mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 04:22:32 +01:00
beginning to work on new jastrow
This commit is contained in:
parent
70516c8c05
commit
996c09d220
@ -116,6 +116,7 @@ double precision function overlap_gauss_r12_ao(D_center,delta,i,j)
|
||||
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||
return
|
||||
endif
|
||||
! TODO :: PUT CYCLES IN LOOPS
|
||||
num_A = ao_nucl(i)
|
||||
power_A(1:3)= ao_power(i,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
@ -78,7 +78,7 @@ double precision function get_ao_tc_sym_two_e_pot(i,j,k,l,map) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one |AO| two-electron integral from the |AO| map
|
||||
! Gets one |AO| two-electron integral from the |AO| map in PHYSICIST NOTATION
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
|
@ -326,7 +326,9 @@ double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
! Gets one AO bi-electronic integral from the AO map in PHYSICIST NOTATION
|
||||
!
|
||||
! <1:k, 2:l |1:i, 2:j>
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
|
91
src/non_h_ints_mu/fit_j.irp.f
Normal file
91
src/non_h_ints_mu/fit_j.irp.f
Normal file
@ -0,0 +1,91 @@
|
||||
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
|
||||
!
|
||||
! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2)
|
||||
!
|
||||
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
|
||||
END_DOC
|
||||
expo_j_xmu(1) = 1.7477d0
|
||||
expo_j_xmu(2) = 0.668662d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x, (n_max_fit_slat)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! J(mu,r12) = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2) is expressed as
|
||||
!
|
||||
! J(mu,r12) = 0.5/mu * F(r12*mu) where F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)
|
||||
!
|
||||
! F(x) is fitted by - 1/sqrt(pi) * exp(-alpha * x) exp(-beta*mu^2x^2) (see expo_j_xmu)
|
||||
!
|
||||
! The slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
!
|
||||
! See Appendix 2 of JCP 154, 084119 (2021)
|
||||
!
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: expos(n_max_fit_slat),alpha,beta
|
||||
alpha = expo_j_xmu(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha,expos)
|
||||
beta = expo_j_xmu(2) * mu_erf**2.d0
|
||||
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_j_mu_x(i) = expos(i) + beta
|
||||
coef_gauss_j_mu_x(i) = coef_fit_slat_gauss(i) / (2.d0 * mu_erf) * (- 1/dsqrt(dacos(-1.d0)))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
double precision function F_x_j(x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! F_x_j(x) = dimension-less correlation factor = x (1 - erf(x)) - 1/sqrt(pi) exp(-x^2)
|
||||
END_DOC
|
||||
double precision, intent(in) :: x
|
||||
F_x_j = x * (1.d0 - derf(x)) - 1/dsqrt(dacos(-1.d0)) * dexp(-x**2)
|
||||
|
||||
end
|
||||
|
||||
double precision function j_mu_F_x_j(x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! j_mu_F_x_j(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
|
||||
!
|
||||
! = 1/(2*mu) * F_x_j(mu*x)
|
||||
END_DOC
|
||||
double precision :: F_x_j
|
||||
double precision, intent(in) :: x
|
||||
j_mu_F_x_j = 0.5d0/mu_erf * F_x_j(x*mu_erf)
|
||||
end
|
||||
|
||||
double precision function j_mu(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
BEGIN_DOC
|
||||
! j_mu(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
|
||||
END_DOC
|
||||
j_mu = 0.5d0* x * (1.d0 - derf(mu_erf*x)) - 0.5d0/( dsqrt(dacos(-1.d0))*mu_erf) * dexp(-(mu_erf*x)*(mu_erf*x))
|
||||
|
||||
end
|
||||
|
||||
double precision function j_mu_fit_gauss(x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! j_mu_fit_gauss(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
|
||||
!
|
||||
! but fitted with gaussians
|
||||
END_DOC
|
||||
double precision, intent(in) :: x
|
||||
integer :: i
|
||||
double precision :: alpha,coef
|
||||
j_mu_fit_gauss = 0.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
alpha = expo_gauss_j_mu_x(i)
|
||||
coef = coef_gauss_j_mu_x(i)
|
||||
j_mu_fit_gauss += coef_gauss_j_mu_x(i) * dexp(-expo_gauss_j_mu_x(i)*x*x)
|
||||
enddo
|
||||
|
||||
end
|
72
src/non_h_ints_mu/grad_squared.irp.f
Normal file
72
src/non_h_ints_mu/grad_squared.irp.f
Normal file
@ -0,0 +1,72 @@
|
||||
BEGIN_PROVIDER [ double precision, grad_1_squared_u_ij_mu, ( ao_num, ao_num,n_points_final_grid)]
|
||||
implicit none
|
||||
integer :: ipoint,i,j,m,igauss
|
||||
BEGIN_DOC
|
||||
! grad_1_squared_u_ij_mu(j,i,ipoint) = -1/2 \int dr2 phi_j(r2) phi_i(r2) |\grad_r1 u(r1,r2,\mu)|^2
|
||||
! |\grad_r1 u(r1,r2,\mu)|^2 = 1/4 * (1 - erf(mu*r12))^2
|
||||
! ! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
|
||||
END_DOC
|
||||
double precision :: r(3),delta,coef
|
||||
double precision :: overlap_gauss_r12_ao,time0,time1
|
||||
print*,'providing grad_1_squared_u_ij_mu ...'
|
||||
call wall_time(time0)
|
||||
!TODO : strong optmization : write the loops in a different way
|
||||
! : for each couple of AO, the gaussian product are done once for all
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
! \int dr2 phi_j(r2) phi_i(r2) (1 - erf(mu*r12))^2
|
||||
! = \sum_i coef_gauss_1_erf_x_2(i) \int dr2 phi_j(r2) phi_i(r2) exp(-expo_gauss_1_erf_x_2(i) * (r_1 - r_2)^2)
|
||||
do igauss = 1, n_max_fit_slat
|
||||
delta = expo_gauss_1_erf_x_2(igauss)
|
||||
coef = coef_gauss_1_erf_x_2(igauss)
|
||||
grad_1_squared_u_ij_mu(j,i,ipoint) += -0.25 * coef * overlap_gauss_r12_ao(r,delta,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(time1)
|
||||
print*,'Wall time for grad_1_squared_u_ij_mu = ',time1 - time0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
|
||||
!
|
||||
END_DOC
|
||||
integer :: ipoint,i,j,k,l
|
||||
double precision :: contrib,weight1
|
||||
double precision, allocatable :: ac_mat(:,:,:,:)
|
||||
allocate(ac_mat(ao_num, ao_num, ao_num, ao_num))
|
||||
ac_mat = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
contrib = weight1 *0.5D0* (aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i))
|
||||
! \int dr1 phi_k(r1) phi_i(r1) . \int dr2 |\grad_1 u(r1,r2)|^2 \phi_l(r2) \phi_j(r2)
|
||||
ac_mat(k,i,l,j) += grad_1_squared_u_ij_mu(l,j,ipoint) * contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -11,6 +11,8 @@ END_DOC
|
||||
double precision, allocatable :: b_mat(:,:,:,:),ac_mat(:,:,:,:)
|
||||
! provide v_ij_erf_rk_cst_mu
|
||||
provide v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu
|
||||
! ao_non_hermit_term_chemist = non_h_ints
|
||||
! return
|
||||
call wall_time(wall0)
|
||||
allocate(b_mat(n_points_final_grid,ao_num,ao_num,3),ac_mat(ao_num, ao_num, ao_num, ao_num))
|
||||
!$OMP PARALLEL &
|
||||
@ -35,6 +37,9 @@ END_DOC
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
! (A) b_mat(ipoint,k,i,m) X v_ij_erf_rk_cst_mu(j,l,r1)
|
||||
! 1/2 \int dr1 x1 phi_k(1) d/dx1 phi_i(1) \int dr2 (1 - erf(mu_r12))/r12 phi_j(2) phi_l(2)
|
||||
ac_mat = 0.d0
|
||||
do m = 1, 3
|
||||
! A B^T dim(A,1) dim(B,2) dim(A,2) alpha * A LDA
|
||||
@ -60,6 +65,8 @@ END_DOC
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! (B) b_mat(ipoint,k,i,m) X x_v_ij_erf_rk_cst_mu(j,l,r1,m)
|
||||
! 1/2 \int dr1 phi_k(1) d/dx1 phi_i(1) \int dr2 x2(1 - erf(mu_r12))/r12 phi_j(2) phi_l(2)
|
||||
do m = 1, 3
|
||||
! A B^T dim(A,1) dim(B,2) dim(A,2) alpha * A LDA
|
||||
call dgemm("N","N",ao_num*ao_num,ao_num*ao_num,n_points_final_grid,-1.d0,x_v_ij_erf_rk_cst_mu(1,1,1,m),ao_num*ao_num &
|
||||
@ -75,6 +82,7 @@ END_DOC
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
! (ki|lj) (ki|lj) (lj|ki)
|
||||
ao_non_hermit_term_chemist(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
|
70
src/non_h_ints_mu/new_grad_tc.irp.f
Normal file
70
src/non_h_ints_mu/new_grad_tc.irp.f
Normal file
@ -0,0 +1,70 @@
|
||||
BEGIN_PROVIDER [ double precision, grad_1_u_ij_mu, ( ao_num, ao_num,n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! grad_1_u_ij_mu(i,j,ipoint) = -1 * \int dr2 \grad_r1 u(r1,r2) \phi_i(r2) \phi_j(r2)
|
||||
!
|
||||
! where r1 = r(ipoint)
|
||||
!
|
||||
! grad_1_u_ij_mu(i,j,ipoint) = \int dr2 (r1 - r2) (erf(mu * r12)-1)/2 r_12 \phi_i(r2) \phi_j(r2)
|
||||
END_DOC
|
||||
integer :: ipoint,i,j,m
|
||||
double precision :: r(3)
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
grad_1_u_ij_mu(i,j,ipoint,m) = v_ij_erf_rk_cst_mu(i,j,ipoint) * r(m) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
grad_1_u_ij_mu *= 0.5d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num, ao_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! tc_grad_and_lapl_ao(k,i,l,j) = <kl | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) | ij>
|
||||
!
|
||||
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||
!
|
||||
! This is obtained by integration by parts.
|
||||
END_DOC
|
||||
integer :: ipoint,i,j,k,l,m
|
||||
double precision :: contrib,weight1
|
||||
double precision, allocatable :: ac_mat(:,:,:,:)
|
||||
allocate(ac_mat(ao_num, ao_num, ao_num, ao_num))
|
||||
ac_mat = 0.d0
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight1 = final_weight_at_r_vector(ipoint)
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
contrib = weight1 *0.5D0* (aos_in_r_array_transp(ipoint,k) * aos_grad_in_r_array_transp_bis(ipoint,i,m) &
|
||||
-aos_in_r_array_transp(ipoint,i) * aos_grad_in_r_array_transp_bis(ipoint,k,m) )
|
||||
! \int dr1 phi_k(r1) \grad_r1 phi_i(r1) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||
ac_mat(k,i,l,j) += grad_1_u_ij_mu(l,j,ipoint,m) * contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
tc_grad_and_lapl_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
102
src/non_h_ints_mu/test_non_h_ints.irp.f
Normal file
102
src/non_h_ints_mu/test_non_h_ints.irp.f
Normal file
@ -0,0 +1,102 @@
|
||||
program test_non_h
|
||||
implicit none
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 50
|
||||
my_n_pt_a_grid = 74
|
||||
! my_n_pt_r_grid = 10 ! small grid for quick debug
|
||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
!call routine_grad_squared
|
||||
call routine_fit
|
||||
end
|
||||
|
||||
subroutine routine_lapl_grad
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: grad_lapl, get_ao_tc_sym_two_e_pot,new,accu,contrib
|
||||
double precision :: ao_two_e_integral_erf,get_ao_two_e_integral,count_n,accu_relat
|
||||
! !!!!!!!!!!!!!!!!!!!!! WARNING
|
||||
! THIS ROUTINE MAKES SENSE ONLY IF HAND MODIFIED coef_gauss_eff_pot(1:n_max_fit_slat) = 0. to cancel (1-erf(mu*r12))^2
|
||||
accu = 0.d0
|
||||
accu_relat = 0.d0
|
||||
count_n = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
grad_lapl = get_ao_tc_sym_two_e_pot(i,j,k,l,ao_tc_sym_two_e_pot_map) ! pure gaussian part : comes from Lapl
|
||||
grad_lapl += ao_two_e_integral_erf(i, k, j, l) ! erf(mu r12)/r12 : comes from Lapl
|
||||
grad_lapl += ao_non_hermit_term_chemist(k,i,l,j) ! \grad u(r12) . grad
|
||||
new = tc_grad_and_lapl_ao(k,i,l,j)
|
||||
new += get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
|
||||
contrib = dabs(new - grad_lapl)
|
||||
if(dabs(grad_lapl).gt.1.d-12)then
|
||||
count_n += 1.d0
|
||||
accu_relat += 2.0d0 * contrib/dabs(grad_lapl+new)
|
||||
endif
|
||||
if(contrib.gt.1.d-10)then
|
||||
print*,i,j,k,l
|
||||
print*,grad_lapl,new,contrib
|
||||
print*,2.0d0*contrib/dabs(grad_lapl+new+1.d-12)
|
||||
endif
|
||||
accu += contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/count_n
|
||||
print*,'accu/rel = ',accu_relat/count_n
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_grad_squared
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: grad_squared, get_ao_tc_sym_two_e_pot,new,accu,contrib
|
||||
double precision :: count_n,accu_relat
|
||||
! !!!!!!!!!!!!!!!!!!!!! WARNING
|
||||
! THIS ROUTINE MAKES SENSE ONLY IF HAND MODIFIED coef_gauss_eff_pot(n_max_fit_slat:n_max_fit_slat+1) = 0. to cancel exp(-'mu*r12)^2)
|
||||
accu = 0.d0
|
||||
accu_relat = 0.d0
|
||||
count_n = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
grad_squared = get_ao_tc_sym_two_e_pot(i,j,k,l,ao_tc_sym_two_e_pot_map) ! pure gaussian part : comes from Lapl
|
||||
new = tc_grad_square_ao(k,i,l,j)
|
||||
contrib = dabs(new - grad_squared)
|
||||
if(dabs(grad_squared).gt.1.d-12)then
|
||||
count_n += 1.d0
|
||||
accu_relat += 2.0d0 * contrib/dabs(grad_squared+new)
|
||||
endif
|
||||
if(contrib.gt.1.d-10)then
|
||||
print*,i,j,k,l
|
||||
print*,grad_squared,new,contrib
|
||||
print*,2.0d0*contrib/dabs(grad_squared+new+1.d-12)
|
||||
endif
|
||||
accu += contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/count_n
|
||||
print*,'accu/rel = ',accu_relat/count_n
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_fit
|
||||
implicit none
|
||||
integer :: i,nx
|
||||
double precision :: dx,xmax,x,j_mu,j_mu_F_x_j,j_mu_fit_gauss
|
||||
nx = 500
|
||||
xmax = 5.d0
|
||||
dx = xmax/dble(nx)
|
||||
x = 0.d0
|
||||
print*,'coucou',mu_erf
|
||||
do i = 1, nx
|
||||
write(33,'(100(F16.10,X))') x,j_mu(x),j_mu_F_x_j(x),j_mu_fit_gauss(x)
|
||||
x += dx
|
||||
enddo
|
||||
|
||||
end
|
Loading…
Reference in New Issue
Block a user