From 9d2d00f0404faf6aba2775864cb62d7089d0a234 Mon Sep 17 00:00:00 2001 From: Emmanuel Giner Date: Mon, 30 Mar 2020 16:00:50 +0200 Subject: [PATCH] more cleaning in functionals --- src/dft_utils_one_e/ec_lyp.irp.f | 125 --------- src/dft_utils_one_e/ec_lyp_2.irp.f | 28 -- src/dft_utils_one_e/ec_scan.irp.f | 99 ------- src/dft_utils_one_e/ec_scan_2.irp.f | 100 ------- src/dft_utils_one_e/effective_pot.irp.f | 3 + src/dft_utils_one_e/garbage_func.irp.f | 264 ++++++++++++++++++ src/dft_utils_one_e/rho_ab_to_rho_tot.irp.f | 34 +++ ...sr_lda.irp.f => routines_exc_sr_lda.irp.f} | 0 ...sr_pbe.irp.f => routines_exc_sr_pbe.irp.f} | 16 ++ src/dft_utils_one_e/sr_exc.irp.f | 86 ------ 10 files changed, 317 insertions(+), 438 deletions(-) delete mode 100644 src/dft_utils_one_e/ec_lyp.irp.f delete mode 100644 src/dft_utils_one_e/ec_lyp_2.irp.f delete mode 100644 src/dft_utils_one_e/ec_scan.irp.f delete mode 100644 src/dft_utils_one_e/ec_scan_2.irp.f create mode 100644 src/dft_utils_one_e/garbage_func.irp.f rename src/dft_utils_one_e/{exc_sr_lda.irp.f => routines_exc_sr_lda.irp.f} (100%) rename src/dft_utils_one_e/{exc_sr_pbe.irp.f => routines_exc_sr_pbe.irp.f} (96%) delete mode 100644 src/dft_utils_one_e/sr_exc.irp.f diff --git a/src/dft_utils_one_e/ec_lyp.irp.f b/src/dft_utils_one_e/ec_lyp.irp.f deleted file mode 100644 index 22d15a9c..00000000 --- a/src/dft_utils_one_e/ec_lyp.irp.f +++ /dev/null @@ -1,125 +0,0 @@ -subroutine give_all_stuffs_in_r_for_lyp_88(r,rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) - implicit none - double precision, intent(in) :: r(3) - double precision, intent(out) :: rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_2(N_states),rho(N_states) - double precision :: grad_rho_a(3,N_states),grad_rho_b(3,N_states),grad_rho_a_b(N_states) - double precision :: grad_aos_array(3,ao_num),aos_array(ao_num) - - call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,rho_a,rho_b, grad_rho_a, grad_rho_b, aos_array, grad_aos_array) - integer :: i,istate - rho = rho_a + rho_b - grad_rho_a_2 = 0.d0 - grad_rho_b_2 = 0.d0 - grad_rho_a_b = 0.d0 - do istate = 1, N_states - do i = 1, 3 - grad_rho_a_2(istate) += grad_rho_a(i,istate) * grad_rho_a(i,istate) - grad_rho_b_2(istate) += grad_rho_b(i,istate) * grad_rho_b(i,istate) - grad_rho_a_b(istate) += grad_rho_a(i,istate) * grad_rho_b(i,istate) - enddo - enddo - grad_rho_2 = grad_rho_a_2 + grad_rho_b_2 + 2.d0 * grad_rho_a_b - -end - - -double precision function ec_lyp_88(rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) - - implicit none - - BEGIN_DOC -! LYP functional of the Lee, Yan, Parr, Phys. Rev B 1988, Vol 37, page 785. -! The expression used is the one by Miehlich, Savin, Stoll, Preuss, CPL, 1989 which gets rid of the laplacian of the density - END_DOC - - include 'constants.include.F' - -! Input variables - double precision, intent(in) :: rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2 -! Local variables - double precision :: a,b,c,d,c_f,omega,delta - double precision :: rho_13,rho_inv_13,rho_83,rho_113,rho_inv_113,denom - double precision :: thr,huge_num,rho_inv - double precision :: cst_2_113,cst_8_3,rho_2,rho_a_2,rho_b_2 - double precision :: tmp1,tmp2,tmp3,tmp4 - double precision :: big1,big2,big3 - - -! Constants of the LYP correlation functional - - a = 0.04918d0 - b = 0.132d0 - c = 0.2533d0 - d = 0.349d0 - - ec_lyp_88 = 0.d0 - - thr = 1d-15 - huge_num = 1.d0/thr - if(dabs(rho_a).lt.thr)then - return - endif - - if(dabs(rho_b).lt.thr)then - return - endif - - if(rho.lt.0.d0)then - print*,'pb !! rho.lt.0.d0' - stop - endif - - rho_13 = rho**(1.d0/3.d0) - rho_113 = rho**(11.d0/3.d0) - - if(dabs(rho_13) < thr) then - rho_inv_13 = huge_num - else - rho_inv_13 = 1.d0/rho_13 - endif - - if (dabs(rho_113) < thr) then - rho_inv_113 = huge_num - else - rho_inv_113 = 1.d0/rho_113 - endif - - if (dabs(rho) < thr) then - rho_inv = huge_num - else - rho_inv = 1.d0/rho - endif - -! Useful quantities to predefine - - denom = 1d0/(1d0 + d*rho_inv_13) - omega = rho_inv_113*exp(-c*rho_inv_13)*denom - delta = c*rho_inv_13 + d*rho_inv_13*denom - c_f = 0.3d0*(3.d0*pi*pi)**(2.d0/3.d0) - - rho_2 = rho *rho - rho_a_2 = rho_a*rho_a - rho_b_2 = rho_b*rho_b - - cst_2_113 = 2.d0**(11.d0/3.d0) - cst_8_3 = 8.d0/3.d0 - - ! first term in the equation (2) of Preuss CPL, 1989 - - big1 = 4.d0*denom*rho_a*rho_b*rho_inv - - tmp1 = cst_2_113*c_f*(rho_a**cst_8_3 + rho_b**cst_8_3) - tmp2 = (47.d0/18.d0 - 7.d0/18.d0*delta)*grad_rho_2 - tmp3 = - (5d0/2d0 - 1.d0/18d0*delta)*(grad_rho_a_2 + grad_rho_b_2) - tmp4 = - (delta - 11d0)/9d0*(rho_a*rho_inv*grad_rho_a_2 + rho_b*rho_inv*grad_rho_b_2) - big2 = rho_a*rho_b*(tmp1 + tmp2 + tmp3 + tmp4) - - tmp1 = -2d0/3d0*rho_2*grad_rho_2 - tmp2 = grad_rho_b_2*(2d0/3d0*rho_2 - rho_a_2) - tmp3 = grad_rho_a_2*(2d0/3d0*rho_2 - rho_b_2) - big3 = tmp1 + tmp2 + tmp3 - - ec_lyp_88 = -a*big1 -a*b*omega*big2 -a*b*omega*big3 - -end - diff --git a/src/dft_utils_one_e/ec_lyp_2.irp.f b/src/dft_utils_one_e/ec_lyp_2.irp.f deleted file mode 100644 index e97a0e00..00000000 --- a/src/dft_utils_one_e/ec_lyp_2.irp.f +++ /dev/null @@ -1,28 +0,0 @@ -double precision function ec_lyp2(RhoA,RhoB,GA,GB,GAB) - include 'constants.include.F' - implicit none - double precision, intent(in) :: RhoA,RhoB,GA,GB,GAB - double precision :: Tol,caa,cab,cac,cad,cae,RA,RB,comega,cdelta,cLaa,cLbb,cLab,E - ec_lyp2 = 0.d0 - Tol=1D-14 - E=2.718281828459045D0 - caa=0.04918D0 - cab=0.132D0 - cac=0.2533D0 - cad=0.349D0 - cae=(2D0**(11D0/3D0))*((3D0/10D0)*((3D0*(Pi**2D0))**(2D0/3D0))) - - - RA = MAX(RhoA,0D0) - RB = MAX(RhoB,0D0) - IF ((RA.gt.Tol).OR.(RB.gt.Tol)) THEN - IF ((RA.gt.Tol).AND.(RB.gt.Tol)) THEN - comega = 1D0/(E**(cac/(RA+RB)**(1D0/3D0))*(RA+RB)**(10D0/3D0)*(cad+(RA+RB)**(1D0/3D0))) - cdelta = (cac+cad+(cac*cad)/(RA+RB)**(1D0/3D0))/(cad+(RA+RB)**(1D0/3D0)) - cLaa = (cab*comega*RB*(RA-3D0*cdelta*RA-9D0*RB-((-11D0+cdelta)*RA**2D0)/(RA+RB)))/9D0 - cLbb = (cab*comega*RA*(-9D0*RA+(RB*(RA-3D0*cdelta*RA-4D0*(-3D0+cdelta)*RB))/(RA+RB)))/9D0 - cLab = cab*comega*(((47D0-7D0*cdelta)*RA*RB)/9D0-(4D0*(RA+RB)**2D0)/3D0) - ec_lyp2 = -(caa*(cLaa*GA+cLab*GAB+cLbb*GB+cab*cae*comega*RA*RB*(RA**(8D0/3D0)+RB**(8D0/3D0))+(4D0*RA*RB)/(RA+RB+cad*(RA+RB)**(2D0/3D0)))) - endif - endif -end diff --git a/src/dft_utils_one_e/ec_scan.irp.f b/src/dft_utils_one_e/ec_scan.irp.f deleted file mode 100644 index 741129eb..00000000 --- a/src/dft_utils_one_e/ec_scan.irp.f +++ /dev/null @@ -1,99 +0,0 @@ -double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2) - include 'constants.include.F' - implicit none - double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2 - double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2 - double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0 - double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf - double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1 - double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0 - thr = 1.d-12 - nup = max(rho_a,thr) - ndo = max(rho_b,thr) - rho = nup + ndo - ec_scan = 0.d0 - if((rho).lt.thr)return - ! constants ... - rho_inv = 1.d0/rho - cst_13 = 1.d0/3.d0 - cst_23 = 2.d0 * cst_13 - cst_43 = 4.d0 * cst_13 - cst_53 = 5.d0 * cst_13 - cst_18 = 1.d0/8.d0 - cst_3pi2 = 3.d0 * pi*pi - drho2 = max(grad_rho_2,thr) - drho = dsqrt(drho2) - if((nup-ndo).gt.0.d0)then - spin_d = max(nup-ndo,thr) - else - spin_d = min(nup-ndo,-thr) - endif - c_1c = 0.64d0 - c_2c = 1.5d0 - d_c = 0.7d0 - b_1c = 0.0285764d0 - b_2c = 0.0889d0 - b_3c = 0.125541d0 - gama = 0.031091d0 - ! correlation energy lsda1 - call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1) - - ! correlation energy per particle - e_c_lsda1 = e_c_lsda1/rho - xi = spin_d/rho - rs = (cst_43 * pi * rho)**(-cst_13) - s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 ) - t_w = drho2 * cst_18 * rho_inv - ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53) - t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi - t_unif = max(t_unif,thr) - alpha = (tau - t_w)/t_unif - cst_1alph= 1.d0 - alpha - if(cst_1alph.gt.0.d0)then - cst_1alph= max(cst_1alph,thr) - else - cst_1alph= min(cst_1alph,-thr) - endif - inv_1alph= 1.d0/cst_1alph - phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23) - phi_3 = phi*phi*phi - t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0) - w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0 - a = beta_rs(rs) /(gama * w_1) - g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0 - h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2)) - ! interpolation function - - if(cst_1alph.gt.0.d0)then - fc_alpha = dexp(-c_1c * alpha * inv_1alph) - else - fc_alpha = - d_c * dexp(c_2c * inv_1alph) - endif - ! first part of the correlation energy - e_c_1 = e_c_lsda1 + h1 - - dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43) - gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0) - e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs) - w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0 - beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0 - cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi - - x_inf = 0.128026d0 - f0 = -0.9d0 - g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0 - - h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf)) - e_c_0 = (e_c_lsda0 + h0) * gc_xi - - ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1) -end - - -double precision function beta_rs(rs) - implicit none - double precision, intent(in) ::rs - beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) - -end - diff --git a/src/dft_utils_one_e/ec_scan_2.irp.f b/src/dft_utils_one_e/ec_scan_2.irp.f deleted file mode 100644 index 4807b89f..00000000 --- a/src/dft_utils_one_e/ec_scan_2.irp.f +++ /dev/null @@ -1,100 +0,0 @@ -double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2) - include 'constants.include.F' - implicit none - double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2 - double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2 - double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0 - double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf - double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1 - double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0 - thr = 1.d-12 - nup = max(rho_a,thr) - ndo = max(rho_b,thr) - rho = nup + ndo - ec_scan = 0.d0 - if((rho).lt.thr)return - ! constants ... - rho_inv = 1.d0/rho - cst_13 = 1.d0/3.d0 - cst_23 = 2.d0 * cst_13 - cst_43 = 4.d0 * cst_13 - cst_53 = 5.d0 * cst_13 - cst_18 = 1.d0/8.d0 - cst_3pi2 = 3.d0 * pi*pi - drho2 = max(grad_rho_2,thr) - drho = dsqrt(drho2) - if((nup-ndo).gt.0.d0)then - spin_d = max(nup-ndo,thr) - else - spin_d = min(nup-ndo,-thr) - endif - c_1c = 0.64d0 - c_2c = 1.5d0 - d_c = 0.7d0 - b_1c = 0.0285764d0 - b_2c = 0.0889d0 - b_3c = 0.125541d0 - gama = 0.031091d0 - ! correlation energy lsda1 - call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1) - - xi = spin_d/rho - rs = (cst_43 * pi * rho)**(-cst_13) - s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 ) - t_w = drho2 * cst_18 * rho_inv - ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53) - t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi - t_unif = max(t_unif,thr) - alpha = (tau - t_w)/t_unif - cst_1alph= 1.d0 - alpha - if(cst_1alph.gt.0.d0)then - cst_1alph= max(cst_1alph,thr) - else - cst_1alph= min(cst_1alph,-thr) - endif - inv_1alph= 1.d0/cst_1alph - phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23) - phi_3 = phi*phi*phi - t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0) - w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0 - a = beta_rs(rs) /(gama * w_1) - g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0 - h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2)) - ! interpolation function - fc_alpha = dexp(-c_1c * alpha * inv_1alph) * step_f(cst_1alph) - d_c * dexp(c_2c * inv_1alph) * step_f(-cst_1alph) - ! first part of the correlation energy - e_c_1 = e_c_lsda1 + h1 - - dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43) - gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0) - e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs) - w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0 - beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0 - cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi - - x_inf = 0.128026d0 - f0 = -0.9d0 - g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0 - - h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf)) - e_c_0 = (e_c_lsda0 + h0) * gc_xi - - ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1) -end - -double precision function step_f(x) - implicit none - double precision, intent(in) :: x - if(x.lt.0.d0)then - step_f = 0.d0 - else - step_f = 1.d0 - endif -end - -double precision function beta_rs(rs) - implicit none - double precision, intent(in) ::rs - beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) - -end diff --git a/src/dft_utils_one_e/effective_pot.irp.f b/src/dft_utils_one_e/effective_pot.irp.f index cf36060a..5a61de15 100644 --- a/src/dft_utils_one_e/effective_pot.irp.f +++ b/src/dft_utils_one_e/effective_pot.irp.f @@ -7,8 +7,11 @@ ! Effective_one_e_potential(i,j) = $\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle$ ! ! on the |MO| basis +! ! Taking the expectation value does not provide any energy, but +! ! effective_one_e_potential(i,j) is the potential coupling DFT and WFT part to +! ! be used in any WFT calculation. ! END_DOC diff --git a/src/dft_utils_one_e/garbage_func.irp.f b/src/dft_utils_one_e/garbage_func.irp.f new file mode 100644 index 00000000..d104a69f --- /dev/null +++ b/src/dft_utils_one_e/garbage_func.irp.f @@ -0,0 +1,264 @@ + +subroutine give_all_stuffs_in_r_for_lyp_88(r,rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) + implicit none + double precision, intent(in) :: r(3) + double precision, intent(out) :: rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_2(N_states),rho(N_states) + double precision :: grad_rho_a(3,N_states),grad_rho_b(3,N_states),grad_rho_a_b(N_states) + double precision :: grad_aos_array(3,ao_num),aos_array(ao_num) + + call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,rho_a,rho_b, grad_rho_a, grad_rho_b, aos_array, grad_aos_array) + integer :: i,istate + rho = rho_a + rho_b + grad_rho_a_2 = 0.d0 + grad_rho_b_2 = 0.d0 + grad_rho_a_b = 0.d0 + do istate = 1, N_states + do i = 1, 3 + grad_rho_a_2(istate) += grad_rho_a(i,istate) * grad_rho_a(i,istate) + grad_rho_b_2(istate) += grad_rho_b(i,istate) * grad_rho_b(i,istate) + grad_rho_a_b(istate) += grad_rho_a(i,istate) * grad_rho_b(i,istate) + enddo + enddo + grad_rho_2 = grad_rho_a_2 + grad_rho_b_2 + 2.d0 * grad_rho_a_b + +end + + +double precision function ec_lyp_88(rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) + + implicit none + + BEGIN_DOC +! LYP functional of the Lee, Yan, Parr, Phys. Rev B 1988, Vol 37, page 785. +! The expression used is the one by Miehlich, Savin, Stoll, Preuss, CPL, 1989 which gets rid of the laplacian of the density + END_DOC + + include 'constants.include.F' + +! Input variables + double precision, intent(in) :: rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2 +! Local variables + double precision :: a,b,c,d,c_f,omega,delta + double precision :: rho_13,rho_inv_13,rho_83,rho_113,rho_inv_113,denom + double precision :: thr,huge_num,rho_inv + double precision :: cst_2_113,cst_8_3,rho_2,rho_a_2,rho_b_2 + double precision :: tmp1,tmp2,tmp3,tmp4 + double precision :: big1,big2,big3 + + +! Constants of the LYP correlation functional + + a = 0.04918d0 + b = 0.132d0 + c = 0.2533d0 + d = 0.349d0 + + ec_lyp_88 = 0.d0 + + thr = 1d-15 + huge_num = 1.d0/thr + if(dabs(rho_a).lt.thr)then + return + endif + + if(dabs(rho_b).lt.thr)then + return + endif + + if(rho.lt.0.d0)then + print*,'pb !! rho.lt.0.d0' + stop + endif + + rho_13 = rho**(1.d0/3.d0) + rho_113 = rho**(11.d0/3.d0) + + if(dabs(rho_13) < thr) then + rho_inv_13 = huge_num + else + rho_inv_13 = 1.d0/rho_13 + endif + + if (dabs(rho_113) < thr) then + rho_inv_113 = huge_num + else + rho_inv_113 = 1.d0/rho_113 + endif + + if (dabs(rho) < thr) then + rho_inv = huge_num + else + rho_inv = 1.d0/rho + endif + +! Useful quantities to predefine + + denom = 1d0/(1d0 + d*rho_inv_13) + omega = rho_inv_113*exp(-c*rho_inv_13)*denom + delta = c*rho_inv_13 + d*rho_inv_13*denom + c_f = 0.3d0*(3.d0*pi*pi)**(2.d0/3.d0) + + rho_2 = rho *rho + rho_a_2 = rho_a*rho_a + rho_b_2 = rho_b*rho_b + + cst_2_113 = 2.d0**(11.d0/3.d0) + cst_8_3 = 8.d0/3.d0 + + ! first term in the equation (2) of Preuss CPL, 1989 + + big1 = 4.d0*denom*rho_a*rho_b*rho_inv + + tmp1 = cst_2_113*c_f*(rho_a**cst_8_3 + rho_b**cst_8_3) + tmp2 = (47.d0/18.d0 - 7.d0/18.d0*delta)*grad_rho_2 + tmp3 = - (5d0/2d0 - 1.d0/18d0*delta)*(grad_rho_a_2 + grad_rho_b_2) + tmp4 = - (delta - 11d0)/9d0*(rho_a*rho_inv*grad_rho_a_2 + rho_b*rho_inv*grad_rho_b_2) + big2 = rho_a*rho_b*(tmp1 + tmp2 + tmp3 + tmp4) + + tmp1 = -2d0/3d0*rho_2*grad_rho_2 + tmp2 = grad_rho_b_2*(2d0/3d0*rho_2 - rho_a_2) + tmp3 = grad_rho_a_2*(2d0/3d0*rho_2 - rho_b_2) + big3 = tmp1 + tmp2 + tmp3 + + ec_lyp_88 = -a*big1 -a*b*omega*big2 -a*b*omega*big3 + +end + +double precision function ec_lyp2(RhoA,RhoB,GA,GB,GAB) + include 'constants.include.F' + implicit none + double precision, intent(in) :: RhoA,RhoB,GA,GB,GAB + double precision :: Tol,caa,cab,cac,cad,cae,RA,RB,comega,cdelta,cLaa,cLbb,cLab,E + ec_lyp2 = 0.d0 + Tol=1D-14 + E=2.718281828459045D0 + caa=0.04918D0 + cab=0.132D0 + cac=0.2533D0 + cad=0.349D0 + cae=(2D0**(11D0/3D0))*((3D0/10D0)*((3D0*(Pi**2D0))**(2D0/3D0))) + + + RA = MAX(RhoA,0D0) + RB = MAX(RhoB,0D0) + IF ((RA.gt.Tol).OR.(RB.gt.Tol)) THEN + IF ((RA.gt.Tol).AND.(RB.gt.Tol)) THEN + comega = 1D0/(E**(cac/(RA+RB)**(1D0/3D0))*(RA+RB)**(10D0/3D0)*(cad+(RA+RB)**(1D0/3D0))) + cdelta = (cac+cad+(cac*cad)/(RA+RB)**(1D0/3D0))/(cad+(RA+RB)**(1D0/3D0)) + cLaa = (cab*comega*RB*(RA-3D0*cdelta*RA-9D0*RB-((-11D0+cdelta)*RA**2D0)/(RA+RB)))/9D0 + cLbb = (cab*comega*RA*(-9D0*RA+(RB*(RA-3D0*cdelta*RA-4D0*(-3D0+cdelta)*RB))/(RA+RB)))/9D0 + cLab = cab*comega*(((47D0-7D0*cdelta)*RA*RB)/9D0-(4D0*(RA+RB)**2D0)/3D0) + ec_lyp2 = -(caa*(cLaa*GA+cLab*GAB+cLbb*GB+cab*cae*comega*RA*RB*(RA**(8D0/3D0)+RB**(8D0/3D0))+(4D0*RA*RB)/(RA+RB+cad*(RA+RB)**(2D0/3D0)))) + endif + endif +end + +double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2) + include 'constants.include.F' + implicit none + double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2 + double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2 + double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0 + double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf + double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1 + double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0 + thr = 1.d-12 + nup = max(rho_a,thr) + ndo = max(rho_b,thr) + rho = nup + ndo + ec_scan = 0.d0 + if((rho).lt.thr)return + ! constants ... + rho_inv = 1.d0/rho + cst_13 = 1.d0/3.d0 + cst_23 = 2.d0 * cst_13 + cst_43 = 4.d0 * cst_13 + cst_53 = 5.d0 * cst_13 + cst_18 = 1.d0/8.d0 + cst_3pi2 = 3.d0 * pi*pi + drho2 = max(grad_rho_2,thr) + drho = dsqrt(drho2) + if((nup-ndo).gt.0.d0)then + spin_d = max(nup-ndo,thr) + else + spin_d = min(nup-ndo,-thr) + endif + c_1c = 0.64d0 + c_2c = 1.5d0 + d_c = 0.7d0 + b_1c = 0.0285764d0 + b_2c = 0.0889d0 + b_3c = 0.125541d0 + gama = 0.031091d0 + ! correlation energy lsda1 + call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1) + + ! correlation energy per particle + e_c_lsda1 = e_c_lsda1/rho + xi = spin_d/rho + rs = (cst_43 * pi * rho)**(-cst_13) + s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 ) + t_w = drho2 * cst_18 * rho_inv + ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53) + t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi + t_unif = max(t_unif,thr) + alpha = (tau - t_w)/t_unif + cst_1alph= 1.d0 - alpha + if(cst_1alph.gt.0.d0)then + cst_1alph= max(cst_1alph,thr) + else + cst_1alph= min(cst_1alph,-thr) + endif + inv_1alph= 1.d0/cst_1alph + phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23) + phi_3 = phi*phi*phi + t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0) + w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0 + a = beta_rs(rs) /(gama * w_1) + g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0 + h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2)) + ! interpolation function + + if(cst_1alph.gt.0.d0)then + fc_alpha = dexp(-c_1c * alpha * inv_1alph) + else + fc_alpha = - d_c * dexp(c_2c * inv_1alph) + endif + ! first part of the correlation energy + e_c_1 = e_c_lsda1 + h1 + + dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43) + gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0) + e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs) + w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0 + beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0 + cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi + + x_inf = 0.128026d0 + f0 = -0.9d0 + g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0 + + h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf)) + e_c_0 = (e_c_lsda0 + h0) * gc_xi + + ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1) +end + + +double precision function beta_rs(rs) + implicit none + double precision, intent(in) ::rs + beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) + +end + + +double precision function step_f(x) + implicit none + double precision, intent(in) :: x + if(x.lt.0.d0)then + step_f = 0.d0 + else + step_f = 1.d0 + endif +end diff --git a/src/dft_utils_one_e/rho_ab_to_rho_tot.irp.f b/src/dft_utils_one_e/rho_ab_to_rho_tot.irp.f index 272a49bb..919543fe 100644 --- a/src/dft_utils_one_e/rho_ab_to_rho_tot.irp.f +++ b/src/dft_utils_one_e/rho_ab_to_rho_tot.irp.f @@ -1,5 +1,10 @@ subroutine rho_ab_to_rho_oc(rho_a,rho_b,rho_o,rho_c) implicit none + BEGIN_DOC +! convert rho_alpha, rho_beta to rho_c, rho_o +! +! rho_c = total density, rho_o spin density + END_DOC double precision, intent(in) :: rho_a,rho_b double precision, intent(out) :: rho_o,rho_c rho_c=rho_a+rho_b @@ -8,6 +13,11 @@ end subroutine rho_oc_to_rho_ab(rho_o,rho_c,rho_a,rho_b) implicit none + BEGIN_DOC +! convert rho_c, rho_o to rho_alpha, rho_beta +! +! rho_c = total density, rho_o spin density + END_DOC double precision, intent(in) :: rho_o,rho_c double precision, intent(out) :: rho_a,rho_b rho_a= 0.5d0*(rho_c+rho_o) @@ -18,6 +28,13 @@ end subroutine grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,grad_rho_o_2,grad_rho_c_2,grad_rho_o_c) implicit none + BEGIN_DOC +! convert (grad_rho_a_2, grad_rho_b_2, grad_rho_a.grad_rho_b, ) +! +! to (grad_rho_c_2, grad_rho_o_2, grad_rho_o.grad_rho_c) +! +! rho_c = total density, rho_o spin density + END_DOC double precision, intent(in) :: grad_rho_a_2,grad_rho_b_2,grad_rho_a_b double precision, intent(out) :: grad_rho_o_2,grad_rho_c_2,grad_rho_o_c grad_rho_c_2 = grad_rho_a_2 + grad_rho_b_2 + 2d0*grad_rho_a_b @@ -28,6 +45,11 @@ end subroutine v_rho_ab_to_v_rho_oc(v_rho_a,v_rho_b,v_rho_o,v_rho_c) + BEGIN_DOC +! convert v_rho_alpha, v_rho_beta to v_rho_c, v_rho_o +! +! rho_c = total density, rho_o spin density + END_DOC implicit none double precision, intent(in) :: v_rho_a,v_rho_b double precision, intent(out) :: v_rho_o,v_rho_c @@ -37,6 +59,11 @@ end subroutine v_rho_oc_to_v_rho_ab(v_rho_o,v_rho_c,v_rho_a,v_rho_b) implicit none + BEGIN_DOC +! convert v_rho_alpha, v_rho_beta to v_rho_c, v_rho_o +! +! rho_c = total density, rho_o spin density + END_DOC double precision, intent(in) :: v_rho_o,v_rho_c double precision, intent(out) :: v_rho_a,v_rho_b v_rho_a = v_rho_c + v_rho_o @@ -47,6 +74,13 @@ end subroutine v_grad_rho_oc_to_v_grad_rho_ab(v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c,v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b) implicit none + BEGIN_DOC +! convert (v_grad_rho_c_2, v_grad_rho_o_2, v_grad_rho_o.grad_rho_c) +! +! to (v_grad_rho_a_2, v_grad_rho_b_2, v_grad_rho_a.grad_rho_b) +! +! rho_c = total density, rho_o spin density + END_DOC double precision, intent(in) :: v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c double precision, intent(out) :: v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b v_grad_rho_a_2 = v_grad_rho_o_2 + v_grad_rho_c_2 + v_grad_rho_o_c diff --git a/src/dft_utils_one_e/exc_sr_lda.irp.f b/src/dft_utils_one_e/routines_exc_sr_lda.irp.f similarity index 100% rename from src/dft_utils_one_e/exc_sr_lda.irp.f rename to src/dft_utils_one_e/routines_exc_sr_lda.irp.f diff --git a/src/dft_utils_one_e/exc_sr_pbe.irp.f b/src/dft_utils_one_e/routines_exc_sr_pbe.irp.f similarity index 96% rename from src/dft_utils_one_e/exc_sr_pbe.irp.f rename to src/dft_utils_one_e/routines_exc_sr_pbe.irp.f index 4188ebc6..fe4cb40e 100644 --- a/src/dft_utils_one_e/exc_sr_pbe.irp.f +++ b/src/dft_utils_one_e/routines_exc_sr_pbe.irp.f @@ -189,16 +189,27 @@ end subroutine ex_pbe_sr(mu,rho_a,rho_b,grd_rho_a_2,grd_rho_b_2,grd_rho_a_b,ex,vx_rho_a,vx_rho_b,vx_grd_rho_a_2,vx_grd_rho_b_2,vx_grd_rho_a_b) BEGIN_DOC !mu = range separation parameter +! !rho_a = density alpha +! !rho_b = density beta +! !grd_rho_a_2 = (gradient rho_a)^2 +! !grd_rho_b_2 = (gradient rho_b)^2 +! !grd_rho_a_b = (gradient rho_a).(gradient rho_b) +! !ex = exchange energy density at the density and corresponding gradients of the density +! !vx_rho_a = d ex / d rho_a +! !vx_rho_b = d ex / d rho_b +! !vx_grd_rho_a_2 = d ex / d grd_rho_a_2 +! !vx_grd_rho_b_2 = d ex / d grd_rho_b_2 +! !vx_grd_rho_a_b = d ex / d grd_rho_a_b END_DOC @@ -313,10 +324,15 @@ END_DOC subroutine ex_pbe_sr_only(mu,rho_a,rho_b,grd_rho_a_2,grd_rho_b_2,grd_rho_a_b,ex) BEGIN_DOC !rho_a = density alpha +! !rho_b = density beta +! !grd_rho_a_2 = (gradient rho_a)^2 +! !grd_rho_b_2 = (gradient rho_b)^2 +! !grd_rho_a_b = (gradient rho_a).(gradient rho_b) +! !ex = exchange energy density at point r END_DOC diff --git a/src/dft_utils_one_e/sr_exc.irp.f b/src/dft_utils_one_e/sr_exc.irp.f deleted file mode 100644 index c6bfcd09..00000000 --- a/src/dft_utils_one_e/sr_exc.irp.f +++ /dev/null @@ -1,86 +0,0 @@ - - - BEGIN_PROVIDER[double precision, energy_sr_x_lda, (N_states) ] -&BEGIN_PROVIDER[double precision, energy_sr_c_lda, (N_states) ] - implicit none - BEGIN_DOC -! exchange/correlation energy with the short range lda functional - END_DOC - integer :: istate,i,j - double precision :: r(3) - double precision :: mu,weight - double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b - double precision, allocatable :: rhoa(:),rhob(:) - allocate(rhoa(N_states), rhob(N_states)) - energy_sr_x_lda = 0.d0 - energy_sr_c_lda = 0.d0 - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) - rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) - call ec_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) - call ex_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) - energy_sr_x_lda(istate) += weight * e_x - energy_sr_c_lda(istate) += weight * e_c - enddo - enddo - - END_PROVIDER - - BEGIN_PROVIDER[double precision, energy_sr_x_pbe, (N_states) ] -&BEGIN_PROVIDER[double precision, energy_sr_c_pbe, (N_states) ] - implicit none - BEGIN_DOC -! exchange/correlation energy with the short range pbe functional - END_DOC - integer :: istate,i,j,m - double precision :: r(3) - double precision :: mu,weight - double precision, allocatable :: ex(:), ec(:) - double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) - double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) - double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) - double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) - allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) - allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) - - - allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) - allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) - energy_sr_x_pbe = 0.d0 - energy_sr_c_pbe = 0.d0 - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) - rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) - grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) - grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) - grad_rho_a_2 = 0.d0 - grad_rho_b_2 = 0.d0 - grad_rho_a_b = 0.d0 - do m = 1, 3 - grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) - grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) - grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) - enddo - - ! inputs - call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange - ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation - ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) - energy_sr_x_pbe += ex * weight - energy_sr_c_pbe += ec * weight - enddo - enddo - - -END_PROVIDER -