mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-11 05:28:24 +01:00
separate file for complex ao 2e ints
This commit is contained in:
parent
b3445bfa3f
commit
9ee697e567
@ -46,30 +46,6 @@ subroutine two_e_integrals_index(i,j,k,l,i1)
|
||||
i1 = i1+shiftr(i2*i2-i2,1)
|
||||
end
|
||||
|
||||
subroutine two_e_integrals_index_periodic(i,j,k,l,i1,p,q)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives a unique index for i,j,k,l using permtuation symmetry.
|
||||
! i <-> k, j <-> l, and (i,k) <-> (j,l)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: i1
|
||||
integer(key_kind) :: r,s,i2
|
||||
integer(key_kind),intent(out) :: p,q
|
||||
p = min(i,k)
|
||||
r = max(i,k)
|
||||
p = p+shiftr(r*r-r,1)
|
||||
q = min(j,l)
|
||||
s = max(j,l)
|
||||
q = q+shiftr(s*s-s,1)
|
||||
i1 = min(p,q)
|
||||
i2 = max(p,q)
|
||||
i1 = i1+shiftr(i2*i2-i2,1)
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
@ -159,120 +135,6 @@ subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
|
||||
|
||||
end
|
||||
|
||||
subroutine two_e_integrals_index_reverse_complex_1(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
|
||||
! For 2 indices $i,j$ and $i \le j$, we have
|
||||
! $p = i(i-1)/2 + j$.
|
||||
! The key point is that because $j < i$,
|
||||
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
|
||||
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
|
||||
! and $j = p - i(i-1)/2$.
|
||||
! This rule is applied 3 times. First for the symmetry of the
|
||||
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
|
||||
! always returns first set such that i<=k, j<=l, ik<=jl
|
||||
END_DOC
|
||||
integer, intent(out) :: i(4),j(4),k(4),l(4)
|
||||
integer(key_kind), intent(in) :: i1
|
||||
integer(key_kind) :: i2,i3
|
||||
i = 0
|
||||
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
|
||||
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
|
||||
i3 = i1 - shiftr(i2*i2-i2,1)
|
||||
k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
|
||||
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
|
||||
i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4)
|
||||
|
||||
!ijkl a+ib
|
||||
i(2) = j(1) !jilk a+ib
|
||||
j(2) = i(1)
|
||||
k(2) = l(1)
|
||||
l(2) = k(1)
|
||||
|
||||
i(3) = k(1) !klij a-ib
|
||||
j(3) = l(1)
|
||||
k(3) = i(1)
|
||||
l(3) = j(1)
|
||||
|
||||
i(4) = l(1) !lkji a-ib
|
||||
j(4) = k(1)
|
||||
k(4) = j(1)
|
||||
l(4) = i(1)
|
||||
|
||||
integer :: ii, jj
|
||||
do ii=2,4
|
||||
do jj=1,ii-1
|
||||
if ( (i(ii) == i(jj)).and. &
|
||||
(j(ii) == j(jj)).and. &
|
||||
(k(ii) == k(jj)).and. &
|
||||
(l(ii) == l(jj)) ) then
|
||||
i(ii) = 0
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine two_e_integrals_index_reverse_complex_2(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
|
||||
! For 2 indices $i,j$ and $i \le j$, we have
|
||||
! $p = i(i-1)/2 + j$.
|
||||
! The key point is that because $j < i$,
|
||||
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
|
||||
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
|
||||
! and $j = p - i(i-1)/2$.
|
||||
! This rule is applied 3 times. First for the symmetry of the
|
||||
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
|
||||
! always returns first set such that k<=i, j<=l, ik<=jl
|
||||
END_DOC
|
||||
integer, intent(out) :: i(4),j(4),k(4),l(4)
|
||||
integer(key_kind), intent(in) :: i1
|
||||
integer(key_kind) :: i2,i3
|
||||
i = 0
|
||||
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
|
||||
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
|
||||
i3 = i1 - shiftr(i2*i2-i2,1)
|
||||
i(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
|
||||
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
|
||||
k(1) = int(i3 - shiftr(i(1)*i(1)-i(1),1),4)
|
||||
|
||||
!kjil a+ib
|
||||
i(2) = j(1) !jkli a+ib
|
||||
j(2) = i(1)
|
||||
k(2) = l(1)
|
||||
l(2) = k(1)
|
||||
|
||||
i(3) = k(1) !ilkj a-ib
|
||||
j(3) = l(1)
|
||||
k(3) = i(1)
|
||||
l(3) = j(1)
|
||||
|
||||
i(4) = l(1) !lijk a-ib
|
||||
j(4) = k(1)
|
||||
k(4) = j(1)
|
||||
l(4) = i(1)
|
||||
|
||||
integer :: ii, jj
|
||||
do ii=2,4
|
||||
do jj=1,ii-1
|
||||
if ( (i(ii) == i(jj)).and. &
|
||||
(j(ii) == j(jj)).and. &
|
||||
(k(ii) == k(jj)).and. &
|
||||
(l(ii) == l(jj)) ) then
|
||||
i(ii) = 0
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
|
||||
implicit none
|
||||
@ -356,223 +218,6 @@ double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
|
||||
result = tmp
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of AO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx1, idx2
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
complex(integral_kind) :: integral
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl
|
||||
complex*16 :: get_ao_two_e_integral_periodic_simple
|
||||
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (ilek,jlel,p,q,r,s, ik,jl,iklejl, &
|
||||
!$OMP i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
|
||||
do l=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do k=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do j=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do i=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
integral = get_ao_two_e_integral_periodic_simple(i,j,k,l,&
|
||||
ao_integrals_map,ao_integrals_map_2)
|
||||
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
||||
ao_integrals_cache_periodic(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ao_two_e_integral_periodic_map_idx_sign(i,j,k,l,use_map1,idx,sign)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! get position of periodic AO integral <ij|kl>
|
||||
! use_map1: true if integral is in first ao map, false if integral is in second ao map
|
||||
! idx: position of real part of integral in map (imag part is at idx+1)
|
||||
! sign: sign of imaginary part
|
||||
!
|
||||
!
|
||||
! for <ab|cd>, conditionals are [a<c, b<d, ac<bd]
|
||||
! last two rows are real (ab==cd)
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | NEW | <ij|kl> | <ji|lk> | <kl|ij> | <lk|ji> | <kj|il> | <jk|li> | <il|kj> | <li|jk> |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | | m1 | m1* | m2 | m2* |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | <ij|kl> | TTT | TTF | FFT | FFF | FTT | TFF | TFT | FTF |
|
||||
! | <ij|il> | 0TT | T0F | 0FT | F0F | | | | |
|
||||
! | <ij|kj> | T0T | 0TF | F0T | 0FF | | | | |
|
||||
! | <ii|jj> | TT0 | | FF0 | | FT0(r) | TF0(r) | | |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | <ij|ij> | 00T | 00F | | | | | | |
|
||||
! | <ii|ii> | 000 | | | | | | | |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: idx
|
||||
logical, intent(out) :: use_map1
|
||||
double precision, intent(out) :: sign
|
||||
integer(key_kind) :: p,q,r,s,ik,jl,ij,kl
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index_periodic(i,j,k,l,idx,ik,jl)
|
||||
p = min(i,j)
|
||||
r = max(i,j)
|
||||
ij = p+shiftr(r*r-r,1)
|
||||
q = min(k,l)
|
||||
s = max(k,l)
|
||||
kl = q+shiftr(s*s-s,1)
|
||||
|
||||
idx = 2*idx-1
|
||||
|
||||
if (ij==kl) then !real, J -> map1, K -> map2
|
||||
sign=0.d0
|
||||
if (i==k) then
|
||||
use_map1=.True.
|
||||
else
|
||||
use_map1=.False.
|
||||
endif
|
||||
else
|
||||
if (ik.eq.jl) then
|
||||
if (i.lt.k) then !TT0
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else !FF0
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if (i.eq.k) then
|
||||
if (j.lt.l) then !0T*
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else !0F*
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if (j.eq.l) then
|
||||
if (i.lt.k) then
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if ((i.lt.k).eqv.(j.lt.l)) then
|
||||
if (i.lt.k) then
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else
|
||||
if ((j.lt.l).eqv.(ik.lt.jl)) then
|
||||
sign=1.d0
|
||||
use_map1=.False.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.False.
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
complex*16 function get_ao_two_e_integral_periodic_simple(i,j,k,l,map,map2) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx1,idx2,idx
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
type(map_type), intent(inout) :: map,map2
|
||||
integer :: ii
|
||||
complex(integral_kind) :: tmp
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl,use_map1
|
||||
double precision :: sign
|
||||
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
call ao_two_e_integral_periodic_map_idx_sign(i,j,k,l,use_map1,idx,sign)
|
||||
if (use_map1) then
|
||||
call map_get(map,idx,tmp_re)
|
||||
if (sign/=0.d0) then
|
||||
call map_get(map,idx+1,tmp_im)
|
||||
tmp_im *= sign
|
||||
else
|
||||
tmp_im=0.d0
|
||||
endif
|
||||
else
|
||||
call map_get(map2,idx,tmp_re)
|
||||
if (sign/=0.d0) then
|
||||
call map_get(map2,idx+1,tmp_im)
|
||||
tmp_im *= sign
|
||||
else
|
||||
tmp_im=0.d0
|
||||
endif
|
||||
endif
|
||||
tmp = dcmplx(tmp_re,tmp_im)
|
||||
result = tmp
|
||||
end
|
||||
|
||||
|
||||
complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map,map2) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx1,idx2
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
type(map_type), intent(inout) :: map,map2
|
||||
integer :: ii
|
||||
complex(integral_kind) :: tmp
|
||||
complex(integral_kind) :: get_ao_two_e_integral_periodic_simple
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl
|
||||
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
! if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
! tmp = (0.d0,0.d0)
|
||||
! else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
||||
! tmp = (0.d0,0.d0)
|
||||
! else
|
||||
if (.True.) then
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior(ii, k-ao_integrals_cache_min)
|
||||
ii = ior(ii, j-ao_integrals_cache_min)
|
||||
ii = ior(ii, i-ao_integrals_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
tmp = get_ao_two_e_integral_periodic_simple(i,j,k,l,map,map2)
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
||||
tmp = ao_integrals_cache_periodic(ii)
|
||||
endif
|
||||
result = tmp
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
@ -603,34 +248,6 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All i are retrieved for j,k,l fixed.
|
||||
! physicist convention : <ij|kl>
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
complex*16, intent(out) :: out_val(sze)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = (0.d0,0.d0)
|
||||
return
|
||||
endif
|
||||
|
||||
complex*16 :: get_ao_two_e_integral_periodic
|
||||
do i=1,sze
|
||||
out_val(i) = get_ao_two_e_integral_periodic(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
@ -816,18 +433,4 @@ subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
|
||||
call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
subroutine insert_into_ao_integrals_map_2(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create new entry into AO map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_integrals_map_2, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
|
||||
|
546
src/ao_two_e_ints/map_integrals_complex.irp.f
Normal file
546
src/ao_two_e_ints/map_integrals_complex.irp.f
Normal file
@ -0,0 +1,546 @@
|
||||
use map_module
|
||||
|
||||
|
||||
subroutine two_e_integrals_index_periodic(i,j,k,l,i1,p,q)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives a unique index for i,j,k,l using permtuation symmetry.
|
||||
! i <-> k, j <-> l, and (i,k) <-> (j,l)
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: i1
|
||||
integer(key_kind) :: r,s,i2
|
||||
integer(key_kind),intent(out) :: p,q
|
||||
p = min(i,k)
|
||||
r = max(i,k)
|
||||
p = p+shiftr(r*r-r,1)
|
||||
q = min(j,l)
|
||||
s = max(j,l)
|
||||
q = q+shiftr(s*s-s,1)
|
||||
i1 = min(p,q)
|
||||
i2 = max(p,q)
|
||||
i1 = i1+shiftr(i2*i2-i2,1)
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine two_e_integrals_index_reverse_complex_1(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
|
||||
! For 2 indices $i,j$ and $i \le j$, we have
|
||||
! $p = i(i-1)/2 + j$.
|
||||
! The key point is that because $j < i$,
|
||||
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
|
||||
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
|
||||
! and $j = p - i(i-1)/2$.
|
||||
! This rule is applied 3 times. First for the symmetry of the
|
||||
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
|
||||
! always returns first set such that i<=k, j<=l, ik<=jl
|
||||
END_DOC
|
||||
integer, intent(out) :: i(4),j(4),k(4),l(4)
|
||||
integer(key_kind), intent(in) :: i1
|
||||
integer(key_kind) :: i2,i3
|
||||
i = 0
|
||||
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
|
||||
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
|
||||
i3 = i1 - shiftr(i2*i2-i2,1)
|
||||
k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
|
||||
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
|
||||
i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4)
|
||||
|
||||
!ijkl a+ib
|
||||
i(2) = j(1) !jilk a+ib
|
||||
j(2) = i(1)
|
||||
k(2) = l(1)
|
||||
l(2) = k(1)
|
||||
|
||||
i(3) = k(1) !klij a-ib
|
||||
j(3) = l(1)
|
||||
k(3) = i(1)
|
||||
l(3) = j(1)
|
||||
|
||||
i(4) = l(1) !lkji a-ib
|
||||
j(4) = k(1)
|
||||
k(4) = j(1)
|
||||
l(4) = i(1)
|
||||
|
||||
integer :: ii, jj
|
||||
do ii=2,4
|
||||
do jj=1,ii-1
|
||||
if ( (i(ii) == i(jj)).and. &
|
||||
(j(ii) == j(jj)).and. &
|
||||
(k(ii) == k(jj)).and. &
|
||||
(l(ii) == l(jj)) ) then
|
||||
i(ii) = 0
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine two_e_integrals_index_reverse_complex_2(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
|
||||
! For 2 indices $i,j$ and $i \le j$, we have
|
||||
! $p = i(i-1)/2 + j$.
|
||||
! The key point is that because $j < i$,
|
||||
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
|
||||
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
|
||||
! and $j = p - i(i-1)/2$.
|
||||
! This rule is applied 3 times. First for the symmetry of the
|
||||
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
|
||||
! always returns first set such that k<=i, j<=l, ik<=jl
|
||||
END_DOC
|
||||
integer, intent(out) :: i(4),j(4),k(4),l(4)
|
||||
integer(key_kind), intent(in) :: i1
|
||||
integer(key_kind) :: i2,i3
|
||||
i = 0
|
||||
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
|
||||
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
|
||||
i3 = i1 - shiftr(i2*i2-i2,1)
|
||||
i(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
|
||||
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
|
||||
k(1) = int(i3 - shiftr(i(1)*i(1)-i(1),1),4)
|
||||
|
||||
!kjil a+ib
|
||||
i(2) = j(1) !jkli a+ib
|
||||
j(2) = i(1)
|
||||
k(2) = l(1)
|
||||
l(2) = k(1)
|
||||
|
||||
i(3) = k(1) !ilkj a-ib
|
||||
j(3) = l(1)
|
||||
k(3) = i(1)
|
||||
l(3) = j(1)
|
||||
|
||||
i(4) = l(1) !lijk a-ib
|
||||
j(4) = k(1)
|
||||
k(4) = j(1)
|
||||
l(4) = i(1)
|
||||
|
||||
integer :: ii, jj
|
||||
do ii=2,4
|
||||
do jj=1,ii-1
|
||||
if ( (i(ii) == i(jj)).and. &
|
||||
(j(ii) == j(jj)).and. &
|
||||
(k(ii) == k(jj)).and. &
|
||||
(l(ii) == l(jj)) ) then
|
||||
i(ii) = 0
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of AO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx1, idx2
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
complex(integral_kind) :: integral
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl
|
||||
complex*16 :: get_ao_two_e_integral_periodic_simple
|
||||
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (ilek,jlel,p,q,r,s, ik,jl,iklejl, &
|
||||
!$OMP i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
|
||||
do l=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do k=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do j=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do i=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
integral = get_ao_two_e_integral_periodic_simple(i,j,k,l,&
|
||||
ao_integrals_map,ao_integrals_map_2)
|
||||
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
||||
ao_integrals_cache_periodic(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ao_two_e_integral_periodic_map_idx_sign(i,j,k,l,use_map1,idx,sign)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! get position of periodic AO integral <ij|kl>
|
||||
! use_map1: true if integral is in first ao map, false if integral is in second ao map
|
||||
! idx: position of real part of integral in map (imag part is at idx+1)
|
||||
! sign: sign of imaginary part
|
||||
!
|
||||
!
|
||||
! for <ab|cd>, conditionals are [a<c, b<d, ac<bd]
|
||||
! last two rows are real (ab==cd)
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | NEW | <ij|kl> | <ji|lk> | <kl|ij> | <lk|ji> | <kj|il> | <jk|li> | <il|kj> | <li|jk> |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | | m1 | m1* | m2 | m2* |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | <ij|kl> | TTT | TTF | FFT | FFF | FTT | TFF | TFT | FTF |
|
||||
! | <ij|il> | 0TT | T0F | 0FT | F0F | | | | |
|
||||
! | <ij|kj> | T0T | 0TF | F0T | 0FF | | | | |
|
||||
! | <ii|jj> | TT0 | | FF0 | | FT0(r) | TF0(r) | | |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
! | <ij|ij> | 00T | 00F | | | | | | |
|
||||
! | <ii|ii> | 000 | | | | | | | |
|
||||
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: idx
|
||||
logical, intent(out) :: use_map1
|
||||
double precision, intent(out) :: sign
|
||||
integer(key_kind) :: p,q,r,s,ik,jl,ij,kl
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index_periodic(i,j,k,l,idx,ik,jl)
|
||||
p = min(i,j)
|
||||
r = max(i,j)
|
||||
ij = p+shiftr(r*r-r,1)
|
||||
q = min(k,l)
|
||||
s = max(k,l)
|
||||
kl = q+shiftr(s*s-s,1)
|
||||
|
||||
idx = 2*idx-1
|
||||
|
||||
if (ij==kl) then !real, J -> map1, K -> map2
|
||||
sign=0.d0
|
||||
if (i==k) then
|
||||
use_map1=.True.
|
||||
else
|
||||
use_map1=.False.
|
||||
endif
|
||||
else
|
||||
if (ik.eq.jl) then
|
||||
if (i.lt.k) then !TT0
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else !FF0
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if (i.eq.k) then
|
||||
if (j.lt.l) then !0T*
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else !0F*
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if (j.eq.l) then
|
||||
if (i.lt.k) then
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else if ((i.lt.k).eqv.(j.lt.l)) then
|
||||
if (i.lt.k) then
|
||||
sign=1.d0
|
||||
use_map1=.True.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.True.
|
||||
endif
|
||||
else
|
||||
if ((j.lt.l).eqv.(ik.lt.jl)) then
|
||||
sign=1.d0
|
||||
use_map1=.False.
|
||||
else
|
||||
sign=-1.d0
|
||||
use_map1=.False.
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
complex*16 function get_ao_two_e_integral_periodic_simple(i,j,k,l,map,map2) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx1,idx2,idx
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
type(map_type), intent(inout) :: map,map2
|
||||
integer :: ii
|
||||
complex(integral_kind) :: tmp
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl,use_map1
|
||||
double precision :: sign
|
||||
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
call ao_two_e_integral_periodic_map_idx_sign(i,j,k,l,use_map1,idx,sign)
|
||||
if (use_map1) then
|
||||
call map_get(map,idx,tmp_re)
|
||||
if (sign/=0.d0) then
|
||||
call map_get(map,idx+1,tmp_im)
|
||||
tmp_im *= sign
|
||||
else
|
||||
tmp_im=0.d0
|
||||
endif
|
||||
else
|
||||
call map_get(map2,idx,tmp_re)
|
||||
if (sign/=0.d0) then
|
||||
call map_get(map2,idx+1,tmp_im)
|
||||
tmp_im *= sign
|
||||
else
|
||||
tmp_im=0.d0
|
||||
endif
|
||||
endif
|
||||
tmp = dcmplx(tmp_re,tmp_im)
|
||||
result = tmp
|
||||
end
|
||||
|
||||
|
||||
complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map,map2) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx1,idx2
|
||||
real(integral_kind) :: tmp_re, tmp_im
|
||||
integer(key_kind) :: idx_re,idx_im
|
||||
type(map_type), intent(inout) :: map,map2
|
||||
integer :: ii
|
||||
complex(integral_kind) :: tmp
|
||||
complex(integral_kind) :: get_ao_two_e_integral_periodic_simple
|
||||
integer(key_kind) :: p,q,r,s,ik,jl
|
||||
logical :: ilek, jlel, iklejl
|
||||
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
! if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
! tmp = (0.d0,0.d0)
|
||||
! else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
||||
! tmp = (0.d0,0.d0)
|
||||
! else
|
||||
if (.True.) then
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior(ii, k-ao_integrals_cache_min)
|
||||
ii = ior(ii, j-ao_integrals_cache_min)
|
||||
ii = ior(ii, i-ao_integrals_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
tmp = get_ao_two_e_integral_periodic_simple(i,j,k,l,map,map2)
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
||||
tmp = ao_integrals_cache_periodic(ii)
|
||||
endif
|
||||
result = tmp
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All i are retrieved for j,k,l fixed.
|
||||
! physicist convention : <ij|kl>
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
complex*16, intent(out) :: out_val(sze)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = (0.d0,0.d0)
|
||||
return
|
||||
endif
|
||||
|
||||
complex*16 :: get_ao_two_e_integral_periodic
|
||||
do i=1,sze
|
||||
out_val(i) = get_ao_two_e_integral_periodic(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
!subroutine get_ao_two_e_integrals_non_zero_periodic(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
||||
! use map_module
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! ! All non-zero i are retrieved for j,k,l fixed.
|
||||
! END_DOC
|
||||
! integer, intent(in) :: j,k,l, sze
|
||||
! real(integral_kind), intent(out) :: out_val(sze)
|
||||
! integer, intent(out) :: out_val_index(sze),non_zero_int
|
||||
!
|
||||
! integer :: i
|
||||
! integer(key_kind) :: hash
|
||||
! double precision :: thresh,tmp
|
||||
! if(is_periodic) then
|
||||
! print*,'not implemented for periodic:',irp_here
|
||||
! stop -1
|
||||
! endif
|
||||
! PROVIDE ao_two_e_integrals_in_map
|
||||
! thresh = ao_integrals_threshold
|
||||
!
|
||||
! non_zero_int = 0
|
||||
! if (ao_overlap_abs(j,l) < thresh) then
|
||||
! out_val = 0.d0
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! non_zero_int = 0
|
||||
! do i=1,sze
|
||||
! integer, external :: ao_l4
|
||||
! double precision, external :: ao_two_e_integral
|
||||
! !DIR$ FORCEINLINE
|
||||
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
! cycle
|
||||
! endif
|
||||
! call two_e_integrals_index(i,j,k,l,hash)
|
||||
! call map_get(ao_integrals_map, hash,tmp)
|
||||
! if (dabs(tmp) < thresh ) cycle
|
||||
! non_zero_int = non_zero_int+1
|
||||
! out_val_index(non_zero_int) = i
|
||||
! out_val(non_zero_int) = tmp
|
||||
! enddo
|
||||
!
|
||||
!end
|
||||
|
||||
|
||||
!subroutine get_ao_two_e_integrals_non_zero_jl_periodic(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)
|
||||
! use map_module
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! ! All non-zero i are retrieved for j,k,l fixed.
|
||||
! END_DOC
|
||||
! double precision, intent(in) :: thresh
|
||||
! integer, intent(in) :: j,l, sze,sze_max
|
||||
! real(integral_kind), intent(out) :: out_val(sze_max)
|
||||
! integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
||||
!
|
||||
! integer :: i,k
|
||||
! integer(key_kind) :: hash
|
||||
! double precision :: tmp
|
||||
!
|
||||
! if(is_periodic) then
|
||||
! print*,'not implemented for periodic:',irp_here
|
||||
! stop -1
|
||||
! endif
|
||||
! PROVIDE ao_two_e_integrals_in_map
|
||||
! non_zero_int = 0
|
||||
! if (ao_overlap_abs(j,l) < thresh) then
|
||||
! out_val = 0.d0
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! non_zero_int = 0
|
||||
! do k = 1, sze
|
||||
! do i = 1, sze
|
||||
! integer, external :: ao_l4
|
||||
! double precision, external :: ao_two_e_integral
|
||||
! !DIR$ FORCEINLINE
|
||||
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
! cycle
|
||||
! endif
|
||||
! call two_e_integrals_index(i,j,k,l,hash)
|
||||
! call map_get(ao_integrals_map, hash,tmp)
|
||||
! if (dabs(tmp) < thresh ) cycle
|
||||
! non_zero_int = non_zero_int+1
|
||||
! out_val_index(1,non_zero_int) = i
|
||||
! out_val_index(2,non_zero_int) = k
|
||||
! out_val(non_zero_int) = tmp
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
!end
|
||||
|
||||
|
||||
!subroutine get_ao_two_e_integrals_non_zero_jl_from_list_periodic(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int)
|
||||
! use map_module
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Gets multiple AO two-electron integrals from the AO map .
|
||||
! ! All non-zero i are retrieved for j,k,l fixed.
|
||||
! END_DOC
|
||||
! double precision, intent(in) :: thresh
|
||||
! integer, intent(in) :: sze_max
|
||||
! integer, intent(in) :: j,l, n_list,list(2,sze_max)
|
||||
! real(integral_kind), intent(out) :: out_val(sze_max)
|
||||
! integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
||||
!
|
||||
! integer :: i,k
|
||||
! integer(key_kind) :: hash
|
||||
! double precision :: tmp
|
||||
!
|
||||
! if(is_periodic) then
|
||||
! print*,'not implemented for periodic:',irp_here
|
||||
! stop -1
|
||||
! endif
|
||||
! PROVIDE ao_two_e_integrals_in_map
|
||||
! non_zero_int = 0
|
||||
! if (ao_overlap_abs(j,l) < thresh) then
|
||||
! out_val = 0.d0
|
||||
! return
|
||||
! endif
|
||||
!
|
||||
! non_zero_int = 0
|
||||
! integer :: kk
|
||||
! do kk = 1, n_list
|
||||
! k = list(1,kk)
|
||||
! i = list(2,kk)
|
||||
! integer, external :: ao_l4
|
||||
! double precision, external :: ao_two_e_integral
|
||||
! !DIR$ FORCEINLINE
|
||||
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
! cycle
|
||||
! endif
|
||||
! call two_e_integrals_index(i,j,k,l,hash)
|
||||
! call map_get(ao_integrals_map, hash,tmp)
|
||||
! if (dabs(tmp) < thresh ) cycle
|
||||
! non_zero_int = non_zero_int+1
|
||||
! out_val_index(1,non_zero_int) = i
|
||||
! out_val_index(2,non_zero_int) = k
|
||||
! out_val(non_zero_int) = tmp
|
||||
! enddo
|
||||
!
|
||||
!end
|
||||
|
||||
subroutine insert_into_ao_integrals_map_2(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create new entry into AO map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_integrals_map_2, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user