10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-08 15:13:48 +01:00

CASSCF works

This commit is contained in:
Anthony Scemama 2019-06-26 00:51:47 +02:00
parent 5902f3231e
commit a128c20afa
10 changed files with 76 additions and 264 deletions

View File

@ -55,7 +55,6 @@
end do end do
end do end do
write(6,*) ' provided integrals (PQ|xx) '
END_PROVIDER END_PROVIDER
@ -116,7 +115,6 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_a
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (Px|xQ) '
END_PROVIDER END_PROVIDER
@ -146,6 +144,5 @@ BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER END_PROVIDER

View File

@ -84,7 +84,6 @@
end do end do
end do end do
end do end do
write(6,*) ' transformed PQxx'
END_PROVIDER END_PROVIDER
@ -176,7 +175,6 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+
end do end do
end do end do
end do end do
write(6,*) ' transformed PxxQ '
END_PROVIDER END_PROVIDER
@ -267,7 +265,6 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' transformed tuvP '
END_PROVIDER END_PROVIDER

View File

@ -12,20 +12,32 @@ subroutine run
implicit none implicit none
double precision :: energy_old, energy double precision :: energy_old, energy
logical :: converged logical :: converged
integer :: iteration
converged = .False. converged = .False.
energy = 0.d0 energy = 0.d0
! do while (.not.converged) mo_label = "MCSCF"
N_det = 1 iteration = 1
TOUCH N_det psi_det psi_coef do while (.not.converged)
call run_cipsi call run_cipsi
write(6,*) ' total energy = ',eone+etwo+ecore
call driver_optorb
energy_old = energy energy_old = energy
energy = eone+etwo+ecore energy = eone+etwo+ecore
converged = dabs(energy - energy_old) < 1.d-10
! enddo call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration')
call write_double(6,energy,'CAS-SCF energy')
call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf
mo_coef = NewOrbs
call save_mos
call map_deinit(mo_integrals_map)
N_det = 1
iteration += 1
FREE mo_integrals_map mo_two_e_integrals_in_map psi_det psi_coef
SOFT_TOUCH mo_coef N_det
enddo
end end

View File

@ -22,7 +22,9 @@ BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
integer :: ierr1,ierr2 integer :: ierr1,ierr2
real*8 :: cI_mu(N_states) real*8 :: cI_mu(N_states)
write(6,*) ' providing density matrices D0 and P0 ' if (bavard) then
write(6,*) ' providing density matrix D0'
endif
D0tu = 0.d0 D0tu = 0.d0
@ -90,7 +92,9 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12 integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22 integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
write(6,*) ' providing density matrices D0 and P0 ' if (bavard) then
write(6,*) ' providing density matrix P0'
endif
P0tuvx = 0.d0 P0tuvx = 0.d0

View File

@ -1,32 +1,3 @@
subroutine driver_optorb subroutine driver_optorb
implicit none implicit none
integer :: i,j end
write(6,*)
! write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
write(6,*) ' energy improvement = ',energy_improvement
! write(6,*) ' new energy = ',psi_energy_with_nucl_rep(1)+energy_improvement
write(6,*)
write(6,*)
write(6,*) ' creating new orbitals '
do i=1,mo_num
write(6,*) ' Orbital No ',i
write(6,'(5F14.6)') (NewOrbs(j,i),j=1,mo_num)
write(6,*)
end do
mo_label = "Natural"
do i=1,mo_num
do j=1,ao_num
mo_coef(j,i)=NewOrbs(j,i)
end do
end do
call save_mos
call map_deinit(mo_integrals_map)
FREE mo_integrals_map mo_coef mo_two_e_integrals_in_map
write(6,*)
write(6,*) ' ... all done '
end

View File

@ -6,7 +6,6 @@ BEGIN_PROVIDER [ integer, nMonoEx ]
END_DOC END_DOC
implicit none implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
@ -87,9 +86,11 @@ BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
norm_grad+=gradvec(indx)*gradvec(indx) norm_grad+=gradvec(indx)*gradvec(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
write(6,*) if (bavard) then
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
endif
END_PROVIDER END_PROVIDER
@ -118,17 +119,11 @@ subroutine calc_grad_elem(ihole,ipart,res)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu & call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr) ,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then if (ierr.eq.1) then
! write(6,*)
! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int & call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do end do
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if end if
end do end do
end do end do
@ -176,9 +171,11 @@ BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
norm_grad+=gradvec2(indx)*gradvec2(indx) norm_grad+=gradvec2(indx)*gradvec2(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
write(6,*) if (bavard) then
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
endif
END_PROVIDER END_PROVIDER

View File

@ -14,8 +14,10 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
character*3 :: iexc,jexc character*3 :: iexc,jexc
real*8 :: res real*8 :: res
write(6,*) ' providing Hessian matrix hessmat ' if (bavard) then
write(6,*) ' nMonoEx = ',nMonoEx write(6,*) ' providing Hessian matrix hessmat '
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx do indx=1,nMonoEx
do jndx=1,nMonoEx do jndx=1,nMonoEx
@ -32,8 +34,6 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
jpart=excit(2,jndx) jpart=excit(2,jndx)
jexc=excit_class(jndx) jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res) call calc_hess_elem(ihole,ipart,jhole,jpart,res)
! write(6,*) ' Hessian ',ihole,'->',ipart &
! ,' (',iexc,')',jhole,'->',jpart,' (',jexc,')',res
hessmat(indx,jndx)=res hessmat(indx,jndx)=res
hessmat(jndx,indx)=res hessmat(jndx,indx)=res
end do end do
@ -198,8 +198,10 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
real*8 :: hessmat_iatb real*8 :: hessmat_iatb
real*8 :: hessmat_taub real*8 :: hessmat_taub
write(6,*) ' providing Hessian matrix hessmat2 ' if (bavard) then
write(6,*) ' nMonoEx = ',nMonoEx write(6,*) ' providing Hessian matrix hessmat2 '
write(6,*) ' nMonoEx = ',nMonoEx
endif
indx=1 indx=1
do i=1,n_core_orb do i=1,n_core_orb
@ -214,7 +216,6 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
do u=ustart,n_act_orb do u=ustart,n_act_orb
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u) hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
hessmat2(jndx,indx)=hessmat2(indx,jndx) hessmat2(jndx,indx)=hessmat2(indx,jndx)
! write(6,*) ' result I :',i,t,j,u,indx,jndx,hessmat(indx,jndx),hessmat2(indx,jndx)
jndx+=1 jndx+=1
end do end do
end do end do
@ -294,7 +295,6 @@ real*8 function hessmat_itju(i,t,j,u)
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2 real*8 :: term,t2
! write(6,*) ' hessmat_itju ',i,t,j,u
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
if (i.eq.j) then if (i.eq.j) then
@ -340,8 +340,6 @@ real*8 function hessmat_itju(i,t,j,u)
end do end do
end do end do
end do end do
!!! write(6,*) ' direct diff ',i,t,j,u,term,term2
!!! term=term2
end if end if
else else
! it/ju ! it/ju
@ -382,7 +380,6 @@ real*8 function hessmat_itja(i,t,j,a)
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itja ',i,t,j,a
! it/ja ! it/ja
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
@ -416,7 +413,6 @@ real*8 function hessmat_itua(i,t,u,a)
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itua ',i,t,u,a
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
@ -457,7 +453,6 @@ real*8 function hessmat_iajb(i,a,j,b)
implicit none implicit none
integer :: i,a,j,b,ii,aa,jj,bb integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iajb ',i,a,j,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
@ -495,7 +490,6 @@ real*8 function hessmat_iatb(i,a,t,b)
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iatb ',i,a,t,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
tt=list_act(t) tt=list_act(t)
@ -552,7 +546,6 @@ real*8 function hessmat_taub(t,a,u,b)
end do end do
end do end do
term=t1+t2+t3 term=t1+t2+t3
! write(6,*) ' Hess taub ',t,a,t1,t2,t3
else else
bb=list_virt(b) bb=list_virt(b)
! ta/tb b/=a ! ta/tb b/=a

View File

@ -14,10 +14,12 @@
occnum(list_act(i))=occ_act(n_act_orb-i+1) occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do end do
write(6,*) ' occupation numbers ' if (bavard) then
do i=1,mo_num write(6,*) ' occupation numbers '
write(6,*) i,occnum(i) do i=1,mo_num
end do write(6,*) i,occnum(i)
end do
endif
END_PROVIDER END_PROVIDER
@ -32,14 +34,12 @@ END_PROVIDER
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb) call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
if (bavard) then if (bavard) then
! write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx integer :: nmx
real*8 :: xmx real*8 :: xmx
do i=1,n_act_orb do i=1,n_act_orb
@ -152,7 +152,6 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
end do end do
end do end do
end do end do
write(6,*) ' transformed P0tuvx '
END_PROVIDER END_PROVIDER
@ -198,7 +197,6 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
one_ints_no(j,list_act(p))=d(p) one_ints_no(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed one_ints '
END_PROVIDER END_PROVIDER
@ -226,148 +224,5 @@ BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
NatOrbsFCI(j,list_act(p))=d(p) NatOrbsFCI(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed orbitals '
END_PROVIDER END_PROVIDER
subroutine trf_to_natorb()
implicit none
BEGIN_DOC
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
END_DOC
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
! we recalculate total energies
write(6,*)
write(6,*) ' recalculating energies after the transformation '
write(6,*)
write(6,*)
real*8 :: e_one_all
real*8 :: e_two_all
integer :: ii
integer :: jj
integer :: t3
integer :: tt
integer :: u3
integer :: uu
integer :: v
integer :: v3
integer :: vv
integer :: x
integer :: x3
integer :: xx
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
e_two_all += occnum(list_act(t)) * &
(2.d0*bielec_PQxx_no(tt,tt,i,i) - bielec_PQxx_no(tt,ii,i,t3))
end do
end do
do t=1,n_act_orb
tt=list_act(t)
e_one_all += occnum(list_act(t))*one_ints_no(tt,tt)
do u=1,n_act_orb
uu=list_act(u)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx_no(t,u,v,x)*bielec_PQxx_no(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*one_ints_no(ii,ii)
ecore_bis+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ_no(ii,i,j,jj)-bielec_PxxQ_no(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
eone += occnum(list_act(t))*one_ints_no(tt,tt)
eone_bis += occnum(list_act(t))*one_ints_no(tt,tt)
do i=1,n_core_orb
ii=list_core(i)
eone += occnum(list_act(t)) * &
(2.D0*bielec_PQxx_no(tt,tt,i,i ) - bielec_PQxx_no(tt,ii,i,t3))
eone_bis += occnum(list_act(t)) * &
(2.D0*bielec_PxxQ_no(tt,t3,i,ii) - bielec_PxxQ_no(tt,i ,i,tt))
end do
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx_no(tt,uu,v3,x3)
h2=bielec_PxxQ_no(tt,u3,v3,xx)
h3=bielecCI_no(t,u,v,xx)
etwo +=P0tuvx_no(t,u,v,x)*h1
etwo_bis+=P0tuvx_no(t,u,v,x)*h2
etwo_ter+=P0tuvx_no(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
SOFT_TOUCH ecore ecore_bis eone eone_bis etwo etwo_bis etwo_ter
end subroutine trf_to_natorb

View File

@ -51,14 +51,16 @@ END_PROVIDER
integer :: ierr,matz,i integer :: ierr,matz,i
real*8 :: c0 real*8 :: c0
write(6,*) ' SXdiag : lowest 5 eigenvalues ' if (bavard) then
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1) write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2) write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3) write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4) write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5) write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1) write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
energy_improvement = SXeigenval(1) energy_improvement = SXeigenval(1)
integer :: best_vector integer :: best_vector
@ -73,16 +75,20 @@ END_PROVIDER
end if end if
end do end do
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
energy_improvement = SXeigenval(best_vector) energy_improvement = SXeigenval(best_vector)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
write(6,*) ' weight of the 1st element ',c0
endif
c0=SXeigenvec(1,best_vector) c0=SXeigenvec(1,best_vector)
write(6,*) ' weight of the 1st element ',c0
do i=1,nMonoEx+1 do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector)/c0 SXvector(i)=SXeigenvec(i,best_vector)/c0
! write(6,*) ' component No ',i,' : ',SXvector(i)
end do end do
END_PROVIDER END_PROVIDER

View File

@ -42,8 +42,6 @@
end do end do
end do end do
end do end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion ecore_bis=nuclear_repulsion
do i=1,n_core_orb do i=1,n_core_orb
@ -98,24 +96,6 @@
end do end do
end do end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
write(6,*) ' nuclear (qp) = ',nuclear_repulsion
write(6,*) ' core energy (qp) = ',core_energy
write(6,*) ' 1el energy (qp) = ',psi_energy_h_core(1)
write(6,*) ' 2el energy (qp) = ',psi_energy_two_e(1)
write(6,*) ' nuc + 1 + 2 (qp) = ',nuclear_repulsion+psi_energy_h_core(1)+psi_energy_two_e(1)
write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
END_PROVIDER END_PROVIDER