diff --git a/src/dft_utils_one_e/ec_scan.irp.f b/src/dft_utils_one_e/ec_scan.irp.f index 0833ddec..0df70572 100644 --- a/src/dft_utils_one_e/ec_scan.irp.f +++ b/src/dft_utils_one_e/ec_scan.irp.f @@ -90,104 +90,7 @@ end double precision function beta_rs(rs) implicit none double precision, intent(in) ::rs - beta_rs(rs) = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) -!beta_rs(rs) = 0.066725d0 + beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) end -double precision function ec_scan_print(rho_a,rho_b,tau,grad_rho_2) - include 'constants.include.F' - implicit none - double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2 - double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2 - double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0 - double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf - double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1 - double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0 - thr = 1.d-12 - nup = max(rho_a,thr) - ndo = max(rho_b,thr) - rho = nup + ndo - ec_scan_print = 0.d0 - if((rho).lt.thr)return - ! constants ... - rho_inv = 1.d0/rho - cst_13 = 1.d0/3.d0 - cst_23 = 2.d0 * cst_13 - cst_43 = 4.d0 * cst_13 - cst_53 = 5.d0 * cst_13 - cst_18 = 1.d0/8.d0 - cst_3pi2 = 3.d0 * pi*pi - drho2 = max(grad_rho_2,thr) - drho = dsqrt(drho2) - if((nup-ndo).gt.0.d0)then - spin_d = max(nup-ndo,thr) - else - spin_d = min(nup-ndo,-thr) - endif - c_1c = 0.64d0 - c_2c = 1.5d0 - d_c = 0.7d0 - b_1c = 0.0285764d0 - b_2c = 0.0889d0 - b_3c = 0.125541d0 - gama = 0.031091d0 - ! correlation energy lsda1 - call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1) - ! correlation energy per particle - e_c_lsda1 = e_c_lsda1/rho - xi = spin_d/rho - rs = (cst_43 * pi * rho)**(-cst_13) - s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 ) - t_w = drho2 * cst_18 * rho_inv - ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53) - t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi - t_unif = max(t_unif,thr) - alpha = (tau - t_w)/t_unif - cst_1alph= 1.d0 - alpha - if(cst_1alph.gt.0.d0)then - cst_1alph= max(cst_1alph,thr) - else - cst_1alph= min(cst_1alph,-thr) - endif - inv_1alph= 1.d0/cst_1alph - phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23) - phi_3 = phi*phi*phi - t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0) - w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0 - a = beta_rs(rs) /(gama * w_1) - g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0 - h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2)) - print*,'w_1 g_at2 ' - print*, w_1 , g_at2 - print*,'gama phi_3 1.d0 + w_1 * (1.d0 - g_at2)' - print*, gama , phi_3 , 1.d0 + w_1 * (1.d0 - g_at2) - ! interpolation function - if(cst_1alph.gt.0.d0)then - fc_alpha = dexp(-c_1c * alpha * inv_1alph) - else - fc_alpha = - d_c * dexp(c_2c * inv_1alph) - endif - ! first part of the correlation energy - e_c_1 = e_c_lsda1 + h1 - print*,'e_c_lsda1 h1 ' - print*, e_c_lsda1 , h1 - - dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43) - gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0) - e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs) - w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0 - beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0 - cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi - - x_inf = 0.128026d0 - f0 = -0.9d0 - g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0 - - h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf)) - e_c_0 = (e_c_lsda0 + h0) * gc_xi - - ec_scan_print = e_c_1 + fc_alpha * (e_c_0 - e_c_1) - write(*,*)' e_c_1 , fc_alpha , e_c_0 ' - write(*,*) e_c_1 , fc_alpha , e_c_0 -end