omax
|
||||
logical :: used
|
||||
logical, allocatable :: ok(:)
|
||||
double precision, allocatable :: overlp(:,:)
|
||||
|
||||
allocate(overlp(shift2,N_st),ok(shift2))
|
||||
|
||||
overlp = 0d0
|
||||
do j = 1, shift2-1, N_st_diag
|
||||
|
||||
! Computes some states from the guess vectors
|
||||
! Psi(:,j:j+N_st_diag) = U y(:,j:j+N_st_diag) and put them
|
||||
! in U(1,shift2+1:shift2+1+N_st_diag) as temporary array
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y(1,j), size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
|
||||
! Overlap
|
||||
do l = 1, N_st
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
overlp(k+j-1,l) += U(i,l) * U(i,shift2+k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
state = 0
|
||||
do l = 1, N_st
|
||||
|
||||
omax = 0d0
|
||||
idx = 0
|
||||
do k = 1, shift2
|
||||
|
||||
! Already used ?
|
||||
used = .False.
|
||||
do i = 1, N_st
|
||||
if (state(i) == k) then
|
||||
used = .True.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Maximum overlap
|
||||
if (dabs(overlp(k,l)) > omax .and. .not. used .and. state_ok(k)) then
|
||||
omax = dabs(overlp(k,l))
|
||||
idx = k
|
||||
endif
|
||||
enddo
|
||||
|
||||
state(l) = idx
|
||||
enddo
|
||||
|
||||
! tmp array before setting state_ok
|
||||
ok = .False.
|
||||
do l = 1, N_st
|
||||
ok(state(l)) = .True.
|
||||
enddo
|
||||
|
||||
do k = 1, shift2
|
||||
if (.not. ok(k)) then
|
||||
state_ok(k) = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlp,ok)
|
||||
endif
|
||||
|
||||
do k=1,shift2
|
||||
if (.not. state_ok(k)) then
|
||||
do l=k+1,shift2
|
||||
@ -537,46 +615,46 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
endif
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k=1,shift2
|
||||
do i=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
overlap(k,2) = s2(k)
|
||||
enddo
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
lambda(k) = overlap(l,1)
|
||||
s2(k) = overlap(l,2)
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
! if (state_following) then
|
||||
!
|
||||
! overlap = -1.d0
|
||||
! do k=1,shift2
|
||||
! do i=1,shift2
|
||||
! overlap(k,i) = dabs(y(k,i))
|
||||
! enddo
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! cmax = -1.d0
|
||||
! do i=1,N_st
|
||||
! if (overlap(i,k) > cmax) then
|
||||
! cmax = overlap(i,k)
|
||||
! order(k) = i
|
||||
! endif
|
||||
! enddo
|
||||
! do i=1,N_st_diag
|
||||
! overlap(order(k),i) = -1.d0
|
||||
! enddo
|
||||
! enddo
|
||||
! overlap = y
|
||||
! do k=1,N_st
|
||||
! l = order(k)
|
||||
! if (k /= l) then
|
||||
! y(1:shift2,k) = overlap(1:shift2,l)
|
||||
! endif
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! overlap(k,1) = lambda(k)
|
||||
! overlap(k,2) = s2(k)
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! l = order(k)
|
||||
! if (k /= l) then
|
||||
! lambda(k) = overlap(l,1)
|
||||
! s2(k) = overlap(l,2)
|
||||
! endif
|
||||
! enddo
|
||||
!
|
||||
! endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
|
@ -123,6 +123,7 @@ END_PROVIDER
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
if (N_states_diag > N_states_diag_save) then
|
||||
N_states_diag = N_states_diag_save
|
||||
TOUCH N_states_diag
|
||||
@ -133,24 +134,101 @@ END_PROVIDER
|
||||
print *, 'Diagonalization of H using Lapack'
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
if (s2_eig) then
|
||||
|
||||
double precision, parameter :: alpha = 0.1d0
|
||||
allocate (H_prime(N_det,N_det) )
|
||||
|
||||
H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + &
|
||||
alpha * S2_matrix_all_dets(1:N_det,1:N_det)
|
||||
|
||||
do j=1,N_det
|
||||
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
|
||||
enddo
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det)
|
||||
call nullify_small_elements(N_det,N_det,eigenvectors,size(eigenvectors,1),1.d-12)
|
||||
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
i_state = 0
|
||||
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
|
||||
good_state_array = .False.
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
if (only_expected_s2) then
|
||||
|
||||
if (state_following) then
|
||||
if (.not. only_expected_s2) then
|
||||
print*,''
|
||||
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
|
||||
STOP
|
||||
endif
|
||||
if (N_det < N_states) then
|
||||
print*,''
|
||||
print*,'!!! State following requires at least N_states determinants to be activated !!!'
|
||||
STOP
|
||||
endif
|
||||
endif
|
||||
|
||||
if (state_following .and. only_expected_s2) then
|
||||
|
||||
integer :: state(N_states), idx,l
|
||||
double precision :: omax
|
||||
double precision, allocatable :: overlp(:)
|
||||
logical :: used
|
||||
logical, allocatable :: ok(:)
|
||||
|
||||
allocate(overlp(N_det), ok(N_det))
|
||||
|
||||
i_state = 0
|
||||
state = 0
|
||||
do l = 1, N_states
|
||||
|
||||
! Overlap wrt each state
|
||||
overlp = 0d0
|
||||
do k = 1, N_det
|
||||
do i = 1, N_det
|
||||
overlp(k) = overlp(k) + psi_coef(i,l) * eigenvectors(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Idx of the state with the maximum overlap not already "used"
|
||||
omax = 0d0
|
||||
idx = 0
|
||||
do k = 1, N_det
|
||||
|
||||
! Already used ?
|
||||
used = .False.
|
||||
do i = 1, N_states
|
||||
if (state(i) == k) then
|
||||
used = .True.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Maximum overlap
|
||||
if (dabs(overlp(k)) > omax .and. .not. used) then
|
||||
if (dabs(s2_eigvalues(k)-expected_s2) > 0.5d0) cycle
|
||||
omax = dabs(overlp(k))
|
||||
idx = k
|
||||
endif
|
||||
enddo
|
||||
|
||||
state(l) = idx
|
||||
i_state +=1
|
||||
enddo
|
||||
|
||||
deallocate(overlp, ok)
|
||||
|
||||
do i = 1, i_state
|
||||
index_good_state_array(i) = state(i)
|
||||
good_state_array(i) = .True.
|
||||
enddo
|
||||
|
||||
else if (only_expected_s2) then
|
||||
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
@ -158,17 +236,23 @@ END_PROVIDER
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do j=1,N_det
|
||||
index_good_state_array(j) = j
|
||||
good_state_array(j) = .True.
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
if(i_state .ne.0)then
|
||||
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
@ -177,6 +261,7 @@ END_PROVIDER
|
||||
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
@ -201,6 +286,7 @@ END_PROVIDER
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,j)
|
||||
@ -209,14 +295,18 @@ END_PROVIDER
|
||||
CI_s2(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
|
||||
else
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int, &
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
@ -224,7 +314,9 @@ END_PROVIDER
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
do k=1,N_states_diag
|
||||
CI_electronic_energy(k) = 0.d0
|
||||
do j=1,N_det
|
||||
@ -235,6 +327,7 @@ END_PROVIDER
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
|
@ -166,6 +166,10 @@
|
||||
|
||||
if(frozen_orb_scf)then
|
||||
integer :: iorb,jorb
|
||||
! active|core|active
|
||||
!active | | 0 |
|
||||
!core | 0 | | 0
|
||||
!active | | 0 |
|
||||
do i = 1, n_core_orb
|
||||
iorb = list_core(i)
|
||||
do j = 1, n_act_orb
|
||||
|
@ -2041,3 +2041,22 @@ subroutine get_A_squared(A,n,A2)
|
||||
double precision, intent(out):: A2(n,n)
|
||||
call dgemm('N','N',n,n,n,1.d0,A,size(A,1),A,size(A,1),0.d0,A2,size(A2,1))
|
||||
end
|
||||
|
||||
subroutine get_AB_prod(A,n,m,B,l,AB)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! AB = A B where A is n x m, B is m x l. Use the dgemm routine
|
||||
END_DOC
|
||||
double precision, intent(in) :: A(n,m),B(m,l)
|
||||
integer, intent(in) :: n,m,l
|
||||
double precision, intent(out):: AB(n,l)
|
||||
if(size(A,2).ne.m.or.size(B,1).ne.m)then
|
||||
print*,'error in get_AB_prod ! '
|
||||
print*,'matrices do not have the good dimension '
|
||||
print*,'size(A,2) = ',size(A,2)
|
||||
print*,'size(B,1) = ',size(B,1)
|
||||
print*,'m = ',m
|
||||
stop
|
||||
endif
|
||||
call dgemm('N','N',n,l,m,1.d0,A,size(A,1),B,size(B,1),0.d0,AB,size(AB,1))
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user