mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-06 19:33:07 +01:00
added torus modif in 2e-integrals
This commit is contained in:
parent
5d96362250
commit
9c459583bd
@ -633,88 +633,3 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine ssd_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: sign
|
||||
|
||||
x = x1 - x2
|
||||
|
||||
if(x >= 0.d0) then
|
||||
sign = +1.d0
|
||||
else
|
||||
sign = -1.d0
|
||||
endif
|
||||
|
||||
if(dabs(x) > 0.5d0 * lx) then
|
||||
x = -1.d0 * sign * (lx - dabs(x))
|
||||
endif
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine ssd_euc_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: ax, sign
|
||||
|
||||
ax = 2.d0 * pi / lx
|
||||
|
||||
call ssd_torus(x1, x2, lx, x)
|
||||
|
||||
if(x >= 0.d0) then
|
||||
sign = +1.d0
|
||||
else
|
||||
sign = -1.d0
|
||||
endif
|
||||
|
||||
x = sign * dabs(x)
|
||||
|
||||
x = sign * dsqrt(2.d0 * (1.d0 - dcos(ax*x)) / (ax * ax))
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine pbd_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: sign
|
||||
|
||||
x = x1 - x2
|
||||
|
||||
if(dabs(x) > 0.5d0 * lx) then
|
||||
|
||||
x = lx - dabs(x)
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
@ -3,6 +3,8 @@ logical function ao_two_e_integral_zero(i,j,k,l)
|
||||
integer, intent(in) :: i,j,k,l
|
||||
|
||||
ao_two_e_integral_zero = .False.
|
||||
if(do_torus) return
|
||||
|
||||
if (.not.(read_ao_two_e_integrals.or.is_periodic)) then
|
||||
if (ao_overlap_abs(j,l)*ao_overlap_abs(i,k) < ao_integrals_threshold) then
|
||||
ao_two_e_integral_zero = .True.
|
||||
|
@ -24,6 +24,7 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
double precision, external :: ao_two_e_integral_erf
|
||||
double precision, external :: ao_two_e_integral_cosgtos
|
||||
double precision, external :: ao_two_e_integral_schwartz_accel
|
||||
double precision, external :: ao_two_e_integral_torus
|
||||
|
||||
|
||||
if(use_cosgtos) then
|
||||
@ -31,15 +32,21 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
|
||||
elseif(do_torus) then
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_torus(i, j, k, l)
|
||||
|
||||
else if (use_only_lr) then
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l)
|
||||
|
||||
else if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
else
|
||||
|
||||
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l)
|
||||
|
||||
else
|
||||
else
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
@ -119,6 +126,7 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
endif
|
||||
|
411
src/ao_two_e_ints/two_e_integrals_torus.irp.f
Normal file
411
src/ao_two_e_ints/two_e_integrals_torus.irp.f
Normal file
@ -0,0 +1,411 @@
|
||||
|
||||
! ---
|
||||
|
||||
double precision function ao_two_e_integral_torus(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! TODO
|
||||
!
|
||||
! integral of the AO basis <ik|jl> or (ij|kl)
|
||||
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, dim1
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: integral
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: p_inv, q_inv
|
||||
|
||||
double precision, external :: ERI
|
||||
double precision, external :: general_primitive_integral_torus
|
||||
|
||||
|
||||
PROVIDE torus_length
|
||||
PROVIDE n_pt_max_integrals
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_two_e_integral_torus = 0.d0
|
||||
|
||||
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
|
||||
call give_explicit_poly_and_gaussian_torus(P_new, P_center, pp, fact_p, iorder_p, &
|
||||
ao_expo_ordered_transp(p,i), &
|
||||
ao_expo_ordered_transp(q,j), &
|
||||
I_power, J_power, I_center, J_center, torus_length, dim1)
|
||||
|
||||
|
||||
p_inv = 1.d0 / pp
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
|
||||
call give_explicit_poly_and_gaussian_torus(Q_new, Q_center, qq, fact_q, iorder_q, &
|
||||
ao_expo_ordered_transp(r,k), &
|
||||
ao_expo_ordered_transp(s,l), &
|
||||
K_power, L_power, K_center, L_center, torus_length, dim1)
|
||||
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
integral = general_primitive_integral_torus(torus_length, dim1, &
|
||||
P_new, P_center, fact_p, pp, p_inv, iorder_p, &
|
||||
Q_new, Q_center, fact_q, qq, q_inv, iorder_q)
|
||||
|
||||
ao_two_e_integral_torus += coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
else
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
enddo
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
|
||||
integral = ERI(ao_expo_ordered_transp(p,i), ao_expo_ordered_transp(q,j), &
|
||||
ao_expo_ordered_transp(r,k), ao_expo_ordered_transp(s,l), &
|
||||
I_power(1), J_power(1), K_power(1), L_power(1), &
|
||||
I_power(2), J_power(2), K_power(2), L_power(2), &
|
||||
I_power(3), J_power(3), K_power(3), L_power(3))
|
||||
|
||||
ao_two_e_integral_torus = ao_two_e_integral_torus + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
double precision function general_primitive_integral_torus(torus_L, dim, &
|
||||
P_new, P_center, fact_p, p, p_inv, iorder_p, &
|
||||
Q_new, Q_center, fact_q, q, q_inv, iorder_q)
|
||||
|
||||
implicit none
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! TODO
|
||||
!
|
||||
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||||
!
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), iorder_q(3)
|
||||
double precision, intent(in) :: torus_L(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: ix,iy,iz,jx,jy,jz,i
|
||||
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||||
integer :: n_pt_tmp,n_pt_out, iorder
|
||||
integer :: ib, ic
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||||
double precision :: d1(0:max_dim),d_poly(0:max_dim),d1_screened(0:max_dim)
|
||||
double precision :: dist_tmp_x, dist_tmp_y, dist_tmp_z
|
||||
|
||||
|
||||
double precision, external :: rint_sum
|
||||
|
||||
general_primitive_integral_torus = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
|
||||
pq = p_inv*0.5d0*q_inv
|
||||
pq_inv = 0.5d0/(p+q)
|
||||
p10_1 = q*pq ! 1/(2p)
|
||||
p01_1 = p*pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv+pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||||
do ix=0,iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
if (abs(P_new(ix,1)) < thresh) cycle
|
||||
a = P_new(ix,1)
|
||||
do jx = 0, iorder_q(1)
|
||||
d = a*Q_new(jx,1)
|
||||
if (abs(d) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x_torus(torus_L(1), P_center(1), Q_center(1), ix, jx, p, q, iorder, &
|
||||
pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if (n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||||
do ix=0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
if (abs(P_new(iy,2)) > thresh) then
|
||||
b = P_new(iy,2)
|
||||
do jy = 0, iorder_q(2)
|
||||
e = b*Q_new(jy,2)
|
||||
if (abs(e) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x_torus(torus_L(2), P_center(2), Q_center(2), iy, jy, p, q, iorder, &
|
||||
pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||||
do ix=0,iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
if (abs(P_new(iz,3)) > thresh) then
|
||||
c = P_new(iz,3)
|
||||
do jz = 0, iorder_q(3)
|
||||
f = c*Q_new(jz,3)
|
||||
if (abs(f) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x_torus(torus_L(3), P_center(3), Q_center(3), iz, jz, p, q, iorder, &
|
||||
pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
|
||||
! old
|
||||
!dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||||
! (P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||||
! (P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||||
! new
|
||||
call ssd_euc_torus(P_center(1), Q_center(1), torus_L(1), dist_tmp_x)
|
||||
call ssd_euc_torus(P_center(2), Q_center(2), torus_L(2), dist_tmp_y)
|
||||
call ssd_euc_torus(P_center(3), Q_center(3), torus_L(3), dist_tmp_z)
|
||||
dist = dist_tmp_x * dist_tmp_x + dist_tmp_y * dist_tmp_y + dist_tmp_z * dist_tmp_z
|
||||
|
||||
const = dist * rho
|
||||
|
||||
n_pt_tmp = n_Ix+n_Iy
|
||||
do i=0,n_pt_tmp
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
if (ior(n_Ix,n_Iy) >= 0) then
|
||||
do ib=0,n_Ix
|
||||
do ic = 0,n_Iy
|
||||
d_poly(ib+ic) = d_poly(ib+ic) + Iy_pol(ic) * Ix_pol(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do n_pt_tmp = n_Ix+n_Iy, 0, -1
|
||||
if (d_poly(n_pt_tmp) /= 0.d0) exit
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp+n_Iz
|
||||
do i=0,n_pt_out
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
if (ior(n_pt_tmp,n_Iz) >= 0) then
|
||||
! Bottleneck here
|
||||
do ib=0,n_pt_tmp
|
||||
do ic = 0,n_Iz
|
||||
d1(ib+ic) = d1(ib+ic) + Iz_pol(ic) * d_poly(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do n_pt_out = n_pt_tmp+n_Iz, 0, -1
|
||||
if (d1(n_pt_out) /= 0.d0) exit
|
||||
enddo
|
||||
endif
|
||||
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_torus = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_polynom_mult_center_x_torus(Lx, P_center, Q_center, a_x, d_x, p, q, n_pt_in, pq_inv, pq_inv_2, &
|
||||
p10_1, p01_1, p10_2, p01_2, d, n_pt_out)
|
||||
|
||||
implicit none
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
BEGIN_DOC
|
||||
! subroutine that returns the explicit polynom in term of the "t"
|
||||
! variable of the following polynomw :
|
||||
!
|
||||
! $I_{x_1}(a_x,d_x,p,q) \, I_{x_1}(a_y,d_y,p,q) \ I_{x_1}(a_z,d_z,p,q)$
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_pt_in
|
||||
integer, intent(in) :: a_x, d_x
|
||||
double precision, intent(in) :: Lx
|
||||
double precision, intent(in) :: P_center, Q_center
|
||||
double precision, intent(in) :: p, q, pq_inv, p10_1, p01_1, p10_2, p01_2, pq_inv_2
|
||||
|
||||
integer, intent(out) :: n_pt_out
|
||||
double precision, intent(out) :: d(0:max_dim)
|
||||
|
||||
integer :: n_pt1, dim, i
|
||||
double precision :: B10(0:2), B01(0:2), B00(0:2),C00(0:2),D00(0:2)
|
||||
|
||||
double precision :: accu, tmp
|
||||
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
|
||||
B10(0) = p10_1
|
||||
B10(1) = 0.d0
|
||||
B10(2) = - p10_2
|
||||
|
||||
B01(0) = p01_1
|
||||
B01(1) = 0.d0
|
||||
B01(2) = - p01_2
|
||||
|
||||
B00(0) = 0.d0
|
||||
B00(1) = 0.d0
|
||||
B00(2) = pq_inv
|
||||
|
||||
do i = 0, n_pt_in
|
||||
d(i) = 0.d0
|
||||
enddo
|
||||
|
||||
n_pt1 = n_pt_in
|
||||
|
||||
! ---
|
||||
|
||||
C00(0) = 0.d0
|
||||
C00(1) = 0.d0
|
||||
|
||||
|
||||
! old
|
||||
!C00(2) = -q*(P_center-Q_center) * pq_inv_2
|
||||
|
||||
! torus
|
||||
!call ssd_torus(P_center, Q_center, Lx, tmp)
|
||||
call ssd_euc_torus(P_center, Q_center, Lx, tmp)
|
||||
C00(2) = -q * tmp * pq_inv_2
|
||||
|
||||
! ---
|
||||
|
||||
D00(0) = 0.d0
|
||||
D00(1) = 0.d0
|
||||
|
||||
|
||||
! old
|
||||
!D00(2) = -p*(Q_center-P_center) * pq_inv_2
|
||||
|
||||
! torus
|
||||
!call ssd_torus(Q_center, P_center, Lx, tmp)
|
||||
call ssd_euc_torus(Q_center, P_center, Lx, tmp)
|
||||
D00(2) = -p * tmp * pq_inv_2
|
||||
|
||||
! ---
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call I_x1_pol_mult(a_x, d_x, B10, B01, B00, C00, D00, d, n_pt1, n_pt_in)
|
||||
|
||||
n_pt_out = n_pt1
|
||||
if(n_pt1 < 0) then
|
||||
n_pt_out = -1
|
||||
do i = 0, n_pt_in
|
||||
d(i) = 0.d0
|
||||
enddo
|
||||
return
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -263,10 +263,11 @@ BEGIN_PROVIDER [double precision, SCF_energy]
|
||||
double precision :: ax
|
||||
|
||||
PROVIDE do_torus
|
||||
PROVIDE torus_length
|
||||
|
||||
if(do_torus) then
|
||||
|
||||
PROVIDE torus_length
|
||||
|
||||
SCF_energy = 0.d0
|
||||
do l = 1, nucl_num
|
||||
do k = 1, nucl_num
|
||||
|
@ -363,3 +363,87 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine pbd_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: sign
|
||||
|
||||
x = x1 - x2
|
||||
|
||||
if(dabs(x) > 0.5d0 * lx) then
|
||||
|
||||
x = lx - dabs(x)
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine ssd_euc_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: ax, sign
|
||||
|
||||
ax = 2.d0 * pi / lx
|
||||
|
||||
call ssd_torus(x1, x2, lx, x)
|
||||
|
||||
if(x >= 0.d0) then
|
||||
sign = +1.d0
|
||||
else
|
||||
sign = -1.d0
|
||||
endif
|
||||
|
||||
x = sign * dabs(x)
|
||||
|
||||
x = sign * dsqrt(2.d0 * (1.d0 - dcos(ax*x)) / (ax * ax))
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine ssd_torus(x1, x2, lx, x)
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent(in) :: lx
|
||||
double precision, intent(out) :: x
|
||||
|
||||
double precision :: sign
|
||||
|
||||
x = x1 - x2
|
||||
|
||||
if(x >= 0.d0) then
|
||||
sign = +1.d0
|
||||
else
|
||||
sign = -1.d0
|
||||
endif
|
||||
|
||||
if(dabs(x) > 0.5d0 * lx) then
|
||||
x = -1.d0 * sign * (lx - dabs(x))
|
||||
endif
|
||||
|
||||
return
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user